The Capacity of Linear Channels with

Additive Gaussian Noise

By R. K. MUELLER and G. J. FOSCHINI

(Manuscript received August 8, 1969)

The standard method of computing the mutual information between
two stochastic processes with finite energy replaces the processes with their
Fourier coefficients. This procedure s mathematically justified here
for random signals w,(w) square-integrable in the product space t X w
where t £ [0, T] and « is an element of a probability space. A natural
notion of the sigma field generated by w,(w) is presented and it is shown to
coincide with the sigma field generated by the random Fourier coefficients
of w,(w) in any complete orthonormal system in L,[0, T]. This justifies
the use of Fourier cogffictents in mutual information computations.

Capacity 1s calculated for finite and infinite-dimensional channels, where
the output signal consists of a filter (general Hilbert—Schmidt operator) oper-
ating on the input signal with additive Gaussian noise. The finite-dimen-
sional oplimal signal is oblained. In the infinite-dimensional case capacity
can be approached arbitrarily closely with finite-dimensional inputs. The
question of the existence of an infinite-dimensional signal which achieves
capacily is considered. There are channels for which no signal achieves
capacity. Some resulls are oblained when the noise coordinates are inde-
pendent in the eigensystem of the filter.

I. INTRODUCTION

In this paper, we attack a general form of the classical problem of
determining the capacity of a linear channel with additive noise.
Structurally we have

r(w) = j[; G(t, 7)s8.(w) dr + n,(w) (1)

where the random signals, noise [n,(w)], input [s,(w)], and output
[r,(w)] are all defined on 0 = ¢ < T. All signals as well as the kernel of
the channel operator are assumed square integrable in the appropriate

81



82 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1970

product spaces. The noise process, the channel operator, and an average
power restriction on s,(w) are assumed to be given. In Section III we
begin by defining the capacity of a channel. Our definition is motivated
by, but is not a special case of, the generalization of Shannon’s notion
of capacity that has been indicated by Kolmogorov. The argument for
the naturalness of our definition is that any of the above processes can
be replaced by their random Fourier coefficients from any expansion
using complete orthonormal functions in L,[0, T]. We solve the above
problem when n,(w) is Gaussian and independent of s, (w). In Section IV
we show that for finite-dimensional inputs there always exists an s, (w)
for which capacity is achieved and we find it. The infinite-dimensional
case is solved in Seetion V as a limit of finite-dimensional cases.

II. FUNDAMENTALS

Fundamental to the notion of eapacity is the notion of mutual infor-
mation. We begin with Kolmogorov’s definition of the mutual infor-
mation of two event ¢-fields contained in a universal o-field. Let @ and ®
denote two sub osfields of a o-field Sy in a probability space (2, Sq, P).
Let « and B denote arbitrary partitions of @ into a finite number of @
and ® measurable sets A and B. The mutual information I(@, ®) of @
and @ is

P(A M B)
(@, ®) sup A%‘, :,_‘,B P(A N B) log, P(DP(B) (@)
We define 0 log 0 = 0. This sum does not decrease as « and 8 are re-
fined. It can be shown that I(®, ®) = 0 with equality if and only if
@ and ® are independent. The nonnegativity and other important
properties of I are presented in Ref. 1.

Let %€ be a measurable space with g-field denoted by ©. A function
t(w) from (@, So, P) to & for which each D & D has a preimage in S,
is called a measurable function.

Let T be an arbitrary index set and let E* denote the real line. Endow

,.r E' with the product topology and consider its measurable sets
to be the smallest o-field containing the topology. We are interested
in measurable functions from @ to II,., E'. For our purposes T' is either
countable or a real compact interval.

Suppose £ and 7 are measurable functions from @ to II,. E'. Then
by the mutual information of ¢ and 4, I(£ 7), we mean the mutual
information between the smallest o-fields with respect to which £ and 7
are measurable. We denote these respective o-fields by @; and @, .
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Let ¢(w) denote any measurable function from 2 to II,., E'. We
define the probability distribution P; of {{w). The domain of P; is the
measurable sets in II,.r E'. Let Q be such a measurable set. Then

Pi(Q) = Plo:{(w) e Q}. (3)

If £ and 7 are each measurable functions from Qto I,,,, E'and II,,,, E'
respectively then (£, 4) is a measurable function from @ to II,.,, £' X

Il,.r, E' and its distribution function is denoted P; , . It is called the
joint distribution of £ and 5. We can now give an alternate definition
of mutual information between ¢ and 5. Let y(8) denote arbitrary
partitions of I, E'(Il,.;,E') into a finite number of measurable
sets C'(D). The mutual information (£, 5) is

P.,(C X D)
I =5 P.,(C X D) log S22, 4
(Es 77) S:Jll:: Lg ; ..q( X ) 0g PE(C)P,,(I)} ( )
Recall that the inverse image under a measurable function of a ¢-field
is a o-field. So it becomes apparent that the two definitions for (¢, )
are equivalent.
We review without proof some fundamental propositions that will be

of use to us later. The following is a result of work by I. M. Gelfand,
A. M. Yaglom, and A. Perez.

Theorem: If Py, is not absolutely continuous with respect to the product
measure Py X P, then I(£, n) = o. If P, is absolutely continuous with
respect to Py X P, , then letting dP¢,/d(P; X P,) denote the Radon—
Nikodym derivative of Py, with respect to Py X P, we have

P
169 = [ [1os irsss | i, )

Proof: See Ref. 2.
Theorem: Let A be a linear transformation in a k-dimensional vector
space and lel £ be a k-dimensional random vector. Then

I(¢ n) = I(Ag n) (6)

holds for any random vector u, with equality if the transformation A is
nonsingular.

Proof: See Ref. 3.
Theorem: If I(§, £) < =, then P is purely atomic.
Proof: See Ref. 4.
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Theorem: If £ = (&, &, ), then
I, n) = lim I[(¢ , -+, &), 0] !

n—oo

Proof: See Ref. 4.

III. MUTUAL INFORMATION BETWEEN TWO PROCESSES IN L,{ (%, Sq, P) X
([0, 77, L, m)}

Let £ (w) be square integrable on ¢ X w. We term £,(w) a stochastic
process. Notice that it differs from the standard definition of a stochastic
process in two ways. First, it is an equivalence class of equal almost
everywhere functions in (f X ). Second, not all functions in the equiva-
lence class are stochastic processes in the sense of Ref. 5.; that is, for
each ¢ we do not have a random variable but only for almost all ¢.
We assume E{£,(w)} = 0. By Schwarz’s inequality and Fubini’s theorem
it follows that E{£,, (w) &, (w)} e La(t X £). If 9,(w) and {,(w) are processes
of the same type as £ (), I[n(w), {:(v)] is not well defined since @,
and @, are not well defined. Because of the central role of these processes
in modeling random signals with a finite average power we make @,
and @; and hence I[7,(w), {.(w)] meaningful here. We need to appeal to
the following:

Theorem (I'. Riesz): Let f, converge tn measure to f. Then there exists a
subsequence f,, converging to f almost everywhere.

Proof: See Ref. 6.

Suppose f, converges in mean square to f. Since convergence in mean
square implies convergence in measure, the limit of the subsequence
guaranteed by Riesz’s theorem is f in the sense that the limit and f agree
almost everywhere. This last comment is important since Kolmogorov
has given examples of functions g which possess an orthogonal expansion
g, converging in mean square to g, yet pointwise almost everywhere
convergence does not occur.

Unless stated otherwise all o-fields mentioned in the remainder of
this section are assumed to be completed. The following new definition
is the key to making £,(w) meaningful in the information theory sense.

Definition: By the o-field @ generated by £ (w) we mean the smallest
o-field @ satisfying £, (w) is (2, @) X ([0, T], L) measurable, where L
is the sigma field of Lebesgue measurable subsets of [0, T']. (This state-
ment is definitive since £,(w) is (@, Sq) X ([0, T], L) measurable and
the intersection of s-fields is a o-field.)
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Proposition I:  Suppose
2 a@ei(l) = () (8)

in the mean square sense in the product space (where a;(w)= [ £ (w)¢; () di
and ¢;(t) are orthonormal on [0, T]). If a(w) = [a,(w), ax(w), - -] then
ag = (2, .

Proof: Since the expansion converges to £,(w) in mean square in the
product space, it converges in measure. By F. Riesz’s theorem we can
find n; < ny < --- so that

lim [a'l(w)d’l(t) + -+ ankd)ﬂk(t)] = El(w)' (g)
The sum and product of measurable functions is measurable so that
each partial sum is (2, @) X ([0, T], L) measurable. The limit of
measurable functions is measurable so & (w) is (2, @) X ([0, T],L)
measurable. Thus @; C @, .

Next we project £, (w) on ¢;(t) to get

ae) = [ 5@ dt (10)

By Fubini’s theorem a,(w) is measurable with respect to every o-field
® for which £, (w) is (2, ®) X ([0, T], L) measurable. But this is true for
each 7, so @, C @; .

Proposition I is of paramount importance. In the sequel it enables
us to replace £, (w) by a(w) when computing mutual information.

It would seem appropriate to express ®@; without reference to an
expansion. The following proposition accomplishes this. However, our
proof does resort to an expansion of £, (w). Because the proof is similar
to the proof of proposition I, we omit it.

Proposition IT: Let |£7(w)} denote the class of functions in §,(w). Then
@, is the smallest o-field containing M, @« [Here we have the only ap-
pearance of possibly noncomplete o- fields (the @G;a)].

We can now define capacity of our noisy linear channel. Let S denote
a finite average power restriction on s,(w). Then the capacity of the
channel is defined as the supremum of I[s, (w), 7, (w)] where the supremum
is over all s,(w) satisfying

E[% f:sf(w) dt] < 8. an

We say £ () is Gaussian if the linear functionals
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T
[ e a {6(0) ¢ L,[0, T}
are all Gaussian random variables.

IV. THE FINITE-DIMENSIONAL CASE

TFor a random variable » possessing density p, the quantity

h(n) = —fpw log p, (12)

arises often in mutual information studies. It is called the differential
entropy of 7.
The following theorem is proved in (Ref. 7).

Theorem: Let p, be the density of a k-dimensional random variable u.

To mazximize

hu) = — f p. log p.
subject to the conditions that the mean and dispersion matriz have given
values w and T, choose the normal density
Q) = 2r™" | T [P exp [3u — )T (u — W],

which satisfies the conditions.
We prove a corollary necessary for the sequel.

Corollary: Let p, be the density of a k-dimensional variable u. We want
lo choose p, to maximize

hw) = — f p. log p.

subject to the condilions that the mean is w and the dispersion matrix
satisfies the constraint that its trace is less than or equal to ST. The solution
1s to choose p, to be Gaussian with mean w and covariance ST /kI, where
I is the identily malrix.

Proof: From the preceding theorem we only need to consider Gaussian
densities. For a Gaussian density we can write the formula

hu) = g log 2re + 3 log | T |. (13)

Maximizing & (u) is equivalent to maximizing | T' |. Now by the geometric
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mean—arithmetic mean inequality
trace T) |
o2 [eme] s

with equality if and only if vy, = Y22 =+ Yie -

Now we are ready to consider the finite-dimensional version of the
problem of finding the optimal power-restricted signal s,(w) which
maximizes the mutual information between it and the output 7,(w).
By what we have shown in the previous section we can replace these
processes by their Fourier coefficients when computing mutual infor-
mation. More specifically let 7,(w) be a finite-dimensional Gaussian
process of dimension k. Let (' denote a nonsingular operator on E* and
let s, (w) be a k-dimensional process that is independent of n, (). Suppose
that the distribution of n,(w) is absolutely continuous with respect to
Lebesgue measure in E*. We want to find s, (w) such that its distribution
is absolutely continuous with respect to Lebesgue measure in E* and
I[s,(w), Gs,(w) + n,(w)] is maximized subject to

E[[ " s dt] < ST.

Now by the theorem concerning linear transformations of random
vectors stated earlier, I[s,(w), Gs,(w) + n(w)] = I[s/(w), s:(w) +
G 'n,(w)]. Define n,(w) as n,(e) = G~ 'n,(w) and let

7' = [nl and s = H
L L)

be coordinates of 4,(w) and s,(w).
Then

I[s, y St + 7 =f skank sk lo Pateat.r
[s.(w), s/(w) 7.(w)] p g PoksnkDyk

= f Pokrnk ok 10g W’Tﬂ:n—t + h(sk + 'l’]k).
Introducing the transformation
k k k
l & s

into the above integral and using the fact that s* and »* are independent
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we have
I(S., sk + nk)
= fp.zﬂ,e log%ﬁ + k" + 1) = —h(") + B+ 45, (15)

Since A[n,(w)] is not a function of s,(w), we have reduced the problem
to that of maximizing A[s,(«) + G~ 'n,(w)] subject to

T
B f &) < ST.
0

Now 7, (w) is Gaussian and we know from the corollary stated earlier
that h[s,(w) 4+ G~ 'n,(w)] subject to the above constraint is maximized
by a Gaussian process. Thus, without loss of generality, s,(w) can be
assumed to be Gaussian. We seek T', the covariance of s,(w) so that
| T, + G7'I(G™") | is maximized, since this maximizes h[s, (w) +
G 'n,(w)]. Let us assume, without loss of generality, that G™'I',G™"' =T,
is diagonal. Thus the problem is to maximize

L 01
L+y -
0 "hJ

subject to T, a covariance matrix with trace (I',) = ST. Since we are
maximizing a continuous function over a compact set, we know that

the maximum exists.
We use induction to show that the optimal T, is diagonal. Form = 1
the statement is a trivial one. For m > 1 it shall be convenient to

partition T', so that
- len v’}.
. I
Let

0 WkJ

Now using some standard results on determinants (see Ref. 8, p. 46),
it follows that
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’

o= T Y L det T — et T)y'T 7.
L' T

(16)

Note that both T and I'"! are positive definite. It is optimal to choose
v+ = 0 to maximize the second term. The first term is also optimal if T is
diagonal. This follows since any nondiagonal T' with trace E’:.l Yii =
ST — «,, has determinant less than or equal to some diagonal matrix
with trace equal to ST — v,, by induction. We now optimally select
the diagonal elements of T', . If an € > 0 of ST is to be put on a diagonal
element of T, , it is optimal to add it to min {(y;; + #.),7 =1, --- , k}
so that it will have the largest possible multiplier in the determinant of T.

V. CAPACITY FOR THE INFINITE-DIMENSIONAL CASE

We turn to calculating the capaeity in the situation where there can
be an infinite number of Fourier coefficients of s,(w) and #,(w) and where
the channel ¢ is an infinite-dimensional Hilbert-Schmidt operator.

Define

G’=j:G(t,T)

where G(, 7) ¢ L,(¢ X 7). Let {#;} be a complete set of orthonormal
eigenfunctions for ¢ * ¢ and let {)\;}] be the associated eigenvalues.
Define G, = ; ; then (Y. , ¥;) = (Go. , Go;) = (b, G * Go;) = \; 84
and so {¢;/M] is an orthonormal set. We use r and 5 to denote the
infinite vector of I'ourier coefficients of r,(w) and %,(w) in the system
{¥:/A\} while § denotes the infinite vector of Fourier coefficients of
8,(w) in the system {¢,}. Let »* denote the first k coefficients of r and
define §* and 7" similarly. Let D be the doubly infinite diagonal matrix
with A! as the 7th diagonal element and define D, to be the & X k sub-
matrix of D with indices less than or equal to k. Then » = D$ 4+ 5 and
r* = D& + "

We first show that if an optimal input signal exists, then there is an
optimal Gaussian input signal. We shall need the following lemma.

Lemma: For any signal §, lim I(r*, §') = I(r, §).
Proof: We know that lim, lim, I(+‘, §") = I(r, §). As stated earlier
this is proved in Ref, 4. Now

IG, &) = h(') + fp""" 1og%
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where r* = D& 4+ o' If j = 4,

fp,;;; log p, 7 fp.,.p,, log p,i fp,,.- log p,i

Thus I1(*, §') = I(?' ) fOIJ > 4 then lim, .., IGY, &) = 107, 8) =
I(+*, §). Finally lim,_, I(+", hmHm 167, 8" = I(r, 8).

Alternately this lemma can be proved by extending some results of
Ref. 3 to the infinite-dimensional case.

We now show that if an optimal signal exists for the infinite-dimen-
sional case, then the optimal signal can be assumed, without loss of
generality, to be Gaussian.

Proposition IIT: If & is a non-Gaussian optimal signal then 8, , the
Gaussian signal with the same covariance matriz as §, , 1s optimal.

Proof: Clearly I(r* , 8 < I(r}, 8) for all k since the Gaussian process
is optimal for a fixed covariance matrix in the finite-dimensional case.
Thus I(r, , &) = lim, I(*, 85 < I(ra, &) = lim, I(r;, §5).

Proposition IV: The capacity of the infinite-dimensional channel is the
limit of the capacities of the k dimensional truncated approximation of the
infinite-dimensional channel.

Proof: Let C, denote the capacity of the & dimensional channel and let
C = lim C, . We claim the capacity of the infinite-dimensional ¢channel
is €. It is evidently at least C. Suppose a signal s, (w) exists satisfying
the constraints with mutual information, I(r, §) greater than C. Then
I(r*, §) = C, since § satisfies the power constraint. Thus I(r, §) = C,
a contradietion.

Corollary 1:  There exist finite-dimensional signals whose resulling mutual
information is arbitrarily close to the capacity.

Corollary 2: If C, is constant for all k larger than some integer 1, then
the | + 1-dimensional optimal signal is oplimal for the infinite-dimen-
sional case.

5.1 Limiting Covariance Matrices and Optimal Signals When {n:} Is
Independent

It is not always true that some input signal achieves capacity in the
infinite-dimensional case. We first prove this. Then we study the special
case when {7,] is independent in the {¢,/A!} system. This case may be
of marginal interest insofar as a model of a realistic system. However
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it is mathematieally tractable and hence serves as a good testing ground
for intuition into more general behavior.

We now show that no optimal input signal exists for the case \; =
1/4%, En*/n; = 1. It is clear that €, = % log (1 + ST/k)*. Then the
capacity is: C = % lim,_, log (1 + ST/k)" = ST/2. If there exists an
optimal signal s, I(r*, §) — ST/2. But I(r’, §') = 3 log | Ts: + I, |,
where I, is an 7 X 7identity matrix. Then I(+*,8") < 3 >_i_, log (1+Es?)
and lim I(+%, §) £ 2 3.2, log (1 + Es%). Recall that > =, Es? = ST
by assumption. We show that 2.2, log (1 + Es}) < ST. Since s} =
log (1 + Es?) with equality if and only if Es? = 0, lim I(r', §') <
13 log (14 Es?) < 327, Es: = 8T/2.

Although an optimal signal does not always exist, we ean say when
it does exist in the special case when the {5} are independent in the
system {¢;/A}}. It will turn out that {T'}, the sequence of finite-
dimensional optimal covariance matrices for s, converges in some cases
to an optimal solution and in other cases the limit is not optimal. The
diagonal matrix with a; = (1/A;)E»? on the 7th diagonal element com-
pletely determines whether or not an optimal limit is reached.

We define the order of minima of a sequence {£,}7., as follows. The
order is 0.5 if no smallest element in {;}7_, exists. If 1/, is defined to be
the set of smallest elements in {£:}7., and Card (M,) = + =, the order
of the sequence is 1. If Card (M,) < 4« but the set {\J & — M,}
has no least element, the order is 1.5. If the set {\J & — M,} has M,
smallest elements and Card (M,) = + =, the order is 2. If Card (M,) <

+ o« but the set
{ug,. — U M,}

i=1

has no least element then the order is 2.5, and so on. If the sequence
is not assigned a finite order of minima, the order is infinite.

If the order of minima of {a,} is 0.5, {I';s} — [0]. To see this we need
only consider diagonal elements of I';x . Suppose for some j and for
some ¢ > 0, E§* = ¢ in an infinite number of I';+ . Since no smallest
element in {a;} exists, there are an infinite number of a; , say {a.}
smaller than a; . Then in the optimal covariance matrices where E§} = e
and the ¢ appear, Fs?. = e. But this is not possible with the constraint
> E§ = ST. Thus for each j and e > 0, E§] < e in all but a finite
number of ' .

If the order of the minima of {a;} is 1, T';+ — [0]. This follows since
it is optimal to put the power on the minima. After some k, only the
minima will have positive E§} . Since there are an infinite number of
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them and the ST is optimally distributed equally on them, ' — [0).

If the order of the minima of {a;} is 1.5, there are two cases. Let
h = inf {\J & — M,} and g = inf {\J &}. If (b — g) Card (M,) = ST,
there is an optimal solution as a limit consisting of E$; = ST/Card (M,)
for those 7 corresponding to a; e M, . Otherwise the covergence is to a
matrix where Es? = b — ¢ if a, ¢ M, and zero elsewhere, which is clearly
not optimal. The analysis for other finite order systems are analogous
to the above. Either (z) ST is distributed over a finite number of com-
ponents, in which case the convergence is to an optimal solution, or
(#) ST has to be distributed over an infinite number of components, in
which ease the convergence is not to an optimal solution.

If the order is infinite and we run out of the quantity ST on a finite
number of components, the resulting finite-dimensional solution is
optimal. Suppose the order is infinite and we do not run out of ST on a
finite number of dimensions. Let 8 be the smallest accumulation point of
{a;}. If not all of ST is used in making

B}

N Y

the limiting covariance is not optimal and no optimal covariance which
achieves capacity may be constructed. This follows since a finite amount
of ST must be distributed equally to an infinite number of components.
If all of the ST is exactly used to make

the limiting covariance is optimal. Before proving this we give an
example of such a case.

Let

(z+ 1) 1
N = 3, IRV

G+ 17" =1 ¢+ 1)
and assume the 7, are independent. Then a; = 1 — 1/(i + 1)°. To
bring all components

En; =

Eif
A
to 1 we need
= 1
ST = X g1

and we are then in the ease considered above.



LINEAR CHANNEL CAPACITY 93

We now show that the limiting covariance matrix for the case when
there is just enough ST to bring

is optimal. Let T,, be the limiting matrix with the corresponding Gaus-
sian process §, . Let r, = D§, + 5. We show that I(+F, §) —» C, k— .
Now suppose §" is optimal for k-dimensions. Then

I6%,§) = 16}, ) = h6") — he?) = 4 log [” * L}i)] I

— 3 log 6° JT N . (17)
Here 4(k) equals that part of ST not used in the matrix T',, in the first

k-dimensions. Clearly we are assuming that the smallest elements of a;
appear first. Notice that 8(k) — 0 as k — . Then

4 k a(k 8(k
I6*, 6 — I6Y, &) = £ log [1 + TSB—)] < —2(82 (18)
for & sufficiently large. Then
lim I(r*, §%) = lim I(+%, 8 = I(r,, §) = C. (19)

VI. SUMMARY

Let us review what we have done. Since we chose to deal with signals
£, (w) square-integrable on L,{(2, Sy, P) X ([0, T1, L, m)}, we define
the mutual information between two such signals using Proposition
II and equation (2) in such a way that it agrees with the mutual infor-
mation of their Fourier coefficients defined in equation (10). For the
channel defined in equation (1) with input signals constrained by
equation (11), we calculate the capacity of the channel. First in Section
IV the capacity problem is considered when only a finite number of
Fourier coefficients are nonzero. We use the corollary to the theorem in
Section IV and equation (15) to show that only Gaussian signals have
to be considered. Then equation (16) is used to calculate the finite-
dimensional optimal signal by “filling the well.” In Section V the case
of an infinite number of nonzero Fourier coeflicients is considered.
We show in Proposition ITI that optimal signals, if they exist, can be
chosen Gaussian. In Proposition IV the capacity of the infinite-dimen-
sional channel is calculated as the limit of finite-dimensional capacities.
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Finally in Section 5.1 we deal with the existence of an optimal signal.
In general no optimal signal exists. A special case is examined when the
noise components are independent in a fixed coordinate system.

APPENDIX

Symbols Used

The following is a list of symbols used throughout the text.
L,—the set of square-integrable functions
7, (w)—a noise process
7, (w)—a noise process
8;(w)—the input signal process
r,(w)—the output process
(G—the linear channel operator
(+*—the adjoint of @
P,—a probability measure generated by &
p,—the probability density of the random vector 5
a sigma field
I(t, #)—the mutual information between £ and 7
h(n)—the differential entropy of »
I',—the covariance of s
E*—Tuclidean k-space
| T|—the determinant of T
L—the Lebesgue measurable sets
m—Lebesgue measure
Card—Cardinality
FE—expected value

REFERENCES

1. Lloyd, 8. P., “On a Measure of Stochastic Dependence,” Teopna sepoarnocteii
neenpm{cnemm (Theory of Probability and Its Applieation), 7 (1962), pp.
312-322

2. Ghurye, S. G., “Information and Sufficient Subfields,” Annals of Math. Stat.,
39, No. 6 (December 1968), pp. 2056-2066.

. GeIfﬂnd I. M, and Yaglom, A. M., “Calculation of the Amount of Inforrnn-
tion About a Random Function Contained in Another Such Function,”
Translations of the Amer. Math. Soc., (June 1959), pp. 199-246.

. Pinsker, M. 8., Information and Information Stability of Random Processes,

San Francisco: Holden Day, 1964.

. Doob, J. L., Stochastic Processes, New York: John Wiley, 1953.

Natanson, I. P., Theory of Functions of a Real Variable, New York: Ungar,

1955.
. Rao, C. R., Linear Statistical Inference and Its Applications, New York:

John Wllev 1965.
. Gantmacher, F. R., The Theory of Matrices, New York: Chelsea, 1959.

[+

m o~ oo



