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This paper presents a procedure for decomposing an nth order filter
into cascadable second order sections. The procedure 7s optimal in that it
minimizes the maximal response range for the sections within the frequency
band of interest. The procedure, based on a modified version of the Botle-
neck Assignment Algorithm, describes methods of listing all the optimal
decompositions as well as of finding a special “nested” optimal decom-
posttion.

I. INTRODUCTION

Let ¢(s) be a transfer function

s = 19

where f and g are polynomials with real coefficients, and the degree of
f = degree of g.

We consider all the decompositions of the form ¢(s) =¢:(s)da(s) - -
¢, (s) where

_ 10
¢i(s) - g','(S) (1)

fi(s) and g.(s) are real polynomials and the degree of f; does not exceed
the degree of g:. The g; are quadratic polynomials, except when the
degree of ¢ is odd; then one g; is linear.

Let L be a passband region for ¢, where L is a finite union of passband
intervals. Then for every ¢, , a number d(g;) is defined by

Max | ¢,(jw) |
d($:) = 20 logio W . (2)
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Also let
d = Max d(@,). (3)

Then d is a function of the decomposition. We present a procedure
that determines the decomposition(s) with a minimal d. E. Lueder

proposed this optimality criterion.!

II. METHOD

First, we artificially equate the number of zeros [zeros of f(s)], and
poles [zeros of g(s)], by adding a suitable number of ‘“zeros at infinity”’
corresponding to constant unit polynomials. Next we make this mutual
number even by adding a zero and a pole at infinity, if necessary. In
this way we get, say, 2f zeros and 2{ poles.

Pairing two zeros creates an f, ; a real zero can be paired with any
other real zero, while a complex zero must be paired with its conjugate
in order to get a real f; . The same is true for creation of g; by pairing
of poles.

In the following we assume that all poles, except perhaps one, are
complex and therefore fixed paired. We call the real zeros which are
not fixed paired free zeros.

Next we make all possible pairings of the free zeros. Each such
pairing, together with the fixed pairing, decomposes f(s) and g(s):

f(8) = fu()fa(s) -+ fu(8);
9(s) = g:()g2(5) -+ g.(s).
Then we compute the matrix D = (d;;), where the elements

di = d(i) 4)

are computed from definition (2). The element d;, represents the “cost”
of matching zero-pair 7 with pole-pair £.

An assignment is a feasible set of matchings. Using the Bottleneck
Assignment Algorithm, we determine an assignment &, , --- , &k, for
which

Max d,,
t

will be minimal. We call this minimum the opéimal d value for this
pairing of free zeros. Going through all the possible pairings of free
zeros, we find an optimal pairing which yields the smallest optimal
d value.

Since an optimal assignment (for a given optimal pairing) is usually
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not unique, procedures for obtaining all the optimal solutions (assign-
ments) or a nested solution are given. A nested solution is obtained by
taking an optimal solution, fixing the matching with the largest d
value, and then proceeding to look for an optimal assignment for the
remaining {—1 f,’s and {—1 g¢,’s, and so on.

III. THE BOTTLENECK ASSIGNMENT ALGORITHM

This section discusses the Bottleneck Assignment Algorithm and its
adaptation to the present problem.

Let U = (u;;) be a real { X ¢ matrix. A matching is an ordered pair
of integers (7, , fi) 1=54,<t, 1=j.=<¢{. We associate with the matching
(% , j.) the corresponding cell in U. The element in this cell u,; is
called the cost of the matching.

Aset A = {(@,4); k=1, -+, t} of { matchings (cells) is called an
assignment if in every row and in every column of U there is a cell that
belongs to A. The bottleneck assignment problem looks for an assign-
ment which minimizes the maximum of its matchings’ costs.

The Gross algorithm?®, is based on the following iterative step:

(*) An assignment A and a real number «, which does not exceed
all the costs of A, are given; then either a new assignment A’ is con-

A=ARBITRARY ASSIGNMENT

1

a =MAXIMAL COST OF
MATCHINGS OF A

|

APPLY THE ITERATIVE STEP (%)

No -

YES

A=aA

Fig. 1 — Flow chart for solving the bottleneck assignment problem.
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structed, so that a exceeds more costs in A’ than it does in 4, or it is
established that no such A’ exists.

The flow chart in Fig. 1 solves the bottleneck assignment problem.
This algorithm is fast and requires small memory space, since only the
present assignment must be stored.

d=oo A={(11),(2,2)sex--- creny (851)}

|

FORM AN UNCHECKED PAIRING
OF THE FREE ZEROES

1

U =D MATRIX OF THE PRESENT PAIRING

1

—-[ a=MIN (d, MAXIMAL COST OF MATCHINGS OF A)l

|

, APPLY THE ITERATIVE STEP (%) I

STORE THE PRESENT PAIRING

ARE

THERE

UNCHECKED

PAIRINGS LEFT
?

YES

Fig. 2 — Flow chart for finding the optimal pairing and its optimal d-value.
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The basic algorithm was modified to find the optimal pairing of the
free zeros and its optimal d-value (Fig. 2). Note that the value of & in
every iterative step (*) does not exceed the minimum of the optimal d
values of the checked pairings. Thus any pairing that does not reduce
the d value already obtained is immediately disregarded.

Also, for each pairing we use the optimal assignment of the preceding
pairing, as an initial assignment. Thus the costs of the initial assignment
matchings that correspond to the fixed paired zeros do not exceed the
current d value. These procedures considerably reduce the amount of
computation required for finding the optimal pairing and its optimal d
value.

IV. CREATION OF THE NESTED SOLUTION

Let U denote the cost matrix which corresponds to the optimal
pairing. The nested solution is created by successively applying the
bottleneck assignment algorithm ¢ times and modifying U each time
in such a way that the matching with the largest cost becomes fixed
and irrelevant in the further computations.

Let (7% , %) be the matching with the largest cost at a certain stage.
Then (2% , j*) becomes a part of the nested solution. U is then modified
as follows:

Uiro = o forall s # j¥;
U, i+ = o forall s #F;
Ul't‘.il—' = (.

It is easy to verify that this modification has the properties described.

V. A COMPUTATIONAL METHOD TO GENERATE ALL THE OPTIMAL
ASSIGNMENTS

Let U denote again the cost matrix which corresponds to the optimal
pairing, and let d* be the optimal d value. We call a cell (¢, j) admissible
if u;; < d*. The problem of listing all the optimal assignments then
becomes the problem of listing all possible assignments that use only
admissible cells. Using the flow chart of Fig. 3 can accomplish this.
The number of operations can be seen to be dependent on the order of
the columns of U. The dependence is quite complicated. However, a
good rule of thumb for reducing the number of operations is to re-
arrange the columns in ascending order according to the number of
their admissible cells.
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[1()=0,1(2)=0,..., I(t)=0]|

1S
(I(J)).}) NO

ADMISSIBLE
2

FOR SOME
K<]
?

PRINT OUT THE ASSIGNMENT
[(10),1),(1(2),2)yeeees (1 (1), 1)]

Fig. 3 — Flow chart for generating all optimal solutions.
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