Laser Speckle Pattern—
A Narrowband Noise Model

By CHRISTOPH B. BURCKHARDT
(Manusecript received September 29, 1969)

We represent by an electrical model the imaging of a one-dimensional
coherently illuminated and diffusely reflecting surface by an oplical system
with a rectangular aperture. We then oblain the statistical properties of
the image intensily from the statistical properties of the square of the en-
velope of a narrowband noise signal in the electrical model. The analysis
is simple because use can be made of resulls known in communication
theory. The results agree with those obtained in a direct way.

I. INTRODUCTION

The speckle pattern in the image of a coherently illuminated and
diffusely reflecting object has been analyzed by Enloe'. Enloe’s results
show a remarkable similarity to some results oceurring in the theory of
narrowband noise (See Ref. 2, pp. 397 ff.). This similarity prompts the
question whether Enloe’s results can be derived by the use of an elec-
trical model analogy involving narrowband noise.* In this paper we will
show that this is indeed possible for the special case of a one-dimensional
subject and an optical system with a rectangular aperture. The analysis
is simple because we can use results known in communication theory
and the results agree with those of Enloe.

II. THE OPTICAL MODEL

The optical model is shown in Fig. 1. In plane P; there is a coherently
illuminated row of scatterers which scatter with random phase (a one-
dimensional diffusely reflecting surface). At a distance d in plane P,
there is a lens. In front of the lens there is a rectangular aperture with
an amplitude transmission H (x, , y»). The distance d is large compared to
the focal length f of the lens and therefore to a good degree of approxima-

* Such an analogy was already suggested by Rigden and Gordon.?
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Fig. 1 — Optical model.

tion the image of the scatterers in plane P, is situated in plane P; at a
distance f from the lens. Enloe computed the intensity as well as the
autocorrelation of the intensity in the image plane.’

As a help in understanding the following electrical model we make
the following comments regarding the optical model. Suppose that the
instantaneous value of the electric field e(z, , f) in the object plane P,
is given by

e(z, , ) = a(%) exp (—2mw,l). (1)
e(x, , t) is zero for y; # 0. The time-independent phasor is
a(fé) = afay), 2)
where we have introduced the spatial frequency coordinate
v 3)

(We write a( ) as a function of the spatial frequency z,/Ad and not of
z, in order to simplify the following computation.) For later use we also
introduce

=,

Since the lens is situated in the far field of the object, the phasor A (z., y.)
in plane P, in front of the aperture is the Fourier transform of a(e,),

A, ) = [ [ ate) exp @riez) exp @rify) dayds, . (9)



LASER SPECKLE PATTERN 311

Since a(a,) is zero for 8, # 0 the above two-dimensional Fourier trans-
form operation reduces to the one-dimensional Fourier transform
operation

@

A, 1) = [ alew) exp @rjoos) des ©)

Tt is seen that A(z., ¥.) is a function of z, only and we will therefore
write A(z,). The phasor behind the aperture, B(z,, ¥,) is obtained as
the product of A (z,) and the aperture transmission function H(zs , y2)

B(xa, ys) = A(zs)-H(zs, 92)- @)

As was mentioned we assume a rectangular aperture function. We
assume that H(z,, y.) can be written as

H(za, y2) = Hi(x2) Ha(ya). (8)

Since our object is one-dimensional we are only interested in the image
intensity at y; = 0. The image intensity at y; = 0 is not influenced by
H.(y.) except for a factor which remains constant over all z;. For
equation (7) we can therefore write

B(z,) = A(z)-Hy(z,) 9)

with the understanding that B(x,) does vary in the y, direction but that
this variation is of no interest to us. So much for the optical model.
We will now present the electrical model.

11I. THE ELECTRICAL MODEL

The electrical model is shown in Fig. 2. The electric field in the object
plane is scanned by a detector whose output voltage is proportional
to the instantaneous value of the electric field in the object plane. (In
the optical region there are no such detectors available. This should
not present any conceptual difficulties since we can scale up our model to
a longer wavelength where there are such detectors.)
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Fig. 2 — Electrical narrowband noise model.
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The electric field e(z, , ¢) in plane P, is given by equation (1) and the
output voltage »,(f) of the scanning detector is

v () = Cla(?\d) exp (—2mwjwyl). (10)

v, is the scanning velocity and we have

x, = vl (11)
¢, denotes a constant of proportionality which is of no interest. The
Fourier transform of v,({) of equation (10), FT[v,({)] is given by

FTR.(0)] = ¢, 24 A[M v — uu)]

Yo,

= czAD—d (v — vﬂ)_|'

1 -

(12)

A(v) is the Fourier transform of a(f). ¢, is a constant of proportionality.
The Fourier transform or spectrum of »,(f) is centered at v, as shown in
Fig. 3. In the optical model the spectrum A(z.) is multiplied by the
aperture transmission function H,(z,) in plane P,. See equation (9).
In order to simulate this in our electrical model we have to pass the
voltage v:(f) through a temporal frequency filter with the frequency
response H [(Ad/v,)(v — vy)]. The spectrum B[(Ad/v,)(v — »,)] at the
output of the filter is then given by

BIM o | = 4| = i M6 — ) (13)
e -] = alie-w]u[Me-m]

The filter H,[(Ad/v,)(» — »,)] is shown in the electrical model of Fig. 2
and its frequency response is sketched in Fig. 3. (The frequency response
H,[(Ad/v,) (v — »y)] in the electrical model corresponding to the rectangu-
lar aperture transmission function of the optical system can only be

SPECTRUM AND
FREQUENCY
RESPONSE OF FILTER

Fig. 3 — Spectrum of the electrical signal and frequency response of the filter.
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realized with a time lag, but this need not disturb us.) At the output of
the filter we have the voltage »,(t)
vt .

v,(t) = cab(i'&) exp (—2mj,l), (14)
where b(t) is the Fourier transform of B(»). ¢; again is a constant of
proportionality of no interest. The output device scans the image plane
P, with a veloeity v, and

ta _ [
v, d
because in the optical model the image is demagnified by a factor d/f
with respect to the object. The inversion of the optical image with re-
spect to the object is accounted for by inverting the coordinate system
in the image plane P, , see Ilig. 1. We can now write for equation (14)

(15)

o(l) = u;(%) exp (—2mjnl)
' (16)

£ .

= (';J)(I\—}) exp (—2mjv,l).

In the optical model we detect the intensity in the image plane, that is,
the square of the absolute value of the phasor. Therefore in our electrical

model the output device displays | b(xs/N) |*.
The voltage v,({) at the output of the filter is narrowband compared
to v, . We now consider v,(f) as a narrowband noise voltage. Another

equivalent representation is (see, for example, Ref. 2, p. 397)

v, (1) = N.(0) cos 2mvst + N, () sin 2w, (17)

N.() = Re [b(th—t)}
-]

Re [ ] means “real part of” and Im [ ] means “imaginary part of”.
We now assume that the filter is so narrowband that its impulse response
is much wider than the time over which »;(f) shows any appreciable
correlation. (This assumption is the equivalent of Enloe’s assumption
that the optical spread function is much wider than the average distance
between the images of scatterers with independent phase.) If this

where

(18)
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assumption holds, the voltage v,(f) results from many independent
values of v;(t). According to the central limit theorem v,(¢) and therefore
N.(t) and N, (t) show a Gaussian distribution. The voltage »,(t) therefore
has the statistical properties of narrowband Gaussian noise which are
discussed for example in Ref. 2, pp. 397 ff. As was mentioned, the square
of the envelope corresponds to the optical intensity. The envelope E(t)
is obtained as

E(t) = [Nt + N

19)
() [
= ({Re [b(af)]} + {Im [b A '
According to Ref. 2, equation (9.18), E(¢) has a Rayleigh probability
distribution density W(E)

The average value of the square of the envelope (£°),, which is equal to
the average value of the optical intensity (I),, is given by [Ref. 2, Eq.
(9.21a)]

(Ez)nv = <I>av = 2’# (21)
We are now also interested in the autocorrelation R(s) of the intensity I
R(s) = (I(za)I(zs + 9))av (22)

= (B () E* (25 + &)y -

According to Ref. 2, equation (9.24), E(s) is given by the following
expression

R(s) = 4¢°[1 + ki(s)] (23)
(I)ll + ko(s)],

where we have used equation (21). As explained in Ref. 2, [equations
(9.10b and 9.12b)] k,(s) is the autocorrelation of the spread function
corresponding to a filter with the frequency response H,((Ad/v,)v).
This is the frequency response of the filter in our electrical model (see
Fig. 2), but centered at zero frequency. The frequency response H,((\d/v,)»)
is shown in Fig. 4. k(s) is normalized to one at s = 0. (The above dis-
cussion holds when the frequency response of the filter is symmetrical
about the origin as is true for our case.) The spread function is the

I
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FREQUENCY
RESPONSE

Fig. 4 — Frequency response of the filter H1[(Ad/v:)v].
Fourier transform of the frequency response and so we have

2] - ol

where H,(») and h(t) are Fourier transform pairs. ¢, is a constant of no
interest. Therefore we obtain for ky(s)

=g [l 4 )

(25)
(';f;) o)

p(0)  p(0)

where
plu) = f R*(Oh(t + w) di. (26)
Using equations (23) and (25) we finally obtain for E(s)

R(s) = (I”)“[l 70) | 27)

This last equation is the same as Enloe’s equation (14) if the last term
in that equation is disregarded. The last term in Enloe’s equation (14)
vanishes if the spread function of the filter is much broader than the
average distance between images of scatterers with independent phase.
The power spectrum follows from the autocorrelation function in the
same way as in Enloe’s analysis and this derivation will not be repeated
here.

In summary: We have derived the statistical properties of the intensity
in the image of a one-dimensional coherently illuminated and diffusely
reflecting subject with the help of a narrowband noise model. Use was
made of results known in communications theory.
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