Asymptotic Analysis of a Nonlinear
Autonomous Vibratory System

By J. A. MORRISON

(Manuseript received June 13, 1969)

A system consisting of a spring, dashpot, and mass upon which s
mounted an eccentric driven by a motor with a linear torque-speed char-
acteristic, is analyzed by perturbation procedures based on small reciprocal
of rotational inertia. Periodic solutions of the third order system, which
arises when the angular position of ecceniric mass is taken as the new
independent variable, are constructed, and their stability is analyzed. An
asymptotic solution s also obtained which 1s more general than a periodic
solution, in that the averaged rotational speed is a slowly varying function,
rather than a constant. The results are applicable to the determination of
the interaction between the rotational motion of a flexibly mounted motor
and the lranslational vibratory motion of its frame.

I. INTRODUCTION

In a recent paper Senator analyzed a system consisting of a spring,
dashpot, and mass upon which is mounted a rotating eccentric weight
driven by a motor with a linear torque-speed characteristic." This

system has been analyzed by several authors, under different as-
sumptions on the values of the parameters of the system (see Refs. 5
through 9), and Senator discusses their results. The system is a model
for the interaction between the rotational motion of a motor driving
an eccentrie and the translational vibratory motion of the frame, which
is caused by this rotation.

In Ref. 1, Senator constructed periodic (rotational) solutions by
means of a perturbation technique, based on small reciprocal of ro-
tational inertia. However, he did not analyze the stability of the periodic
solutions directly, but proceeded in a somewhat different manner. Thus,
he introduced a van der Pol type transformation, but imposed a sub-
sidiary condition on the slowly varying functions of time which differs
from the one usually imposed in the method of averaging. He then
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made assumptions regarding the order of smallness of various deriv-
atives, and dropped all second order terms from the equations for the
slowly varying quantities, obtaining what he called averaged equations.
The stationary solutions of these averaged equations correspond to
periodic solutions of the original system, and he analyzed the stability
of the stationary solutions on the basis of the corresponding linearized
variational equations.

It is the purpose of this paper to show how the stability condition
obtained by Senator may be derived rigorously for sufficiently large
values of rotational inertia. This is done by taking the angular position
of eceentric mass as the new independent variable, constructing periodic
solutions of the resulting third order system, and then analyzing the
linearized variational equations corresponding to them. Perturbation
procedures, based on the small reciprocal of rotational inertia, are used.

An asymptotic solution is also obtained which is more general than
a periodic solution, in that the averaged rotational speed is a slowly
varying function, rather than constant. However, this asymptotic
solution is not completely general, in that the transients in the trans-
lational motion, which decay on a much faster scale, are not included.
The asymptotic solution nevertheless provides insight into the manner
in which a stable periodic solution is approached, and the analytical
results are borne out by some numerical caleulations.

II. PERIODIC SOLUTIONS

The equations of motion, in dimensionless form, for the system under
consideration are (from Ref. 1),
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Here r is dimensionless time, «, b, p and ¢{ > 0 are constants, and
e > 0, the reciprocal of dimensionless inertia, is a small parameter.
Also, u is the dimensionless translational displacement, and 6 is the
angular position of eccentric mass. Instead of dealing with the fourth
order system (1) and (2), as did Senator, it turns out to be more con-
venient to take @ as the new independent variable. Accordingly, defining

dao
Q= dr 3)
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the third order system
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is obtained.
A periodic solution to (4) and (5) is sought in the form

u = (6, € = uy(6) + ew,(6) + €u.(6) + - - (6)
Q= 06, ¢ = w + ¢U(0) + €200 + --- @

where u;(8) and Q,(f) are periodic in 6, with period 2w, and w, is a
constant. Substitution of (6) and (7) into (4) and (5), and comparison
of the lowest powers of e, leads to

Il

2
i LU 4 90, M 4w, = awdsin 0 (8)
g, 1*u
Wo 7o + aw; cnsa(de = (p — buw,). 9
The periodie solution of (8) is
Uy = awpA[(1 — wp) sin § — 2¢w, cos 6] (10)
where
Ay = [(1 — w))* + 4% 7" (11)
In order that ©,(6) should be periodie, it is necessary from (9) that
p = buw, + awu(cos b %’%2> = bw, + o fwy Ay = P*(wo) (12)

using (10). { ).. denotes average over a period 27 of . Equation (12)
gives a relationship between w, and p, the dimensionless stall torque,
and this relationship is depicted graphically in the figure for « = 0.707,
{ =0.2,b = 0. It is noted that w, is a triple valued function of p in
part of the range. Senator concluded from his analysis that the middle
branch corresponds to unstable periodic solutions, while the outer
branches correspond to stable ones, a result verified in this paper.
Now, from (9), (10), and (12) it follows that

Q= fw, — 2 wiA[(1 — w?) cos 26 + 2fw, sin 26]} (13)

where w, is a constant, which is to be determined from the condition
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that Q.(6) should be periodic. It is clear as to how the higher order
terms in the expansions in (6) and (7) may be obtained, but they will
not be needed in the subsequent analysis. The periodic solutions in (6)
and (7) are equivalent to those derived by Senator as periodic solutions
of (1) and (2). It is necessary, of course, to perform a quadrature of
equation (3) in order to obtain a relationship between and 7.

III. STABILITY ANALYSIS

The variational equations corresponding to the periodic solution
1, , given by (6) and (7), are formed by substituting

u=(a+%, =@+ (14)
in (4) and (5), and linearizing in ¢ and 5. Thus,
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+ eaf)® cos 9;‘;—9}’:5 + ebny = 0. (16)
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a? n
Equations (15) and (16) are linear equations with periodic coefficients,
and the form of solution is known from Floquet theory.” Moreover,
if all the characteristic exponents of the variational equations have
negative real parts, then the periodic solution 4, {1 is asymptotically
stable. The behavior of the characteristic exponents will be analyzed
for0 < e< L.

The limiting case ¢ — 0+ will first be considered. In this case, from
(6) and (7), & = w, and @ = u,(6) so that, from (15) and (16), dn/d8 =0
and

+ 2eafl cos 8

. A% e, _ ( h 0 — o Tl %)

o o + 2w, 26 + ¢ = 2lawysin 6§ — wy 26° ¢ 20)™ a7
Hence one of the characteristic exponents is A, = 0, and the remaining
two characteristic exponents satisfy

(""D?\D)2 + 23‘(%?\0) +1=0 (18)
and hence have negative real parts, since { > 0 and w, > 0. For suffi-
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ciently small ¢, these real parts will remain negative, so that it suffices
to investigate the characteristic exponent which vanishes as ¢ — 0.

In the light of Floquet theory, a solution of (15) and (16) is sought
in the form

£=¢"PO), n=2¢"Q0) (19)
where P and @ are periodic in 6, with period 2, and
N=e\ + N F oo (20)
P(8) = Po(8) + €P,(8) + €P,(6) + - -- (21)
Q(8) = Qu(0) + e:(0) + €Q:(6) + --- . (22)

It is a straightforward matter to substitute from (6), (7), and (19)-(22)
into (15) and (16), and to compare like powers of e. In particular, it
is found from (16) that d@Q,/df = 0. Omitting a multiplicative constant
and taking @, = 1, it is then found that

d’P, d* dP, d .
wh Gt 20 T8 4 200, 0 + 20 T8 4 Py = Zowysin 6 (23)
and
aQ, ) as,
W(](ds + Al + dﬁ
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Now, in order for @,(6) to be periodic, it is necessary from (24) that

2
wohs + b+ arwu<cos 6 ‘éf) ~ 0 25)
where
Ry = (@Py + 2u,) (26)
is periodic in 6, with period 27. But, from (23),
d’R dR . du,
wo gt T 2w gt + Ry = 2(0@3 sin 6 + {w, E’% + u) 27)

and w, is given by (10) and (11). Straightforward calculations lead to
Ry, = 2awy AG{[(1 — wp)*(2 — wp) + 4¢%0(1 — 2wl)] sin 8
— twol(l — w)(5 — wi) + 12¢%;) cos 6}, (28)
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Thus, from (25),
oy + b 4 offwy AS(1 — w) (5 — wi) + 12¢%:] = 0. (29)

However, as may be verified from (12), using (11), equation (29)
may be written in the form
o + - = 0. (30)
dw,
Since the sign of A in (20) is determined by the sign of \,, for suffi-
ciently small ¢ > 0, it follows that the periodic solution %, ) is asymp-
totically stable if dp*/dw, > 0, and is unstable if dp*/dw, < 0. That is,
the middle branch of the figure corresponds to unstable periodic solu-
tions, while the outer branches correspond to asymptotically stable
ones, provided that e > 0 is sufficiently small.

IV. MORE GENERAL SOLUTIONS

In this section a more general solution of (4) and (5) is constructed,
for 0 < e << 1. Thus an asymptotic solution is sought in the form

w = volw, ) + e, 0) + €v:(w, 6) + -+ (31)
Q=0+ e w 0) + €wolw, 6) + --- (32)
where v;(w, 6) and w,(w, 8) are periodic in 8, with period 2w, and
d
75 = @) T €nle) + - (33)

This procedure may be regarded as a variant of the method of aver-
aging.® The above solution is more general than the periodic solutions
constructed previously, since the latter correspond to the case in which
w is constant, rather than a slowly varying function of 8. However,
this solution is not completely general, since the initial transients in
(4) are not taken into account.

Substituting (31) and (32) into (4) and (5), using (33), and comparing
the lowest powers of ¢, it follows that

2 azvu vy _ 2 .
iy + 2fw 38 + vy = aw” sin 8 (34)
and
dw, 2 v _ o
"’(ae + gl) + aw’ cos 6§ 507 = (p — buw). (35)

The periodie solution of (34) is
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vy = aw Alw)[(1 — &) sin § — 2{w cos 6] (36)
where
Alw) = [(1 — ") + 4¢%" 7" (37)

In order that w, should be periodice, it is necessary from (35), using
(36), that

wii (@) = [p — be — &’tw’Aw)]. (38)

Then w,(w, 8) may be found from (35), to within an arbitrary function
of w. This arbitrariness is usual in averaging procedures, and may be
removed by requiring (w;(w, 6))., = 0, so that, from (32),  is the aver-
aged value of Q. Higher order terms in the asymptotic expansion (31)
and (32) may be obtained in a systematic manner.

Now, from (33) and (38),

dw 2

7= o= pr@l + 06 (39)
where

pHw) = be + o’tw’A(w). (40)

As previously remarked, the case in which « is constant corresponds
to the periodic solutions constructed earlier. From (11), (12), (37),
and (40), it follows that w, is the lowest order approximation to a
stationary solution of (39). If w # w,, equation (39) determines, to
lowest order, the slow variation of & with . The direction in which
changes is determined, to lowest order in ¢, by the sign of [p — p¥(w)],
and is illustrated in Fig. 1 for p = 0.45, to which there correspond
three values of w, , denoted by wy , wom , and wo, .

Under more general initial conditions similar results should hold,
for sufficiently small ¢, provided that the initial value of  is not too
close to wy, . This is because @ does not change significantly, for suffi-
ciently small ¢, during the time in which the initial transients in the
translational motion die out.

A partial check of these analytical results was made by Senator,* who
carried out some numerical solutions of (1) and (2). With & = 0.707,
¢ =0.2,b=0and e = 0.1, he chose initial conditions consistent with
the unstable periodic solution corresponding to p = 0.425, that is, the
periodic solution corresponding to p*(wem) = 0.425. He then carried
out numerical solutions of (1) and (2) for p = 0.45 and p = 0.4. He
found that for p = 0.45 the solution approaches the periodic solution
corresponding to w,, in the figure, that is, to p*(w,,) = 0.45, while for
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Fig. 1 — Stall torque vs. averaged rotational speed.

= 0.4 the solution approaches the periodic solution corresponding

to p*(we) = 0.4. These results are consistent with our analytical re-
sults. Moreover, the number of cycles required before the solution
settles down to the appropriate periodic solution was somewhat larger
in the case p = 0.45 than in the case p = 0.4. This is consistent with
(39), and the presence of the factor (1/w) multiplying [p — p*(w)]
therein.
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