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The problem of minimizing coding or quantizing noise in a communica-
tion system is posed in a general setting. It is shown that if the messages to
be transmitted are sample sequences drawn from a discrele-time random
process meeling a certain simply stated criterion of ‘“randomness”’ and if
there exists a quantized communication system which is optimal in that it
introduces a minimum amount of coding noise, then this optimal system
can be realized using a transmitler of special form. Specifically, the opti-
mum transmitter is one which quantizes each message sample according to a
scheme that depends only upon the quantized material already transmitied,
rather than wpon the (unquantized) material that has been previously offered
for transmission. It follows that only digital storage is required al the
transmiller or receiver. If the receiver 1s limited, a priori, fo have only a given
finite amount of storage, and if the system s optimum within this con-
straint, the transmitter need have only the same amount of storage.

I. INTRODUCTION: THE MODEL

Shannon’s theory of communication, shows how to defeat noise intro-
duced in a communication medium by restricting the repertoire of trans-
mitted signals to a discrete set.' If the messages to be transmitted are
not already in an appropriately discrete form, noise in the medium is
then eliminated only at the expense of noise, here ealled coding noise,
caused by the failure of the restricted family of available signals to
represent faithfully the full family of possible messages. The amount of
coding noise introduced is of course subject to control by design.

This paper considers one aspeet of the problem of minimizing coding
noise. Noise in the medium is not considered. The paper limits attention
to systems in which the random process representing the message is a
discrete-time or sampled-data process. The sampling noise caused by
creating such a process out of a continuous-time process is not considered.
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The problem of selecting a coding scheme that maximizes the rate of
communication over a noisy channel is not considered. Rather, the paper
starts at the point that a coding scheme has been found, that is optimum
according a fairly general criterion of fidelity. What is then shown is
that the transmitter and receiver—encoder and decoder—of the system
are of a special form.

A Q-coded communication system is defined by a discrete set @ and by
three jointly distributed random processes, {z. , ¢., ¥. | n = 0, =£1,
+2, ---}. For purposes of this paper, the set @ will be either

(7) theset {1,2, ---, M}, where M is a given positive integer > 1, or
(77) the set {1, 2, 3, - - -} of all positive integers.

The process {z,} represents periodic samples derived from the message
offered for transmission, each z, is a real random variable. {g,} represents
the transmitted signals; for each n, ¢, is a random variable, taking values
from the set Q@ and measurable on the sample space of {z,, z,_,,
To_z, *--}. That is, for each n, the value of the integer variable g,
depends only upon, and is determined (apart perhaps from events of
probability zero) by the present and past of the message. {y,} represents
the version of the message reconstructed at the receiver; for each n, ¥,
is a real random variable measurable on the sample space of {g., gn-1,
@2, * * * }. Therefore for each n, ¥, depends only upon, and is determined
(apart perhaps from events of probability zero) by the present and
past of the transmitted signal.

The model at this point is very general. It provides that at each time,
n a diserete valued random variable g, be generated in some way out of
the material {x, , Z,; , 2 , ---} then available from the message
process, and that subsequently at the receiver a ¥, be generated out of the
material {g, , g._1, - - -} there currently available. If all three processes
{Zn, @ , Y=} are stationary we can call the system stationary. The ques-
tion of stationarity does not enter in what follows.

What remains to be specified in this model is that in some sense the
process {y.} is to represent the process {z.}. At the start it appears
natural to consider three cases; it develops that two are simply special
cases of the third, one of them not interesting in the framework of this
paper.

We start with a given sequence {y, |n = 0, &=1, &2, - - - } of functions,
in which each ¢, is a real valued Borel measurable function ¢,(z, ¥) of
the real variables z, y. The use of a sequence {y,} here is a largely deco-
rative generality that costs nothing. The conventional case is that in
which all , are the same function ¢. These functions define a fidelity
criterion as follows;
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Case (7), the delay-free case:

Here we choose to regard y, as a replica of z, , and evaluate our
communication system at each time n by the quantity

Eiy.(x. , )l 1

where I denotes expectation over the message ensemble.

Case (i), the case of fixed delay:

Here we are given a fixed integer d = 0 and we choose to regard ¥,
as a repliea of z,_, , thus allowing ¢, to take advantage not only of
[%p-a, Tucaey, - - -} (the present and past of z,_,) butalsoof {z,,%._q, - - -,
Zu—a+1} (a limited span of the “future” of x,_;) in representing x,-. .
Here the eriterion relative to z,_, is (by a convention we will use with
respect to indices)

E{Yn(@a-a , ya)}- (2)

If d = 0, this case reduces to case 7.

Case (717), block encoding with cycle time c:

This is the situation that arises naturally in Shannon’s theory. We
are given a fixed integer ¢ = 1, and the transmission process is repetitive
with a eycle of length ¢. By a choice of time origin, we can deseribe it as
follows, Let @, be a diserete set with 1/, < « members. At time 0 the
transmitter examines {x,,2_,, - - -} and generates a @,-discrete variable
which we shall call ¢, . At time ¢, the transmitter then examines {z. ,
Z.-1, +++} and produces §, ; the process repeats with period ¢. For trans-
mission, the random variable §, is encoded into the string {q., ¢.-1," -,
¢,} of random variables each being Q-discrete, where M = M, . At

time ¢, all of §,, ¢-,, --- are available at the receiver, being rep-
resented by the sequence {q. , g._1, g.—2, - - - }. From these, the sequence
{Y2e—1 s Yae—2, ***, Y.} is generated, representing =, , Ty, "+, Tocs1

respectively. We think of these y’s as being presented to the output
of the receiver in the order of their indices, y, at time ¢, and so on.

If one follows through the functional dependencies here, he sees that
indeed the processes {z, , ¢. , ¥.} are so related that each ¢, depends at
most upon {2, , T,1 , - - -}, and each y, at most upon {q, , ¢.—1, - }.
Indeed, except at times which recur with period ¢, ¢, is not “up to
date,” depending in faect only on z’s strictly prior to x, . Similarly, ¥, is
only periodically up to date; at other times it depends only upon ¢'s
that are actually earlier than g, .

In the situation as just described, the eriterion of fidelity becomes
Ef{y,(x.-2c41, ¥a)}. Case 447 is then also a special case of case 77, in which
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d = 2¢ — 1 = 1. What makes it special is that in case 7%, g, and y,
are permitted to be up to date at each value of n, however in case v
the block coding process restricts the currency of the data upon which
most of the ¢’s and y’s depend.

Actually, case 74 as just deseribed will turn out not to be covered,
in general, by the theorems to be proved. This happens because, as is
later be stated more precisely, we are interested only in communication
systems that minimize (2) for each n, in comparison with all possible
competing systems. Clearly, to impose the restrictions immanent in
case 177 upon one’s reportoire of coding schemes limits the domain
within which a minimum is to be sought. The system that brings
about an absolute minimum is simply not, in general, to be found
in this restricted domain.

The previous observation is not to be entered as a criticism of Shan-
non’s theory. Typically, in a noisy medium, it is necessary to use a
highly redundant encoding {g. , g.-1, - - , ¢} to represent g, , so that
the inefficiencies (as measured by expression 2) that are imposed by
the block-coding process are needed in order to ensure that the y,
in (2) is an approximately error free replica of ,-. . We must remember
that (2) measures the noise introduced by the coding process, not by
the noisy medium. It is interesting to a designer only if the latter
noise has been eliminated. The price of this elimination is that one
may not be able to minimize (2) in competition with systems that
are not restricted to be of block coding form.

A true engineering solution to the problems reflected in the remarks
immediately above would consider (2) in which the expectation is
taken over the joint ensemble of message and noise. The solution
should balance coding noise against channel noise at, say, a fixed delay,
to minimize (2). This paper is very far from solving such a problem.

It does not follow that the results of this paper are without interest
in the search for coding schemes to eliminate noise. Given a @-coded
communication system which does minimize (2), the {g.} process is
in digital form. This {g.,} process can then be redundantly encoded
according to Shannon’s theory, and recovered with few errors (and
typically much delay) at the receiver. The {y.} process then results
(perhaps delayed) and has few errors. Then (2) does measure the
total amount of noise introduced in this operation.

II. STATEMENT OF RESULTS

Given the message process {z,.}, the sequence {¢,}, and the delay
d = 0, a Q-coded communication system {2, , ¢, , ¥.} will be called
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(¥, , d}-optimal if
(i) Foreachn = 0, &1, &2, ---
E{| ¥u(@ea , ¥) [} < oo, ®3)
and
(#7) For any other @-coded communication system {z, , ¢’ , y’},
E{Yu(@a-a, o)} = E{dulzia, yd}, (4)

foreachn = 0, 1, +£2, --- .

The simplest result of this paper is of such a form as to illustrate
the nature of all of the results. We define a class K of functions ¥,
and a class, here called CCD, of message processes {z,}, such that
the following theorem is true.

Theorem 1: Let {X, , Qa , Ya} be a given Q-coded communication system
that is {y, , 0}-optimal. If each ¢, e K, n = 0, £1, £2, --- , and 7f
{x,} @ CCD, then each q, ts equal with probability one to a random variable
measurable on the sample space of {X, , Qu-1, Qu-z, *** .

The force of this theorem is that it simplifies, in principle at least,
the requirements for memory at the transmitter. Only the digital
sequence {¢,—; , gun-2 , - -} need be in storage at time n. The proof
of the theorem will also develop a standard structure for the optimum
transmitter difficult to summarize easily in a theorem.

The definition of the class K is long and is deferred to Section III.
Suffice it here to say that K is a large class that includes the conventional

e,y =le—yl, Y@y =—-y,
and any other continuous strictly increasing function of ¢'.
We define CCD, and a related class CCDf, thus:

CCD consists of those processes {x,} such that: for each n = 0,

+1, £2, --- , if z is a random variable measurable on the sample
space of {z,_, , Z,_», -- -}, then the probability that z = z, is zero:
Plz = x,} =0. (5)

CCDf consists of those processes {z,} such that: for each n = 0,
+1, &2, --- , if A is a finite Borel field or the completion of a finite
Borel field, and if z is a random variable measurable on the smallest
Borel field containing A and the sample space of {2, , Z,.. , - -},
then (5) holds.



3096 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1969

Read CCD as “continuous conditional distribution.” If {z,} ¢ CCD
and if z, has a conditional distribution given {z,_, , #._» , -- -}, that
distribution must be continuous.

We now define a more restricted class of @-coded communication
systems and a corresponding notion of optimality.

Given an integer m = 0, a Q-coded communication system {&, , ¢n , ¥n}
will be said to have decoder memory span m if for each n = 0, 1,
+2, --- y, is measurable on the sample space of {g. , a1, *** ; Gum)-

A Q-coded communication system {z, , ¢, , ¥.] Wwill be called
{¢. , d, m}-optimal if it has decoder memory span m, if (3) holds for
every n, and if (4) holds for every n and for every {x,, ¢, , yi} which
has decoder memory span m.

In the case of {¢, , d, m} optimality, then, the competition is re-
stricted to systems with decoder memory span m. We can put m = o
to refer to the case of {{, , d} optimality defined earlier.

Perhaps our most surprising result is that case 7 of our model,
which includes case ¢ as a special case, is also included in case ¢. This
is shown by Theorem 2.

Theorem 2: Let {X, , qa , Yo} be @ given Q-coded communication system
that is {Y. , d}-optimal. If each ¢, e K, n = 0, =1, £2, --- , if M,
the number of elements of Q, is finile, and if {x,} e CCDf, then each q, s
equal with probability one to a random variable measurable on the sample

space of [Xo—a ; Qa1 Quez 5 - - * ). Furthermore, the system {z, , al , yi},
where
[
Qo = ovar =0, 1, £2, -+, (6)
.V; = y:H-d )
is a Q-coded communication system that is {Y. , 0} optimal, where
Vo = Yura, n =041, £2 . (7)

Finally, we state a theorem that includes the two preceding ones.

Theorem 3: Let {x, , 0. , ¥a) be a given Q-coded communication system
that is {Y. , d, m}-optimal. If each ¢, ¢ K, n = 0, £1, £2, --- , if
M < w, and if {x,} € CCDf, then each q, 7s equal with probability one
to a random variable measurable on the sample space of {Xu-a , Qu-1 »

 Qoem) ({Xa—a} ?f m = 0). The system as defined by (6) is a Q-coded
communication system with decoder memory span m that is {¢., 0, m}-
optimal, where Y. is given by (7). If, in the tnitial hypotheses, d = 0,
then it suffices that {x,} £ CCD and the restriction M < o« may be removed.
If m < =, the hypothesis {x.} ¢ CCDf may be replaced by:
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For each n = 0, =1, 2, --- , if z 7s a random variable that takes
only finitely many values, then P{x, = z} = 0.

Theorem 1 shows the basic facts about measurability in the present
context. Theorem 2 adds the fact that delay d > 0 gains no advantage
(since the “future” of z,_, is not known at the receiver, even if it is
at the transmitter). Finally, Theorem 3 includes these facts and shows
that a limitation on the memory span of the receiver allows a cor-
responding simplification of the transmitter.

In the proofs of these theorems it is seen that they are true for classes
of process slightly larger than CCD or CCDf. In particular, the final
conclusion of Theorem 3 opens the case of finite memory span to any
process {z,} that has a little additive nonsingular Gaussian noise in
each sample.

III. THE CLASS K

The eclass K of cost functions allowed by these theorems can be
very general. The definition below seems more inclusive than is called
for by the applications I can think of; at the eost of elaboration, it
can be enlarged further.

We let K be the class of all functions y(x, %) of two real variables
x, 4 with the following properties.

(7) (z, y) is continuous;

(i7) for all z, v, vz, y) = 0;

(#77) for all z, Y(z, x) = 0;

(i) for each y, there are at most countably many solutions x to the
equation

¥, y) =0, (8)
in the sense that: there exist Borel measurable functions ¢.(y), £k =
1,2, 3, --- , such that if (8) holds, then for some k, x = g.(y).

v) If ¥, # y. , there are at most countably many solutions to the
equation

‘[’(—’5; yl) = lp(:l}, Elz): (9)
in the sense that: there exist Borel measurable functions f.(y, 2), k =

1, 2, 3, - -+ such that if (9) holds and if 3, # y. , then for some k, x =

felys s ya).
It follows from this definition that ¢' ¢ K, where ¢'(z, %) = |z — y |.
Then also ¢° ¢ K, where ¢’(z, ¥) = (z — y)°. Similarly any other con-
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tinuous strietly monotone function of ' is also in K. In all of these
instances, (8) has the unique solution ¥ = =z, and (9) has a unique
solution given by 2z = ¥y, + ¥».

IV. PROOFS

Let {2, B, P} be a probability space: A set @ of points w, a Borel
field B of subsets of Q, and a probability measure P on B with respect
to which B is complete. This probability space is assumed given and
fixed.

A random variable z is a real-valued function z(w) defined on Q
and measurable B.

If F C B is a Borel field, a random variable z is said to be essentially
measurable F if z is equal with probability one to a random variable z’
which is measurable F. If F is complete, such an z is then itself meas-
urable F.

If F C B is a Borel field and z a random variable, {z} V F denotes
the smallest Borel field such that: z is measurable {z} vV F and
FC {z} VF.

A random variable taking its values in the set @ will be called Q-
discrete.

Denote by [z | ¢, F | y, G] a mathematical object of the following
kind:

z is a random variable,

q is a Q-discrete random variable,

F is a Borel field, F C B, and q is essentially measurable on the field
determined by F and the sample space of z,

y is a random variable,

G is a Borel field, G C {2} V F, and y is essentially measurable on
the field determined by G and the sample space of g.

For convenience let CQAx (‘“‘conditionally quantized approximation
to 2'’) denote the class of all objects of the kind described, based on
the given probability space {Q, B, P}, the given z, and the given set @.

Given a Q-coded communication system {z,, ¢., ¥.}, given a delay d
and a memory span m, let X, . be the sample space of the selection

(%, , Ty , -+ -} of random variables from which the specific variable
x,_q has been deleted. Let Q... be the sample space of the random
variables {g.—1, u—2, - - ; @u-m]. Then it is easy to see that {z,, ¢, , ¥.}

is a @Q-coded communication system with decoder memory span m
if and only if for each n = 0, +1, 2, ---

[xn-d | Gn Xn.d | Yn Qn,m] 3 CQAxn—d .
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Given ¢, a [z | q, F | , G] ¢ CQAz will be called weakly y-optimal if:

(@) E{l ¢z, 9 |} < =,
(i) If random variables ¢’ and y’ are such that [z | ¢/, F | ', G] ¢ CQAx,
then E{y(z, y)} = E{¢(x, )}

The qualifier “weakly” in this definition signals the fact that the
fields F and G are not allowed to vary in the competition for optimality.

Lemma 1: If (X, , 0o , ¥a 15 @ Q-coded communication system with
decoder memory span m, and if {X, , Qu , ¥al 8 {¥u , d, m}-optimal,
then for eachn [X,_q | Qo s Xara | Yo 5 Qu.ml 75 weakly Y.-optimal.

Proof: TFix an n; for convenience identify it as n = 0. Suppose that
we are given random variables ¢’ and y’, which we shall here call g}
and y; , such that

(s | gl Xoa | 5, Qo.ml e CQRAZ, .
Define a new @-coded communication system {x, , ¢/ , ¥/} thus:
Forn <0,q¢, =@, v, = ¥
For n = 0, ¢} and y} are those above;
Forn > 0,¢, = 1and y, = 0.

That this is a @-coded communication system with decoder memory
span m follows at once from the definitions. Furthermore, the sample
space of {q’;, g%y, *** @4} iS Qo,m . Because {x,, ¢., ya} is {¥n, d, m}-
optimal, we conclude that E{| o (r_a, %0)|} < « and that E{e(z_s, ¥0)]
= Efo(m_a, y0)}-
These, however, prove that [z_s | ¢ , Xo.a | Yo , Qo,n) is weakly -
optimal. Clearly this proof can be repeated for any other value of n.
The proof of this lemma indicates, deliberately, the force of the
notion of {¢, , d, m}-optimality for {z,, g. , ¥.}. The competing com-
munication system {z, , ¢, , y.} used in the proof sacrificed all reason-
able behavior for n > 0, yet was still allowed to compete at n = 0.
In particular, notice that even if {z, , g. , y.} is stationary, it must
compete with nonstationary systems designed to excel at only one
value of n. The theorems of Section II are not proved for stationary
systems which are known only to minimize each E{y,.(v.-a, ¥.)}
against competing systems drawn from the class of stationary systems.
Given a Borel field G C B, we define CCD(G) analogously to CCD:
CCD(G) is the class of all random variables x such that:

If 2 is a random variable measurable G, then P{x = z} = 0.
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The results of this paper all derive from Theorem 4.

Theorem 4: Let [x | q, F | y, Gl ¢ CQAz and suppose that it is weakly
Y-optimal. If Q is a finite set, or if ¥ is Borel measurable and for each
x 15 bounded from below, then there exists a Q-discrete random variable
q’ and a random variable y' such that

(@) [x|a, G|y, Gle CQAx,

(@) Y(x, y') = ¥(x, y) with probability one. In particular, also, the
object 1 is weakly Y-oplimal.

If ¢ ¢ K and x e CCD(G) then also

(#21) ¢’ = q with probability one, and

(w) y' = y with probability one.

It then follows that the given q is essentially measurable on the Borel field
{x} vG, determined by G and the sample space of x.
We wish to use the given [z | ¢, F | ¥, G] as a model for some

[mn—d | Qn ’ Xn.d I yn ] Qﬂ.m]

in a Q-coded communication system. Conclusions ¢ and # show that
for any given n we can find a g essentially measurable {Z,-4} V Q..
and a g’ such that, according to the criterion defined by ¥, y. represents
Z._q as well as y, did. Without conclusion 7, however, the substitution of
¢’ for ¢, can alter the subsequent Borel fields Q}., ., k¥ = 0, to the point
that we are no longer sure that [, .x—a | @hur s Xovroa | Yowr s Qhszmh B >0
is weakly y..-optimal. Without 7z, therefore, one cannot apply The-
orem 4 to prove the other theorems.

It is convenient now to invoke a lemma which is a simple theorem
from measure theory. The lemma provides a standard form for the
variables g and y of an objeet [z | ¢, F | y, G] e CQAx.

Theorem 2: Given a Q-discrete random variable q and a Borel field G,
if y 18 a random variable measurable on the Borel field determined by G
and the sample space of q, then there exist random variables {z, , p & Q}
such that

(i) each z, is measurable G and

(43 for each w e Q, if q(w) = p then y(w) = zy(w).
Conversely, of course, given {Z, , p ¢ Q}, each measurable G, any y defined
by i is measurable on the field delermined by G and the sample space of q.

The proof of this lemma consists in showing that the class of random

variables of the type of y above, as the {z, , p £ Q] are selected arbi-
trarily from the class of variables measurable G, exhausts the class
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of all random variables measurable on the Borel field determined by G
and the sample space of ¢. The proof is a straightforward exercise in
measure theory and is omitted.

To begin the main argument, given [z | ¢, F | y, G] ¢ CDAz and
a Borel measurable function y(z, %), if for each x ¥(z, ¥) is bounded
from below, or if Q is a finite set, we can define the random variable

tw) = 1113 P(r(w), 2, ().
Then £ is measurable {x} VG.
Given p e Q and r e Q, we define sets 7%, T, , T, by

TF = {o | $(2@), @) = &)},
fw | YW, 2w) = $aw), )},
Tr = T: - UT'W‘ .

TEp
reQ

s
I

Clearly each of these sets is measurable {z} V G. T% is the set where
the index p minimizes ¢(z, z,), and T, is that subset of 7% where this
minimizing index is unique. It follows that if » # p then

T, N T% =9, (10)
and as a consequence, 7', A T, = ¢, r # p.
Clearly
T,=T17T.,.
Also
™ AT, =TNT,., (11)

since either side is the set where an index minimizing ¢(z, z,) can be
equal either to p or to r.

In terms of these sets, the argument to be used can be outlined
briefly. First, one shows that the 7% essentially cover , in the sense
that there is a null set N such that

o—N=UTr. (12)
peQ
This follows without argument, and with N = ¢, if @ is finite; it results
from Y-optimality in general.
Second, by definition
¢ — T, < \UT,. . (13)

reQ
r#Ep
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Third, one observes that for p, r ¢ Q and p # r, T',, consists of the
set S,,

S, = {o | 2(w) = z,(w)}

plus a disjoint remainder T,, — S,, . The hypothesis x ¢ CCD(G) allows
one to show that this remainder is a null set. Over the set S,, , on the
other hand, the information about x conveyed by the family {z,, p e @}
is redundant. The hypothesis of y-optimality can then be violated,
unless S,, is also a null set. It follows then that each T, is a null set,
and from (12) and (13) then that the T', partition @ apart from a null set.
From this the full theorem follows quickly.
To proceed with (12), given p £ @, let N, be the set
N, = {o | qw) =p} A {Q - \JTT}-

Fixanwe N, ; then y(w) = 2,(v) but w ¢ T* , so that £(w) < Y(z(w), z,(w)).
It follows that there is some r & @, r # p, such that

Y(z(w), 2,(w) < (), 2,(w)), (14)

and indeed, since @ is bounded from below, that there is a least such r,
call it r*(w). Notice that N, is measurable on the Borel field determined
by the sample space of {x}, by F, and by G. Since G C {z} V F, it follows
that N, is measurable {x} Vv F. That subset R, of N, where r¥(0) = k
is empty if & = p; otherwise

Ry = N, A fo | ¥, 21w) < ¢w),zw)} if kE=15p,

B = N, A o | $a), 2:@)) < $@(e), 2@} A

k=1
N o | YW, 20) = YW,z if kE>1, k#*p.
i=1
It follows from these equalities that R,; and r¥ are measurable {x] V F.
We now define the @-diserete random variable ¢’ by

Ifpe@Qandwe N, , ¢(v) = r¥(w);
Ifwel — Umg N, , then ¢'(w) is the least value of r ¢ @ such that
we T* .

Since the N, cover the complement of \_J, 7% , and since @ is bounded
from below, this defines ¢'(w) for each w e Q; clearly ¢’ is Q-discrete.
Given k & @, the set where ¢’ = k consists of the union of

URDT-'
Q@
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with the set V., where
V,=1T¢
Vi=(Q—=THA -+ AN(Q—TE) ANTE, k> 1.

Since each V, is measurable {z} V G C {z} V F, it follows that ¢’ is
measurable {z} V F. Furthermore, over & — \U..o N,, ¢’ is equal to a
random variable that is measurable {x} V G, since each V, is measurable
on this latter field.

We now define the random variable 7’ by

Y'(@) = 20w, wel
Then 3 is measurable on G and the sample space of ¢’. It follows that
[z | ¢, F |y, Gle CQAz, and from the hypothesis of weak y-optimality
then that

E{y(z, y)} £ E{y(x, ¥)}. (15)
But now we claim that for all we Q
Y(z(w), ¥ (@) £ Yz(w), y(). (16)

Tirst, if we N, , we have

Yaw), ' @) = $E©), 200 @) < $w), 2,w)

Y(a(w), y(w), (17

the inequality being by definition of 7% . Therefore strict inequality
prevails in (16) for we \U.,.o N, . Consider now an we (2 — U.e N A
{0 | ¢ (@) = p}. For this w we have w e T% and y(x(w), y'() =
Y(2(w), 2,(w)) = (@), 2,(w)) for any r e @, by definition of T% . But
then (16) follows for this « because y(w) = 2,(w) for some r & Q.

Now from (16), by taking expectations, we conclude the inequality
opposite in sense to (15), hence (15) is an equality, and (16) is then
an equality with probability one. Therefore i of Theorem 4 is proved.
Now by (17), (16) is a strict inequality over N = \U..o N, . Hence
this latter set is a null set. Therefore i of Theorem 4 is proved, since
¢ is equal, over the complement of N, to a variable that is measurable
{z] VG, as we noted earlier. Finally, since

o—-UJUrr=\UN, =N

peQ re@

I

the T* essentially cover Q. This is (12), as was to be proved.
It would be possible at this point to invoke the hypotheses ¢ ¢ K
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and z ¢ CCD(G) to conclude 7 of the Theorem. It will be more effi-
cient to prove ¢ and 7 together. To do so requires, as our earlier
outline suggests, that we examine the sets T* A T,. over which re-
dundancy prevails (because on 7% A T, either of z, or z,, where
r # p, could be used to define the same value of ¥ minimizing ¢(z, y).

We have concluded (12), that except for w ¢ N, a null set, for each
w there is at least one p ¢ @ such that £(w) = ¢Y(z(w), z,(w)), that is,
the minimizing index is uniquely p forwe T, — N.

Now define, as earlier, for r # p,

Sy = {o | 2,(w) = z.(w)}.
Then if we T,, — 8S,,, we have
Y(a(w), 2,(@) = ¥(@(), 2.(w),  z(o) # z(w).
Since ¢ ¢ K, it follows that for some &k = 1, 2, - - we have
r(w) = filzp(@), 2,(w)). (18)

Now let A;,, be the set of all @ such that (18) holds. We have just
showed that

T, — 8, € \JA,, . (19)
k=1

But now, since f; is Borel measurable and each z, is measureable G,
(18) constrains x on A,,, to be equal to a random variable measurable G.
Since z ¢ CCD(G), then A,,, is a subset of some null sef,

P[Akzzr}=01 k=112:"'1

and
ZP{‘A]‘L'D"] = 0.
k=1

This last with (19) makes P{T,, — 8,.} = 0. Indeed, finally, since @
is countable,
P[U U(T:ur - Spr); = 0

peQ re@
r#Ep

It is important later that by definition, S,, is measurable G and
therefore that, by (19), T',, is essentially measurable G.

We now define a new @-discrete random variable ¢’ and a corre-
sponding y'’. The construction depends upon an arbitrarily chosen
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poe @ and an arbitrarily chosen real number a, although the notation
will not emphasize this dependence. Later it will be shown that ¢ =
and ¥ = y’ each with probability one, so that the dependence upon
po and a is not essential.

Fix a po ¢ Q and select a real number a. Define the random variable

2z}l (w) by:
f we UTW , zl(w) = a,

reQ
r#po

otherwise, 2/(w) = z,,(w).
Then z!/(w) is measurable G. Define

z! =2z, peQ,  pFEp.

Then certainly each z/’, p & @, is measurable G. Define the Q-discrete
random variable ¢/ (w) by

foeT, VI(TE — T,) A o | ), @) < ), z.())}]
then ¢ (w) = po;
if we (T —T,) A {u[¢@@) 8 2 $w), 2,))}
then ¢''(w) is the least value of p e @ such that p # p, and w e T%;
if we®— TX,then ¢"(w) = ¢'(w).

It is easily seen that this defines ¢’/ for all w £ Q.

We now define the random variable y” by ¥"'(w) = 2./, (w). Then
y'" is measurable on G and the sample space of ¢”, so that by con-
struction [z | ¢, F | ¥"', G] ¢ CQAxz. Applying the hypothesis of weak
Y-optimality, we conclude that

[ o, v = v, 1 aP = Bty v)) — Bly@, v} 2 0. @0)
We now partition the domain  of integration into the four sets
A, =T,
A, = (Th — T,) A o | $@w), a) < ¢@@), 2,w)},
Ay = (TF — T,) A o [ ¥@w), a) 2 ¥(@0), 2,.w)],
Ay = Q- Tk .

That this is a partition follows from the definition and the fact, already
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proved, that T,, € T*. We consider the four resulting integrals
individually, in the order of the listing.

If we T,, then either we T,, A N, orwe T,, — N. We may ignore
the first case. For the second, by definition of T, , if » # p,
Y(z(w), 2,(0) < (@), 2, (). (21)
Also, by definition

w # UT,,, ,

re@
r#pe

and therefore by definition 2!/(w) = 2, (w), and ¢"”(w) = po. Then

Y(a(w), v (W) = Ya(w), z/(w) = ¥((w), 2,(w)
and from the inequality (21) we conclude that the integrand

Y(@(w), ¥y (@) — ¢@w), y(w) <0,
since y(w) is equal to some z,(w), r ¢ Q. Hence the integral over 4, is
not positive.
If we A, , then by definition ¢’ (v) = p, and
Y'(@) = z/(w).
Again, we ignore the contribution of A, A N. If we A, — N then by
(13),
we \J T, -

reQ
r#Do

Then by definition z//(w) = a. Hence, the integrand

Y(Ew), ' W) — Y, yw)
= [Y(@w), @) — Yaw), z.@)] + [Y@w), 2,@) — $@w), yw)].
The first bracket on the right is <0 by definition of 4, , and the second
is <0 because w e T* and by definition of T we have ¥(z(w), 25, (w)) =
Y(z(w), z,(w) for all r ¢ @; among the latter is Y(z(w), y(w)). Hence
the second integral is not positive, and its integrand is strictly negative.

Now consider w ¢ A,. We ignore the integral over A, A N,. If
we A; — N, , then ¢ (w) = p # po and w e T% for some p ¢ Q. For this

w we have
Y((w), v (W) = p@), 2/ (@) = @), W) = ¢@w), 2.(w)
for all r ¢ Q; here the first equality is by definition of y”, the second
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by definition of z!’ since p # p,, and the inequality is by definition
of T*. But the inequality makes the integrand in (20) = 0, since
y(w) = z,(w) for some r ¢ Q. Therefore, the integral over A, is not
positive.

Over A, , the integrand of (20) is

[llb(x: y”) - 'l,b(il?, y’)] + [V!‘(:BJ y’) - 'l,b'(i?, ?J)]

The second bracket vanishes with probability one by ¢ of Theorem 4,
already proved. The first bracket is

\l«(a:(w), z:-{(u)(w)) - &(z(w), zu‘(ﬂ)(w))
and this vanishes for all w ¢ A, by the definitions because over 4, ,
tHw) < Y(@(w), 2, (w)) so that ¢'(w) # po; therefore by definition
20 (@) = Zgr ) (0).

We conclude from these calculations that the integral (20) cannot
be positive. By (20), therefore, the integral vanishes. But the argument
showed that the integrand was =<0 with probability one, hence indeed,
the integrand vanishes with probability one:

Y(z, y"") = ¢(x, y) with probability one.

In particular, over 4, , the integrand was strictly < 0. Therefore
A, has probability zero. We shall now exploit this fact.

In the argument above, a was any real number. Let {a,} be a countable
dense set of real numbers and let

W, = {o| ¢(xw), a.) < ¢(@(), 2, (@)}
We have just proved that P{4,} = 0, which is to say that we could
have proved, for each n, that
P{(Tx — T,) AN W,} =0.
Then also
N, = U@ -1, AW,

is a null set. Now if w e N, , then w e T* — T,, and also there is some
number @, such that

Y((w), a.) < ¥(@(w), 2. (). (22)

Conversely, if w e T* — T, and there is a number a, such that (22)
is true, then w ¢ N, . Therefore if we (T* — T,,) — N, then for every
number a, we have

Y(@(w), @) 2 Y(2(w), 2, (@) (23)
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Givenan we (T* — T,,) — N, choose a sequence a, — z(w). Assume
that ¢ € K. Then ¢ is continuous and from (23) we have

0 = y(z(w), 2() = lim Y(z(w), @) Z ¥(z(v), 2,,(«)) Z 0.

Notice, incidentally, that it suffices here for each z that y(z, y) be
continuous for ¥ in some neighborhood of z. This is an example of one
way in which K can be enlarged.

From this and item v in the definition of K, there is some integer K

such that
(@) = gul(zp, (@)). (24)

Let C, be the set of all w such that (24) holds. Since g, is Borel meas-
urable, over C, , (24) constrains  to be equal to a function measurable
G. If z& CCD(G), then C, is a null set. But we have just showed above

that
(T —1,) — N, € UC..
k=1

Therefore

rP|iT} —T,} = 0.
Since p, was arbitrary, this can be proved for each p, e @; therefore
from (12) the T,, p £ Q essentially cover 2. We proved along with
definitions that the T, are pairwise disjoint, hence they partition
Q — N, , where N, is some null set.

We continue the argument using the selected p, . For w e @ — Ny,
eitherwe T,, or we T, where re Q but r # p, . In this latter case, however,
as we proved with the definitions, w ¢ @ — T ; then by definition
¢" (@) = ¢ (). fwe T, , by the definitions ¢"(w) = ¢'(w) = po . There-
fore

!

¢' = ¢ with probability one. (25)
Furthermore we know that if we T, , then ¢'(w) = p. From (25)
y'(w) = 2{l (@) (26)

Ifwe® — T,, , except at most on a null set we have ¢"’(w) # po and
from (26) and the definition of 2}’

Y'(@) = 2 @) = 2w =¥, we@—T,) AN, (27)

where N; is a null set. Now if w ¢ T,, — N, we showed earlier that
2'(w) = 2,,(w). Hence the equalities in (27) hold for we T}, — N as
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well, so that

y" =3y’ with probability one. (28)

Equalities (25) and (28) free the constructions from any dependence,
except on a null set, upon the initially selected p, and a. We need
the Theorem to make identification with g and .

Let S, be that subset of T, where ¢(w) # p. Then if we S, , by de-
finition of T, ,
¥((w), ¥'(w) = ¢@@), 2,w) < $@0), 2,uw) = ¢, yw).
From i of Theorem 4, then, P{S,} = 0, and P{\U,.c S,] = 0. Since
the T, , p ¢ Q, essentially partition €, it follows that ¢’ = ¢ with prob-
ability one, and at once that y(w) = 2z, (w) = 24 () (w) = ¥'(w) with
probability one. These conclusions are 77 and 7 of the Theorem, the
proof of which is now complete.

To prove Theorem 1, let {2, , ¢. , .} be a given @-coded communica-
tion system that is {¢, , 0} optimal. Given n, by Lemma 1,

[I,., I q:; ] X».O | yn ) Qn.m] £ CQA-T"

and is weakly y,-optimal. If ¢, ¢ K and z, ¢ CCD(Q,..), Theorem 4
proves that g, is measurable on {z,} V Q, .. But Q, . is the sample
space of {¢u,-1, @us2, ---}, and is therefore contained in the sample
space of {x,_,, 2,2, - - -}, since by hypothesis {x,, q., ¥.} is a @-coded
communication system. The hypothesis {x,} ¢ CCD of Theorem 1 then
implies that for the given n, x, e CCD(Q, ), and Theorem 4 establishes
Theorem 1.

Turning to Theorem 3, let {z,, ¢. , ¥.} be a given @-coded com-
munication system with decoder memory span m, and suppose that
itis {¢, , d, m}-optimal. By Lemma 1, then, given n, [2,—a | ¢ , Xu.a | ¥a,
Q... £ CQAx,_, and is weakly ¢,-optimal. By the hypotheses of The-
orem 3, ¢, ¢ K, and {z,} ¢ CCDf. Consider Q,, . , the sample space
of {@uo1 s @u-2, *** ; Gu—n). Suppose first that m > d; then this sample
space is the smallest Borel field which contains both the sample space
of {gu-1, *+* , Qu_a} and that of {gu—4-1, -+ , uem}. Since M < =,
the first of these is a finite field, and the second is a subfield of {z,_4-; ,
Tyea-z , ** '} (since {2, , q. , ¥} 1S indeed a @Q-coded communication
system). The hypothesis {z,} ¢ CCDf then implies that z, e CCD(Q,. ).
If m = d, the subfield of {x,-4-, , ---} is empty, but the reasoning
and conclusion are still valid. Then Theorem 4 applies and we conclude
that ¢, is measurable on the sample space of {%,—s, ¢u=1, *** , Gu=m}-
This is the first conelusion of Theorem 3. We note now that a weaker
hypothesis than {z,} ¢ CCDf could suffice here. Indeed, if m < o,
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it is sufficient that: if A is a finite field then z, ¢ CCD(A). This is the
final conclusion of Theorem 3.

Given that g, is essentially measurable on {Z,a; @u-1, *** » Qn-m}
for each n, we conclude by induction that g, is essentially measurable
lxn-da Tn—da—13 Gn-2y """ Qn—m—l}: -++ and ﬁna.]ly then that G is es-
sentially measurable {%,_s, Ta—a—1, - - - }. Define

q:: = q»+d ]
yr':=yn+d1 n=0,:|:1,"'.

Then it is a simple translation of notation to verify that {z., ¢, , y.}
is a Q-coded communication system with decoder memory span m
that is {¢/ , 0, m}-optimal, where ¢, = ¥p.a ,n = 0, £1, --- . This
is the second conclusion of Theorem 3.

Finally, if d = 0, then “{z,} ¢ CCDf” may be replaced by: )
e CCD.” Then M is unrestricted, since no “future” is involved that
must be restricted to a finite field. This completes the proof.

Theorem 2 is a limiting case of Theorem 3, proved by puttingm = <
everywhere in the proof of Theorem 3.

V. A COROLLARY

It is a consequence of Lemma 2 and of the proof of Theorem 4 that,
given w, in a set of probability one, ¢(w) is that unique value of p which
minimizes ¥(z(w), 2,(w)). (This was remarked in connection with
equation 25.) Applying this to the situation of Theorem 1, one sees
that the transmitter of a delay-free Q-coded communication system
{2n ) Gn » s} satisfying Theorem 1 has the block diagram form shown
in Fig. 1. (If d > 0, one simply puts an analog delay line in the input
lead, ahead of the rest of the system.)

This block diagram can be described thus: at time subsequent to
t = n — 1 and prior to { = =, the transmitter has in its digital store
the values ¢._, , ¢u—z , - - of the previously transmitted signals. From
these, quantities 2, , , Za.n , 23.n , -+ are constructed. These are the
z, of Lemma 2, for the particular random variable y, . When z, becomes
available, quantities ¥, (%, , 21.a), ¥a(Zs , 22.a), * -~ are constructed and
the comparator identifies the least of these (unique with probability
one). The transmitted g, is that value of the index which identifies
the least ¥.(z, , 2,..). This index is transmitted to the receiver as g.
and is also stored in the transmitter’s memory for the next cycle.
The receiver can be realized using a portion of the transmitter, as
suggested in Fig. 2. Each function generator in these diagrams can
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LI/E UNIT |
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Fig. 1 — Generalized form of optimum transmitter.

of course be nonstationary. Connections to a master “clock” are not
shown.

VI. REMARKS ON K AND CCD

One might ask to what degree are the central hypotheses of Theorem 4
necessary to the conclusions. The theorem itself provides a partial
answer: conclusions 7 and 7 do not use x ¢ CCD(G) at all, and use
only a measurability and a boundedness property of . The critical
conclusions are the uniqueness conclusions 77z and 7. Clearly, something

In o l
— L
DELAY | 7
1/2 UNIT J ‘ !
|
|
|
STORE SELECTOR Yn=2
SWITCH an
[ Q-1 | 1 |
—_— Zsy —_—

Fig. 2 — TForm of receiver.
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is required of y(z, y) that makes it, in some sense, smaller when y = =
than elsewhere, and not too indifferent to the value of ¥ when y # z,
if uniqueness is to be expected from the hypothesis of y-optimality.
As we have already noted, the hypothesis ¢ ¢ K is fairly weak in this
regard, and could, in the presence of CCD, be made weaker at the
expense of further elaboration of the proof.

The interesting hypothesis is ¢ CCD(G). This implies that if z has
a conditional probability distribution relative to the field G, then that
distribution is continuous. It is easy to see that the y-optimum quantiz-
ing of a random variable x need not be unique if the distribution of =
is not continuous, even when one uses ¥(z, 1) = (¥ — y)®. Since y
in Theorem 2 y-optimally quantizes z for each event measurable on
the conditioning field G, something like z ¢ CCD(G) is necessary if
coneclusion @ is to follow. Thus we conclude a loose kind of necessity
for this hypothesis.

We notice finally that # and 7 were proved by confining the re-
dundancy among the {z, , p ¢ @} to a null set. In the application of
this idea to the situation of Theorem 1, it seems likely that redundaney
in the {2z, , p £ Q} for some fixed 7 might indeed be exploited to improve
some

E['Pn+k($n+k ] yn-d-k)}: k > 0, (29)

by selection, among the minimizing z,, to which E{¢,(z. , Y.} 18 in-
different, one which actually contributes information about z,.. and
therefore allows a reduction in (29). I have no example to show this
phenomenon, so its existence remains a conjecture. We have proved,
of course, that its possible existence is ruled out by x e CCD(G).
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