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We give a relation which links emdtter and collector junction voltages,
V. and V,; , collector current I, , and the total charge @, of carriers that
enter through the base terminal (electrons tn a pnp transistor):

GaVen/kT) __ g(anchT)
@

This relation is valid for high injection conditions, subject only to minor
restrictions. The significance for device modeling 1s discussed.

I, = const

I. INTRODUCTION

A basic concept of charge control theory is that the controlled current
(collector current) equals controlling charge (base charge) divided by a
transit time.! This paper presents an additional relation which links
base charge and collector current with junction voltages. The validity
of this relation is subject only to minor restrictions. When these are
met the relation holds even under high-level injection conditions.

Section IT presents a derivation of the new charge control relation.
Equation (15) states the principal result. The discussion in Section III
points out the significance of this relation for bipolar transistor models.

II. DERIVATION
Consider a one-dimensional transistor of pnp polarity. The hole
current density is given by
j» = quEp — ¢Dp’ ey

where the symbols have their customary meaning. We shall assume that
diffusivity D and mobility u are related through the Einstein relation:

115



116 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1970
Approximation (a):

D =—u.
q
Approximation (b,): It is assumed that electric fields are low enough
for avalanche multiplication of earriers to be negligible.

Approximation (b,): The velocity-field relation is idealized by the
field dependent mobility expression:

p= Mo | ‘
., | E
O

where uo = ¢Do/kT is the low-field mobility, considered for convenience
independent of doping, and where v, is the scattering limited veloecity.
Approximation (b,) places an upper limit on allowable bias. It is known
(see for example Ref. 2) that D is underestimated at high fields by
approximations (a) and (b,) and that approximation (b,) yields too
gradual a transition from low field velocities to the high field saturated
velocity.®* Nevertheless, approximations (a) and (b) afford significant
simplifications in the treatment to follow and are retained for that
reason. To the extent that our final result, equation (15), is affected
by them, it must be considered approximate. The errors depend on
bias and doping profile; they are not expected to exceed a few percent
for typieal situations. The error due to approximation (b,) overempha-
sizes velocity saturation effects and may be alleviated by choice of
values of », larger than the final saturation value in high field regions. In
high-field regions the current is carried predominately as drift current,
with a carrier econcentration that is nearly constant in such regions, so
that errors in D are of minor consequence.

Next we define a quantity a(z) which is the ratio of the hole current
density at position x to the current density j. leaving the collector
terminal

.
a(z) i, 2)

For direct current conditions, considered here, a approaches unity at
the collector and is 1/ = (1 4+ ()/8 at the emitter. For large common
emitter current gain 8, a differs negligibly from unity.

We use

B= "y @
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where ¢ is the electrostatic potential in units of the Boltzman voltage
kT/q, and consider equation (1) as a differential equation for p(z). Its
solution, when p is specified at a point z, , is

p(x) = p(;z:l)e‘“"’"‘“” _ q—{lt)— a(®)e’ v qy

L

— e [T | O @
v, Jz,
Equation (4) is valid for any pair of points x, and z. Denote by xx and
xc the outside edges of emitter and collector transition regions, and
use equation (4) with x, = x and * = z. . Multiplication of equation
(4) by e and use* of

p(.!‘) — H,'Bpp(r)_\!‘(:] (5)
N(.T) — nieﬂv (x)—enlx) (6)
where ¢, and ¢, are hole and electron quasi-fermi levels in units of the

Boltzman voltage, vield

¢plrg) \ap(z,:))

qD.nie —e )
f a(tn.e’ ' dt +'"';D"f a(t) | /() | " dt

E

Je = @)

We shall now show that the second term in the denominator is negligible.
The integrals in the denominator obtain the largest contribution from
the region near x,, where y(x) attains its maximum value ¥, . If in the
second integral we replace a(t) by its value a,, at z,, , and if we neglect
e and e¢*“¢ in comparison with e*"—all very reasonable assump-
tions—we obtain for the second integral in the denominator

Approximation (c):

2a,D.n; ot

D,
v v,

juc a(t) | ¢'() | e dt =

. E

For an assessment of the relative magnitude of the terms in the
denominator of equation (7), consider that in a region of width w the
potential ¥(z) does not differ markedly from ,,; such region is con-
ventionally called the ‘“‘base” of the transistor. Consider high current
gain, that is, @ = a,, = 1. Then the value of the first integral is wne’",
compared with (2D,/v,)n;e*" for the second. The quantity 2D,/v, has

units of length and is =~ 200 A for silicon. This length is small compared

* Equation (6) is defined for later reference.
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to base widths of today’s most advanced transistors and hence we will
neglect the second term in the rest of this paper. Conceivably, future
transistors may have narrow enough bases that the term will have to

be kept.
Approximation (d):

e [ o) |y | dt < [ alimet® at.

If in equation (7) we were to let v, — <, that is, considered the
carrier velocity to be strictly proportional to the electric field, then
approximation (d) would be implemented automatically. Note, how-
ever, that in making approximation (d) we do not imply », = «, nor
do we neglect essential consequences of the finiteness of », . A low
value of v, manifests itself in substantial base widening at high currents,
that is, in influencing ¢(f) in the remaining (first) term in the denomi-
nator of equation (7). In view of the idealized textbook treatments in
which the minority cariier concentration at the base side of the collector
depletion region is set equal to zero, rather than to a finite value, the
following statement of equation (7) may be of interest: For low injection
(that is, for currents sufficiently low that the base width is independent
of current) the effect of the finiteness of the scattering limited velocity
on the de collector current is equivalent to a base widening of 2D, /v, .

We now make the approximation:
Approximation (e):

The value of the electron quasi-fermi
level in the base is constant.

A gradient in the electron quasi-fermi level in the region where electrons
are majority carriers would cause appreciable electron current to flow;
for transistors of reasonable current gain, such currents are negligible.
Thus, approximation (e) is very reasonable. We denote this value of the
electron quasi-fermi level by ¢,; and divide numerator and denominator
of the right side of equation (7) by exp (¢,,). We define the emitter-base
and collector-base junction voltages by

V. = %T los(@s) — ) @®

V= % [en(@e) — wus). ©
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These voltages differ from terminal voltages by ohmic drops, primarily
lateral ohmic drops in the base region. The first integral in the denomi-
nator of equation (7), after it is divided by exp (¢.), contains very
nearly the total area density of electrons.

Approximation (f):
f n‘a(t)(eiff(l]—vnn

TE

) di = f” a(f)n(t) dt.

TE

The integrands outside the base region differ, since there the quasi-
fermi level is position dependent and does not equal ¢, , but the contri-
bution to the integral outside of the base region is negligible. By de-
fining an average value (a)., of a,

f ‘ a(t)n(t) di
(o = . (10)
f n(t) dt
TR
We may write expression (f) as
ze
n.-f a(tye 7" dl = _ (@ s (11)
=g q

where ¢, is the total charge, per unit area, of those mobile carriers
associated with the base terminal, that is, electrons in a pnp transistor.
Equation (7) with approximations (d) and (f) may be written

(qu n2/<ﬂ> )[e(ql'ub/k'l') _ e(al'ea!kﬂ]

e = . 12
] Py (12)

We now change from current and charge densities to current and charge.
We chose the sign of the collector current according to the convention
that an electric current entering the device is positive:

I. = —j.A (13)
Q=qd (14)

where A is the device area. Note that the sign of @, is such that an
electric current flowing into the base tends to increase @, . This is the
proper sign for charge control theory. Equation (12) can now be written

g(u".h/ki") _ e(al’:b.’k'ﬂ")

I.=¢C a (15)
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with
_ (gnA)D,
(@v

Equation (15) is the prineipal result of this paper. Note that @, de-
pends on bias, and that the form of the bias dependence is governed
by the doping profile. However, the relation among the quantities
I., V., V., and @, in equation (15) is independent of the details of
the doping profile, provided that assumptions (a) through (f) are valid.

C (16)

III. DISCUSSION

In spite of the simple appearance of equation (15)—indeed because of
it—it provides a powerful tool for transistor modeling. It may be
written in the form

I, = —azl[c(ul’cb/k'l') _ 1] + a22[e(n'l’:n/k1") _ 1] (17)
with

C
Azz = —@3 = a (18)

which is the form of one of the Ebers—Moll equations.’® But whereas in
the Ebers—Moll equation the coefficients a,, and a,, are constant, they
depend according to equation (18) on bias through the base charge @,
(C depends on bias only through {a)., which for 8 >> 1 is nearly unity
and varies little with bias). It is this bias dependence of @, which con-
tains high-injection effects. Thus, use of equation (15) holds promise for
transistor modeling of improved accuracy. The major bias dependence
of the collector eurrent is through the exponentials in the numerator
of equation (15). These are ‘“ideal” exponentials (unity emission coeffi-
cients) and involve no approximations. The actual modeling is now
done on @, in the denominator. A bipolar transistor model using this
approach will be presented in a later paper.
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