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A class of binary encoding algorithms called Harper codes has been
studied previously as a means of encoding numbers for transmission over
an idealized binary channel. This paper considers a more general and
practical transmission system model. For any Harper code, it presents
a technique for obtaining the expression for the average absolute numerical
error that occurs during transmission. It shows that all Harper codes
do not exhibit the same average absolute numerical error for all transmission
systems that satisfy the model. However, there is a subset of Harper codes
such that all codes in the subset give ideniical performance. The paper
defines the subset and presents an expression for the average absolute nu-
merical error for any Harper code in the subset. The subset is tmportant
because it includes the natural binary representation, the Gray code, and
the folded binary code.

I. INTRODUCTION

In order to send numerical data over a binary channel, each input
number must be encoded into a suitable binary sequence for transmis-
sion. For example, when a sampler and quantizer are used, a binary
sequence is assigned to each quantization level. For each sample, the
number of the appropriate quantization level is transmitted by sending
the binary sequence assigned to the level. But how should the binary
sequences be assigned? One approach is to use the natural binary
representation of each number. Alternatively, a Gray code might be
used with the idea that its unit-distance properties are in some sense
desirable.

If the transmission system is error-free and if the binary sequences
are unique, it does not matter how the sequences are assigned. How-
ever, if transmission errors can oceur, some assignment algorithms may
be preferable to others. In this paper, the performance of certain
binary encoding algorithms is considered. The average magnitude by
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which the number delivered to the destination differs from the trans-
mitted number is used as the criterion of performance.

Previously, Harper presented a class of binary codes that we call
Harper codes." The class includes the natural binary representation,
the Gray code, and the folded binary code. Reference 2 showed that
for any set of 2* input numbers all Harper codes exhibit the same mean
magnitude error when used with a specific binary transmission system
model (see Section II) and that, when the probability of transmission
error is sufficiently small, Harper codes are optimum.

In this paper, a more general transmission system model is considered.
For 2* equally spaced input numbers, a means of obtaining the expres-
sion for the average absolute numerical error (hereafter called average
numerical error) for any Harper code is presented. All Harper codes
do not exhibit the same average numerical error except in the special
case when the transmission system model reduces to the model used
in Ref. 2. However, there does exist a subset of Harper codes such
that all codes in the subset are equivalent in performance. The subset
is defined and an expression is given for the average numerical error
for any Harper code in the subset. The subset is important because
it includes the natural binary representation, the Gray code, and the
folded binary code.

II. SYSTEM MODEL AND PREVIOUS RESULTS

A system model is shown in Fig. 1. In general, we wish to send over
a binary transmission system' any one of the 2* equally likely numbers
of the form A + Bs where s is an integer, 0 < s = 2° — 1. At the
transmitter, the binary encoder receives A + Bs and, based upon s,
sends a k-bit binary sequence assigned by a Harper code and denoted
by H.(s). At the receiver, a binary decoder receives a k-bit binary
sequence H,(r), 0 < r £ 2* — 1, and generates A + Br. Let Pr[H.(r) |
H,(s)] denote the probability of receiving H,(r) when H,(s) is sent.
If all s are equally likely, the average numerical error (as in Ref. 3)
that oceurs is

B 2k—1 2k—

> 2| — s | Pr[Hur) | Hi(s)]. (1)

ok
2 r=0 s=0

ANE =

The average numerical error is dependent upon the binary encoding
algorithm and the transmission system through Pr{H,.(r) | H.(s)].
t It is important to distinguish between the binary transmission system and the

channel. The transmission system includes the channel and the encoder and decoder
for error control.
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Harper codes are defined in terms of the vertices of the k-cube'.
Assign 0 to an arbitrary vertex; that is, H,(0) is arbitrary. Having
assigned 0, 1, 2, --- , I — 1, assign ! to an unnumbered vertex (not
necessarily unique) that has the most numbered one-distant neighbors.?
In the remainder of this paper, certain properties of Harper codes
presented in Refs. 1 and 2 are used without specific reference.

We can now summarize the results in Ref. 2. In a binary transmis-
sion system as shown in Fig. 1, it was assumed that the errors between

BINARY TRANSMISSION
SYSTEM

ERROR CONTROL

NUMERICAL BINARY !
SOURCE A+Bs ENCODER Hi (s)

|
| ENCODER
BINARY
CHANNEL
A+BY BINARY Hk (1) | ERROR CONTROL
DESTINATION DECODER 2 I DECODER

IFig. 1 — System model

locations 1 and 2 are independent of the transmitted bits and ocecur
independently of one another with probability p,. For such a trans-
mission system and for any set of 2* input numbers, it was shown that
all Harper codes yield the same mean magnitude error and, thus,
are equivalent. Also, it was shown that when p, is sufficiently small,
Harper codes are optimum for any set of 2* input numbers because
they minimize the mean magnitude error. Of course, the results in
Ref. 2 are applicable to our set of 2* equally spaced numbers and
indicate that all Harper codes yield the same average numerical error
for a transmission system that satisfies the model in Ref. 2.

However, the transmission system model in Ref. 2 is extremely
restrictive. Channels with correlated errors are excluded. The model
also excludes transmission systems using many types of error-cor-
recting codes even if the actual channel is a memoryless binary sym-
metric channel with probability of bit error p. In fact, even the Hamming

t The weight of an n-tuple v is the number of nonzero components in » and is
denoted by w[v]. The distance between two binary n-tuples u and v is w[u @ v] where
(P denotes component by component modulo 2 addition of n-tuples.
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perfect single error-correcting codes when used with a memoryless
binary symmetric channel do not comply with the model in Ref. 2.
The reason is that, in a Hamming code, all H,(s) of a particular weight
are not encoded as code vectors of equal weight. Thus, all error
patterns of equal weight in the Harper code sequences do not oceur
with equal probability. However, in order for a transmission system
to satisfy the model in Ref. 2, all error patterns of equal weight must
oceur with equal probability. It follows that the Hamming code violates
the model in Ref. 2.

An interesting approach to coding for numerical data transmission
is found in unequal error-protection codes®. The idea behind unequal
error-protection codes is to match the protection provided by the code
to the numerical significance of the transmitted bits. Significant-bit
codes (a subelass of unequal error-protection codes) have been shown
to be effective in reducing the average numerical error and in many
cases are easy to implement.’® However, the transmission system
model in Ref. 2 excludes unequal error-protection codes which is un-
fortunate because these codes are directly applicable to the basic
problem considered in Ref. 2, that is, reducing the average numerical
error.

Accordingly, it is important to examine the performance of Harper
codes when a less restrictive and more practical transmission system
model is used. For our model, we assume simply that the transmission
system is binary and that the errors are independent of the transmitted
bits. A binary transmission system satisfies this model if, for every
integer 7, 0 < r < 2° — 1, and integer 5,0 = s = 2* — 1, there exists
an integer , 0 = t < 2° — 1, such that

Pr[H . (r) | Hi(s)] = Pr{H.() | B:(0)] (2)
where
H,(t) = H.(r) @ H.(s) (3)

and B;(j) denotes the 4-bit natural binary representation of the integer
j,0 < j < 2° — 1. Observe that equation (2) implies that the prob-
ability of a particular error pattern H,(f) in a Harper code sequence
is independent of the transmitted sequence.

Because the transmission system model is not very restrictive, the
results to be presented are applicable to a wide range of practical
systems. For example, the model is satisfied by the important class
of binary transmission systems composed of
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(7) alinear block code with a decoding scheme equivalent to Slepian’s
standard array®, and

(#7) a binary symmetric channel in which the errors are independent
of the transmitted bits.

III. THE AVERAGE NUMERICAL ERROR FOR A HARPER CODE

Let H' be a Harper code in which s is encoded as H{(s). From the
definition of a Harper code, it is possible that H}(0) # B,(0). We first
show that if H/(0) # B,(0), then a Harper code H [in which s is encoded
as H,(s)] ean be constructed such that (7) H,(0) = B,(0) and, (#) the
performance of H' is identical to the performance of H. The average
numerical error for H' is

B 2k—) 28—
ANE" = 5; E Z |7 — s | Pr[H{(r) | Hi(s)]. (4)
Let H be a code whose elements are obtained from the elements of H’
by the relation

Hy(s) = Hi(s) ® H(0). (5)

From (5), H,(0) = B,(0).

We now show that H is a Harper code. Clearly H,(0) satisfies the
requirements for a Harper code. Suppose that H.(0) through H,(I — 1)
have been determined by (5). Now, if H/(s) is distance d from H/(l),
then H,(s) is distance d from H,(l). Thus, if H/(l) is assigned to have
the most numbered one-distant neighbors, H.(l) will have the most
numbered one-distant neighbors. It follows that H is a Harper code.

The average numerical error for H is given by equation (1). We
must show that the expression for ANE is identical to the expression
for ANE’. From (2),

Pr(H{(r) | Hi(s)] = Pr[Hi(r) @ Hi(s) | B:(0)].
Also, from (2),
Pr[H(r) | Hi(s)] = Pr(H.(r) @ H.i(s) [ B(0)].
From (5),
H.(r) @ Hi(s) = Hi(r) D Hifs).
Therefore,

Pr(H.(r) | Hi(s)] = Pr[Hi(r) | Hi(s)]
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and, by (1) and (4),
ANE = ANE'.

Thus, every Harper code is equivalent in performance to a Harper
code in which

H,(0) = B:(0). (6)

For convenience and without loss of generality, we shall consider the
performance of Harper codes that satisfy (6). At the end of Section IV,
we remove this restriction and give, in general terms, the structure
of all Harper codes that are equivalent to the natural binary rep-

resentation.
Now, let us consider the expression for the average numerical error

for H. By substituting (2) into (1) and rewriting,
B 2k—1 2k—1
ANE =5 30 X | v — s | PrUEL(Y) | B(O)] @)
i=1 =
where 7, is the value of r in (3), that is,
Hy(r,) = Hu(s) D H.:(1). (8)

Now, (7) can be written as

ANE = %22_;1 C. Pr[H,(1) | B.(0)] 9)
where
o= "Br ol o

The expression for the average numerical error is determined by spec-
ifying each C, (1 = ¢t £ 2" — 1).

In order to evaluate C, , we proceed as follows. Divide the 2* elements
of H into k + 1 sets called levels. The 0-level contains H,(0) exclusively.
For 1 < j < k, the j-level is the set of H,(s) for which 2' ™" £ s < 2" — L.
Because H is a Harper code, the elements of level j are in the shadow
of the (j — 1)-subcube’ formed by the elements of levels 0 through
j — 1. From equation (6) and the definition of a Harper code, it follows
that each element of the j-level has a one in a particular position which
we call the j-position. Thus, the j-level consists of the k-tuples that

t A (j — 1)-subcube of the k-cube is a set of all k-tuples that are the same in
k — j + 1 positions. The shadow of a (j — 1)-subcube is obtained by changing
one of the & — j + 1 fixed positions.
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have zeros in positions j + 1 through %k, a one in position j, and all
possible (j — 1)-tuples in positions 1 through j — 1.

Notice that the position numbers are determined by the structure
of the Harper code and not by the order in which the bits are arranged
for transmission. For example, in the Harper code shown in Table I,
Pr[H,(2) | B.(0)] is the probability that no transmission errors occur in
positions 1, 3, and 4 and that a transmission error oceurs in position 2.
If transmitted in the order shown in Table I, Pr[H(2) | B4(0)] is the
probability that the error sequence 0001 occurs.

We must determine C, for each of the 2° — 1 nonzero values of i.
Thus, we regard ¢ as known and seek to determine C,. Let ¢ be an
integer such that

27T =t €27 — 1. (11)

Because H satisfies equation (6), H.(!) has a one in position . To
evaluate C, , we rewrite (10) to exhibit the levels of s as

o 2i—1 i 2i—]
C¢=(T¢+E Z |T:—8‘)+ Z Z |T;"SI (12)
f=1 a=21"1 i=o+1 g=27i—1
TaBLE I—A & = 4 Harrer CobE
Level

] Hu(s) number
0 0000 0
1 0010 1
2 0001 2
3 0011 2
4 0111 3
5 0110 3
6 0101 3
7 0100 3
8 1000 4
9 1001 4
10 1011 4
11 1010 4
12 1100 4
13 1110 4
14 1101 4
15 1111 4

position 4 position 2

position 3 position 1
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where the 0-level is shown individually as r, and j indexes the levels
from 1 to k. The parentheses enclose the contribution of levels 0 through
o. From Appendix A,

(r. + i 2"2—1 |re — s i) = 2¥71, (13)

i=1 a=2i-1
Now, consider the set of H,(s) in the j-level where ¢ + 1 =< j = k
and 277! < s < 27 — 1. First, we define a run as follows." In the j-level,
there is a run in position m, 1 < m = j — 1, that starts at s, and is
of length R(m, s,) if and only if

(?) R(m, s,) = 2' for some integer I = 0,

(73) the set of H.(s) for s £ s = s + 2" — 1 forms an Il-subcube
of the k-cube where m is one of the & — [ fixed positions,

(1ii) the set of H,(s) for s, + 2' < s < sy + 2" — 1 forms an I-
subcube that is in the shadow of the subcube in (#Z),

(iv) the subcube in (i#%) is distinguished from the subeube in (77)
by position m, and

(v) the H,(s) for 27" < s < s, — 1 can be divided into runs of
length 2 although perhaps not in position m.

An example from Table I will illustrate the definition of a run.
Consider the 4-level. Then H,(8) starts a run of length 1 in position 2,
a run of length 2 in position 1, and a run of length 4 in position 3. Thus,

R(1,8) =2 R(2,8) =1 R(3,8) = 4.

Let w[H,(f)] = w and let by by oyt denote the w nonzero
positions in H,(¢). Then R(t, , 27"Y} is the length of the run in position
{,, that starts at 2'~' (that is, the length of the first run in position
t, in the j-level). Let

vi () = Max R(t,. , 2'7").

From Appendix C,

2/ =142y, 1 (t) -1
|7 — 8|
g=21—1
28—ty a0t =1 2I—1425; 4 (L)=1
= Z (ro —s) + ) Z (s —r) = 2v7.(8).
a=21—1 8=21"14y; 4(1t)

t Appendix B contains a more complete discussion of the structure of the j-level
of a Harper code and the relationship between the structure and the concept of a
run. It is shown that runs are basie to the structure of Harper codes and that the
definition of a run is meaningful and consistent.
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The above process can be extended to obtain v, ,(f) after v, .(f),
via(l), -+, v i-1(t) are known. Specifically,

¥;.:(f) = Max R(t,,, , 270 4 2 E‘Y:’.l(t))'

Then
2i~'—|+2i§: ¥i, ()
9.2
Z re — 8§ L = 2v;.(0).
§=21 “+2]Z yi. ()

By continuing the process, we eventually exhaust the 2'~' values
of s in the j-level. Let g; denote the number of v, ;(f) needed to cover
the j-level, that is,

:é: Yi. I(t = 2’ '

It follows that

2 lre—s|= 227,,(0 (14)

g=27

From (12), (13), and (14),

k

Co=2 42 3 XA (15)

i=o+l i=1

By substituting (15) into (9),

ANE = ? ﬁ‘, (2““ + 2 Z iv?,;(t))Pr[Hk(t) | B.(0)] (16)

j=o+l 1=]

where ¢ is given by (11). The expression in (16) is particularly useful
because it consists exclusively of error probabilities conditional upon
B.(0) being transmitted and the v, ;(f) can be obtained directly from
the Harper code. A numerical example that illustrates the use of (15)
and (16) is given in Appendix D.

We now consider the condition under which two Harper codes give
identical performance. Let H’ be a Harper code that is not H (that is,
H’ cannot be obtained from H by a relationship of the form H[(s) =
H,(s) @ Bi(s,) where s, is an arbitrary integer, 0 < s, £ 2" — 1).
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!
From (9), for H’,

> CLPHHLY) | BAO)].

t'=1

ang =%
Then H and H' exhibit identical performance for any transmission
system that satisfies our model only if, for every t, C{, = C, where
t' is determined by H.(') = H,(t). Conversely, if C]. # C, for at least
one value of ¢, the two codes may or may not give the same performance,
depending upon the error statistics of the transmission system.

IV. CODES EQUIVALENT TO THE NATURAL BINARY REPRESENTATION

Because of the considerable structure in the natural binary rep-
resentation, it is easy to use (15) to compute each C, , 1 < ¢t < 2" — 1.
For a given ¢, we first find ¢ by (11), that is, ¢ — 1 is the largest power
of 2 in ¢, Then, for each j, ¢ + 1 = j £ k, we determine g; and the
v;.:(t). For the natural binary representation,

’Y:‘.i(t) =27 (17)

for1 £ 4 £ ¢;s0g; = 2°7°'. Therefore, by (15) and (17),

gf—o—1

k
C‘ — 220—1 + 2 Z Z 22«-—2 — 2k+o——1. (18)
i=a+1 i=1
Notice that each C,, 2" =t £ 2° — 1, is equal to 2°°"7". Thus,
C, is determined simply by the largest power of 2 in ¢ Substituting
(18) into (9) and rewriting, we obtain

29—1

k

ANE; = B 2, 277" 3 Pr(Bu({) | B(0)] (19)
a=1 t=g7-1

where ANKE, denotes the average numerical error for the natural

binary representation.

Is it possible to find a Harper code H that is not the natural binary
representation but that exhibits performance that is identical to the
natural binary representation for all transmission systems that satisfy
our model? The answer is yes. We now show that a necessary and
sufficient condition is that

via(t) =277 (20a)
forl =17 = g;and

g, = 277! (20b)
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foreacht,1 =t < 2 — 1,and foreach j, ¢ + 1 < j < k (where ¢ is
chosen so that 27 = ¢t = 2" — 1).

If (20) is satisfied, then by (15), C, = 2°*""'. The average numerical
error for H (denoted by ANE}) is

[F]

7—1

ANE, = B i 2°! Pr(H.(1) | B.(0)]. (21)

t=29—

By the definition of a Harper code and the definition of a level,

29—1 20-1

2 PrH.(0) | B0)] = 2 Pr(Bu(t) | Bu(0)). (22)
t=27-1 {=gv—1
Therefore, by (19), (21), and (22), ANE; = ANE;. It follows that
(20) is a sufficient condition.
We now show by contradiction that (20) is a neecessary condition.
Consider the set of coefficients Cy.—. for 1 = ¢ = k. From (15),

k gy
Coees =271 42 3 D 42.277Y.

f=o+1 i=1

The term 2%~ is independent of the particular Harper code used.
Thus, we need only consider the summation part. Suppose that it is
possible to arrange the v, ;(2"7") so that they are not all equal to 2°7*
but keep Cp-. = 2*°7' If this is done, at least one v, ;(2°) will
be less than 27! and at least one v; ,(2°”") will be greater than 2°7%.
However, in order for one ¥; ;(2°™") to be less than 2°7", there must
exist a o' < ¢ such that ;. ,(2°™") > 2°"7'. But in order for Ca--. =

2+7"~! there must be at least one v;. .(2°°™") < 2”7, The argument
continues until we reach v,.. ;..(2°) where there must be at least one

vir(2%) > 2% (23)
However, in order for C,. = 2%, (23) implies that there must be at

least one ;- (2") < 2° which is impossible. It follows that (20)
must hold in order for a Harper code to be equivalent to the natural
binary representation.

We can show the existence of a great many Harper codes other than
the natural binary representation that satisfy (20) by presenting
explicitly the strueture implied by (20). At this point, we no longer
assume that H,.(0) = B,(0) but state the structure for any Harper
code. List the H,.(s) sequentially as s runs from 0 to 2* — 1. For po-
sition 7, 1 £ 7 £ k, divide the s into 2°7**" consecutive intervals each
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of length 2°~". Let j index the intervals where 0 < j < 2"7°"' — 1.

A Harper code is equivalent to the natural binary representation
if and only if, for every odd numbered interval (j odd), the binary
digit in position 7 is the complement of the binary digit in position 7
in the immediately preeceding even numbered interval (j even). The
digit in position 7 in the even numbered intervals is arbitrary.

The structure is presented graphically in Table II for k¥ = 5. The
symbol b; ; denotes the binary digit in position 7 in the jth interval.
For odd j, b;; = b¥._, (where b¥,_, = 1 @ b.,;_,) and, thus, b} ,;_,
is shown in Table II for odd j. For all even 4, b; ; can be assigned arbi-
trarily for each 7.

The expression for the average numerical error of the Harper codes
that are equivalent to the natural binary representation is interesting.
From (21), the set of error probabilities Pr{H(f) | B.(0)] for 2°7' =
t < 27 — 1 (that is, for ¢ in the o-level) all have the weighting coeffi-
cient 2°~. Thus, the cost of a particular error pattern is the numerical
significance of the most significant bit in error. When one considers
unequal error-protection codes, the structure in (21) is very convenient
because the protection against transmission errors can be matched
to the significance of the bit positions. However, for a Harper code
that is not equivalent to the natural binary representation, the average
numerical error does not exhibit the above structure. Therefore, un-
equal error-protection codes appear to be less applicable.

V. THE GRAY CODE AND THE FOLDED BINARY CODE

The Gray code and the folded binary code are of interest because
of their possible applicability to numerical data transmission.”® This
section shows that both of these codes exhibit performance that is
identical to the performance of the natural binary representation for
all binary transmission systems that satisfy our model.

Let the k-bit binary representation of s be B(s) = (e, be—r, -+, b1)
where b; , 1 £ ¢ £ £k, is the binary digit in position 7 and

k
s= . b2,
i=1

As in Section III, the position numbers are defined in terms of the
structure of the code, not the order in which the bits are transmitted.
From Ref. 7, the Gray code representation of s, denoted by G.(s), is
Gi(s) = (b, b @ by, --- , b @ b,). We show that the Gray code
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is equivalent to the natural binary representation by showing that
the structure of the Gray code conforms with the structure in Table II.
Consider position 7. As in the construction of Table II, divide the
range for s into consecutive intervals each of length 2°~' and number
the intervals sequentially from 0 to 2*°** — 1. The binary digit in
position 7 of G4(s) in an even numbered interval is b,,; @ b; and the

TABLE II—STRUCTURE FOR A HARPER CoDE EQUIVALENT TO THE
NATURAL BINARY REPRESENTATION; k = 5

Hy(s)
Position Number
8 5 4 3 2 1
0 bs .0 by o by o b2 .0 by o
1 l bf.o
2 b¥ o b2
3 L l b¥ .
4 b o b2,2 by 4
5 l b¥ 4
6 b7 2 by,e
7 L L l b¥ e
8 b¥.o0 bs.,2 by .4 by s
9 l b¥ s
10 b 4 by,10
11 l bf. 10
12 b?,e by by 12
13 l b¥ 12
14 b’;.ﬁ by 14
15 | l b¥ 14
16 b¥ .0 by » b3 4 by & by 10
17 ! b¥ 16
18 b 5 by 18
19 l b¥ 18
20 b4 by 10 by 20
21 l b¥ 20
22 b% 10 by 22
23 4 | 1 bY 22
24 bi » bs.6 by, 12 by 24
25 1 b‘l“,ﬂi
26 b 12 by .26
27 d l b¥ 20
28 b¥ e by 14 b 08
29 l b¥ 28
30 b3 14 b, 50
31 L A b?";m
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binary digit in position 7 in the immediately following odd numbered
interval is b, @ b% = (bie1 @ b,)* Therefore, from the structure
in Table II, the Gray code is equivalent to the natural binary rep-
resentation.

It is also interesting to consider the folded binary code’. Let Fy(s)
denote the representation of s. Then Fi(s) = (bi, b% @ bx—r, -,
b% @ b,) where b* = b, @ 1. As in the case of the Gray code, consider
position 7 and divide the range for s into intervals of length 2°7", The
binary digit in position ¢ of Fi(s) in an even numbered mterva.l is
b%* @ b, . The binary digit in position 7 in the immediately following
odd numbered interval is b @ b¥* = (b% @ b,)*. Therefore, from the
structure in Table II, the folded binary code is equivalent to the natural
binary representation.

VI. CONCLUSIONS

The model used in this paper for the binary transmission system
is quite general and is satisfied by a wide range of practical systems
including many that utilize error-correcting codes. A technique is
presented for determining the average numerical error for any Harper
code. All Harper codes do not exhibit equal performance for all trans-
mission systems that satisfy the model. Because the performance of
a given Harper code is closely related to the error statistics of the
transmission system, it does not appear possible to specify a Harper
code that is best for all applications. However, a subset of Harper
codes is defined such that all codes in the subset give identical per-
formance for all transmission systems covered by the model. The
subset is important because it includes the natural binary represen-
tation, the Gray code, and the folded binary code. Unequal error-
protection codes appear to be particularly applicable to Harper codes
in the subset.

APPENDIX A

Contribution of Levels 0 through o to C,
To determine the contribution of levels 0 through ¢ to C,, we must
evaluate

a 21 —1 20=—1

r.+Ele—S! Z|7‘z“3]

j=1 sg=21"1 =0

From equation (8), for every s in the range 0 = s < 2°7' — 1, there
exists a unique r, in the range 2”7 = r, £ 2" — 1, As s runs from 0
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through 2°7' — 1, every r, in the range 2°°' < r, £ 2° — 1 occurs
once and only once. Similarly, as s runs from 2°' through 2° — 1,
every r, in the range 0 < r, = 2°7' — 1 occurs once and only once.
Accordingly,

20—1 29=1—] 2°—1

Yirn—sl= % =9+ 2 (—r)=2""
a=0 =0 s=20—1
APPENDIX B

The Structure of the j-Level of a Harper Code

Consider the set of H.(s) in the j-level of a Harper code where
271 < § £ 2' — 1. For clarity, Table III illustrates the ideas pre-
sented here by applying the ideas to the 4-level of the Harper code
in Table 1.

Let p be an integer, 1 < p £ j — 1. For each value of p, the j-level
can be divided into 2°7° sets of consecutive values of s each set of
length 2°7'. The sets are numbered consecutively from 0 through
277" — 1 as follows. Let £ be an integer, 0 < ¢ = 2/7°™" — 1. For each
value of £, there will be two sets; an even numbered set whose number
is of the form 2¢ and an odd numbered set whose number is of the form
2t + 1.

An even numbered set contains the H,(s) for 27" + 262" < ¢ <
277 4 (28 4 1)2°7' — 1 and forms a (p — 1)-subcube because H
is a Harper code. Similarly, an odd numbered set contains the H,(s)
for 27" 4+ (2 + 1)2°7' = 5 £ 277 + (26 4+ 2)2°7 — 1 and forms
a (p — 1)-subcube. The important point is that for each value of §,
a useful relationship exists between set 2¢ and set 2¢ 4+ 1. Specifically,

TaBLE III—DETAILS OF 4-LEVEL oF HARPER CoODE IN TABLE 1

p=1 p =2 p =3
] Hai(s) Set 3 Set. E Set 3
8 1000 0 0 0 0 0 0
9 1001 1 0 0 0 0 0
10 1011 2 1 1 0 0 0
11 1010 3 1 1 0 0 0
12 1100 4 2 2 1 1 0
13 1110 5 2 2 1 1 0
14 1101 6 3 3 1 1 0
15 1111 7 3 3 1 1 0

position 44U LLposition 2
position 3

position 1
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the (p — 1)-subcube formed by set 2¢ + 1 is in the shadow of the
(p — 1)-subcube formed by set 2¢. Accordingly, all H.(s) in set 2¢ + 1
differ in exactly one position from all H,(s) in set 2£. Denote the po-
sition that distinguishes the subcubes by m. Therefore, the 2¢ set
consists of 2°7! elements each of which has the same binary digit in
position m. Similarly, the 2 + 1 set consists of 2°7! elements each
of which has in position m the complement of the binary digit in po-
sition m in the elements of set 2£.

The above sets form what we call a run in position m of length 2°~
that starts at 2°7' 4+ 2£2°7" (the first H.(s) in set 2£). The definition
in Section III follows from the preceding sentence.

APPENDIX C

Contribution of First 2v; ,(t) Values of s in Level j to C,

From equation (8), as s runs from 2'* through 27" 4 v,.(f) — 1,
every 7, in the range 2' 7" + v;.,(f) = r. £ 2'7" + 2v,,(t) — 1 occurs
once and only once. Similarly, as s runs from 217' + 4;.1(¢) through
2171 4 9y, (#) — 1, every r,in therange 2' ' < r, £ 27" + y;.() — 1
occurs once and only once. Therefore,

21=142y7,1(t)=1

i |re — s |
=211
2i— 14y 1 ()1 2i=14294 ,(0)—1
= E (re —s) + . Z (s—r) = 27?.1(15)-
gm2i—1 a=21"14+; (1)

APPENDIX D

Numerical Example to Illustrate Equations (15) and (16)

Consider the Harper code given in Table I. We show how to use
equation (15) when ¢ = 2 and ¢ = 3 to find C, and Cj, respectively.
Fort = 2, ¢ = 2 so0, from (15)

4 gi
C,=8+22 2 7.
i=3 i=1

In the 3-level, v;.1(2) and v;,.(2) are shown in Table IV. Therefore,
gas = 2. Also, in the 4-level, v4,:(2), 74.2(2) and v, 4(2) are given in
Table IV. Thus, g = 3. It follows that

C,=8+21*+1*+1"4+ 1"+ 2% = 24



HARPER CODE EQUIVALENCE 3129

TABLE IV—ILLUSTRATION OF EQUATION (15) APPLIED TO THE
HarpEr CopE IN TaBLE [

3 Ha(s) ¥5.i(2) ¥i.(3)
0 0-level 0000
1 1-level 0010
2 0001
3 2-level 0011
4 0111 ¥31(2) =1 ¥3,1(3) =2
5  3level 0110
6 eve 0101 vs,e(2) =1
7 0100
8 1000 y1n(2) =1 Y4n(3) = 2
9 1001
10 101 (1) ya2(2) = 1
11 101
g Hlevel 1100 %@ =2 7,03) =2
13 1110
14 1101
15 1111

position 4/| ’ |>I~position2

position 3 position 1

Similarly, fort = 3, ¢

o

2 so, from (15),

8+2 2, iv?..@).

i=3 i=1

In Table IV, v..,1(3), v4..(3) and v, 2(3) are given. Thus,
C, =8+2(2+ 2"+ 2% = 32.

By similar reasoning, the remaining €, can be found. The expression
for the average numerieal error of the Harper code in Table I is

ANE = -1‘% (24Pr[1 | 0] + 24Pr[2 | 0] + 32Pr(3 | 0] + 64Pr[4 | 0]

+ 64Pr[5 | 0] + 64Pr(6 | 0] + 64Pr[7 | 0] + 128Pr[8 | 0]
+ 128Pr[9 | 0] + 128Pr[10 | 0] + 128Pr[11 | 0] + 128Pr[12 | 0]
+ 128Pr[13 | 0] + 128Pr[14 | 0) + 128Pr{15 | 0]).
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