An Asymmetric Encoding Scheme for
Word Stuffing

By M. M. BUCHNER, JR.
(Manuscript received November 6, 1969)

The effectiveness of word stuffing for synchronization depends upon our
ability to distinguish the stuff words from the data words at the destination
and, thus, delete correctly the stuff words. If all input sequences are per-
milted, the data words must be encoded before stuffing occurs so that the
stuff word can be distinct from the data words. In this paper, we give the
code that, for a given redundancy, maximizes the minimum distance be-
tween the stuff word and any data word. This helps to prevent the loss of
characler synchronization because of transitions between data and stuff
words due fo transmission errors. In conirast to the perfect distance sym-
metries between the code words of the group codes normally encountered
in error-conirol work, the primary virtue of the present code is its highly
asymmetric distance structure.

I. INTRODUCTION

When a digital communiecation network is used for data transmission,
it may be necessary to adjust transmission rates within the network to
achieve synchronization. Word stuffing' is a technique that can be used
for this purpose. The basic idea is to group the transmitted bits into
words which we call data words. The data words are formed for trans-
mission and are not related to any word structure that may exist in
the customer’s data stream. Stuff words, which are distinguishable
from the data words, are inserted into the stream of data words at the
transmitter. Thus, transmission rates can be adjusted within the net-
work by inserting or deleting stuff words. At the destination, the stuff
words are deleted whereas the data words are delivered to the customer.
The effectiveness of word stuffing depends upon our ability to dis-
tinguish the stuff words from the data words at the destination and,
thus, delete correctly the stuff words. If the stuff words are incorrectly
deleted, bits will be inserted into or deleted from the customer’s data

379

380 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1970

stream. As a result, the received bits will be incorrectly formatted and
incorrectly interpreted. When this occurs, we say that character syn-
chronization is lost. Character synchronization is important in data
transmission because once it is lost, subsequent bits are erroneously
interpreted even if transmitted correctly.

Two problems arise. First, we require that all input sequences are
allowed. Thus, redundancy must be added to the data words by an
encoder so that it is possible to choose a stuff word that is distinet from
the data words. Second, when transmission errors oceur, it is possible for:

(¢) a stuff word to be transformed into a data word,
(#2) a data word to be transformed into a stuff word, or
(7#5) a data word to be transformed into another data word.

In most cases, (z) and (i) are more serious than (i77) because of the
resulting loss of character synchronization. The prevention of type (i)
errors is generally performed by the customer’s terminal, when required,
and is not considered in this paper.

Previously, Mattesich and Richters' proposed a format for the data
words and the stuff word. The format results in the stuff word being
distance one* from a data word. Therefore, a single transmission error
can change a data word into the stuff word or vice versa with a corre-
sponding loss of character synchronization.

We give an alternative encoding scheme that, for a given redundancy,
maximizes the minimum distance between the stuff word and any data
word. This helps to prevent the loss of character synchronization be-
cause of transitions between data and stuff words due to transmission
errors. An implementation is given for arbitrary word size and re-
dundancy. For a redundancy of one bit, a particularly simple encoding-
decoding technique is described.

Some other methods of achieving synchronization by means of stuffing
have been proposed. A word stuffing technique, proposed by Butman®,
achieves a distance d between the stuff word and any data word by
inserting deliberate errors in certain data words at the transmitter to
keep the data words at least distance d from the stuff word. Butman'’s
technique requires some knowledge of the statistics of the transmitted
data words for selection of the stuff word and a relatively large word size
so that the deliberate insertion of errors is infrequent. It results in
deliberate errors in the customer’s data and prohibits the reception of

* The distance, frequently called the Hamming distance, between two binary
words X and ¥ is the number of positions in which X and Y differ.

WORD STUFFING CODE 381

certain data words. The latter point is troublesome if the data words
used in transmission are identical to the data words of the customer.

Pulse stuffing, rather than word stuffing, can be used to achieve
synchronization. Individual pulses are inserted at the transmitter and a
separate data link is used to signal the locations of the stuff pulses.
References 3 through 6 are representative of the work in pulse stuffing.

II. PRELIMINARIES

A model of the processing before transmission is shown in Fig. 1.
The input binary data stream is segmented into k-bit data words de-
noted by A, where

A= (a,, e, -, a).

We assume that all of the 2* possible sequences for A are allowed. In
order for the stuff word to be distinguishable from the data words, the
alphabet is enlarged by adding redundancy to A. Thus, the encoder
generates from A an n-tuple B where n > & and

B = (bnsbn-ls"' sbl)'

The sequence B is transmitted. The dimensions of such a code are
denoted by (n, k).

There are 2" possible sequences for B of which 2* are used to transmit
data. Thus, there are 2" — 2* values of B that are not used for data but
that ean be used for other purposes including the stuff word. For n > £k,

" — 2F = 2%, (1)

The reader should appreciate the tremendous flexibility available in the
design of the coding scheme because, by (1), never more than half of the
possible B sequences are used as data words.

The processing after transmission is indicated in Fig. 2. As shown
later, it is possible to construct codes that have a minimum distance
greater than one between the stuff word and any data word for practical
values of n and k. For these codes, the first step at the destination is to
delete the stuff word and all other received words “sufficiently close”

INPUT A B STUFF DIGITAL
EN%AOTSER) WORD TRANSMISSION
f A INSERTION I‘F SYSTEM
! \\ /
[N s
k-BIT WORDS ~N-8IT WORDS

Fig. 1 —Processing before transmission.

382 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1970

DIGITAL STUFF ‘ ,
TRANSMISSICON WORD B DEDCAJSER A OUTPUT
SYSTEM DELETION F]5E

\ / |
\\ 7 |
~N=BIT WORDS -~ K-BIT WORDS

Fig. 2 —Processing after transmission.

to the stuff word. In saying “sufficiently close,” we mean that the re-
ceived word is more likely the result of a stuff word corrupted by errors
than a data word corrupted by errors. Let B’ denote the n-tuples that
are not deleted where

B’ = (b, by, -, bi).
The decoder operates on B’ to form the k-bit word A" where
Al = (a} , @y , --- , Q).
The system functions properly if
Al = A,

At this point, we describe for reference the encoding and decoding
schemes presented in Ref. 1. An (8, 7) code is used, that is, n = 8§,
k = 7. The encoder generates B from A by the relation

b5=1

b; = a; for 1

IIA
.,
lIA
-1

Thus,
B=(1,a,,0, " ,a).

The stuff word is (00000001). At the receiver, only the word (00000001)
is deleted as the stuff word; all other received words are decoded as
data words. Thus, the stuff word is interpreted as a data word if one or
more transmission errors occur. Alternatively, because the data word
(10000001) is distance one from the stuff word, a single error can con-
vert this data word into the stuff word. Any other data word requires
at least two errors for conversion into the stuff word.

IT11. DESCRIPTION OF THE CODE

We construct a code that has one stuff word and 2" data words such
that the minimum distance between the stuff word and any data word
is maximized. The problem is to divide the 2" n-tuples into three sets;
namely,

WORD STUFFING CODE 383

(z) the stuff word denoted by S,
(47) the set D consisting of the 2* data words, and
(i7) the set U consisting of the 2" — 2¥ — 1 unused words,

such that, for given values of n and k&, the minimum distance between S
and any element of D is maximized.

Choose one of the n-tuples to be the stuff word S. For given n, k and S,
let d,, denote the maximum possible minimum distance between S and
any element of D. We determine d,, by observing that if all elements of
D are to be at least distance d,, from S, then U/ must contain all n-
tuples that are distance d,, — 1 or less from S. Thus, the set U contains

the (711') n-tuples distance 1 from S,

the (2’) n-tuples distance 2 from S, (2a)

the (d n_ 1) n-tuples distance d,, — 1 from S,

and & n-tuples distance greater than d,, — 1 from S such that

5()sr-2-1<£() @)

=1

and

dm—1

a=2“—2"_1—2(’”§)- 2¢)
i=1

The data words are the remaining 2" words.

The value of d,, is determined by (2b). From (2b), it follows that d,,
is independent of S and is determined entirely by n and k. Also, it is
easy to show that changing a code by adding* a constant n-tuple to
all words simply rotates the code with no change in the distance prop-
erties, including d,, .

The code is specified by (2) up to the choice of the § unused words
that are at distance greater than d,, — 1 from S. While the choice of
these 6 words does not alter d,, , the probability that a data word is
transposed into the stuff word is minimized if the § words are all chosen

) * Q’_)I‘he addition is component-by-component modulo two addition and is denoted
v

384 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1970

to be distance d,, from S. In practice, the choice of the § words does not
change this probability substantially and it appears preferable to assign
the 8 words to simplify encoder-decoder design.

The case n = k + 1 is of interest because of the low redundancy. In
Appendix A, it is shown that forn = k + 1,

k
dm=[§]+1

where [z] denotes the largest integer less than or equal to z. Also, for
n = k + 1 and & even, it is shown in Appendix A that § = 0. A plot of
d, versus n forn = k + 1 and n = k + 2 is given in Fig. 3.

[e]

]

81

dm

|
6 7 8 9 10 n 12 13 14 15 16
n

Fig. 3—Maximum minimum distance d,, for various n.

Transmission of the all-zero word can be avoided by choosing S so
that the all-zero word is one of the unused words. However, it may be
convenient, particularly when detecting stuff words, for S to be the all-
zero word because then distance from S is equivalent to weight* and
can be computed by counting ones. These two objectives can be simul-
taneously satisfied as follows. Design the encoder and stuff word using
a code C in which S is the all-zero word. Let S’ be one of the unused
words in €. Add S’ to each word immediately before transmission and

* The weight of a binary word X is the number of nonzero components in X
and is denoted by w(X).

WORD STUFFING CODE 385

add 8’ to each word immediately after transmission. The double addi-
tion of S’ permits the suppression of the all-zero word for transmission
but is transparent for the encoding, stuff word detection, and decoding
operations.

Because the data words and the stuff word form a subset of the set
of all possible n-tuples, we may, on the average, transmit an unequal
number of zeros and ones. By varying w(S) from 0 to n, the relative
number of zeros and ones in the data words can be varied from mostly
ones to mostly zeros.

IV. ENCODING, DECODING AND STUFF WORD DETECTION : GENERAL CASE

In this section, we specify an encoder that achieves d,, for arbitrary
n and k. Let the stuff word be the all-one n-tuple. A necessary and
sufficient condition for the encoder to achieve d,, is that each A must
be encoded into a unique B such that the maximum weight of any B is
n—dn.

We begin by regarding each A as the k-bit natural binary representa-
tion of some integer @, 0 £ @ < 2* — 1. Thus,

A = By(a)

where

k
a= ». 27, .

i=1
We can construct a table that, for each «, gives the corresponding A
and B sequences. The entries are in the order of increasing a. For illus-
tration, consider the (9, 7) code where d,, = 6. The first 24 entries for
the (9, 7) code are shown in Table 1. The A column corresponds to
counting in binary from the all-zero k-tuple to the all-one k-tuple. The
B column is also formed by counting in binary except that all n-tuples
with weight greater than n — d,, are omitted from the count. It follows
that the maximum weight of any B is n — d., . The arrows in Table 1
indicate where 9-tuples with weight greater than three have been
omitted in the B column.

Let us examine the counting in the B column of Table 1 in greater

detail. Consider counting to the B sequence for a = 22, that is,

(000011000). (3)
position 5 .

First, count to (000010000). At this point, all 4-tuples of weight not

position 4

386 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1970

TaBLE I—RELATIONSHIP BETWEEN A AND B FoRr (9, 7) CODE;
OxvLy THE FirsT 24 VALUES oF A ARE SHOWN.

[+ 4 44 = B';l(t!) B

0 0000000 000000000
1 0000001 000000001
2 0000010 000000010
3 0000011 000000011
4 0000100 000000100
5 0000101 000000101
6 0000110 000000110
7 0000111 000000111
8 0001000 000001000
9 0001001 000001001
10 0001010 000001010
11 0001011 000001011
12 0001100 000001100
13 0001101 000001101
14 0001110 000001110,
15 0001111 000010000
16 0010000 000010001
17 0010001 000010010
18 0010010 000010011
19 0010011 000010100
20 0010100 000010101
21 0010101 000010110_
22 0010110 000011000
23 0010111 000011001

greater than three have been used in positions one through four. Then,
count to the sequence in (3) by using all 3-tuples of weight not greater
than two in positions one through three while keeping a one in position
five. As shown in Fig. 4, the value of a« associated with the sequence
in (3) has two components. The first component, denoted by e,(5), is
the number of B sequences used in counting to obtain the one in position
five. Similarly, the second component, denoted by a,(4), is the number
of B sequences used in counting to obtain the one in position four.
Accordingly,

a = a(5) + a(4)

where
() = 20(3;) = 7.

The above ideas can be formalized so that, for an arbitrary B (de-

WORD STUFFING CODE 387

000000000 T
aq(5)
000001110
=
0000 10000
az(4)
000010110
A
0000 1 1000

Fig. 4—Counting to determine a.

noted by B,), it is possible to determine the corresponding value of «
(denoted by a,). Let w = w(B,), w S n — d,, . Let 81,82, +++ , B. de-
note the position numbers of the w nonzero components of B, where

131>,82>-">,6.,,.

For example, if B, = (000011000), v = 2 and 8, = 5, 8 = 4. Let . (8:)
denote the contribution of the one in position 8; to a, , that is,

¢y = 21 ai(ﬂi)-

Observe that «,(8;) is the number of sequences in the B column
from the sequence whose nonzero components are in positions
By, Ba, -+, Bi_1 to the sequence whose nonzero components are in
positions 8, , B2, *++ , B: . Thus, a;(8;) is the number of (8; —1)-tuples
of weight not greater than n — d,, — 7 + 1 and is given by

Min(n—dpil’+1.ﬂi—1) (.3. _ 1).

a:(B:) = m (4)

m=0

It follows that

Qg =

i Min(,._.;..i.-n.ﬁ.-—n (ﬁ; — 1)‘

m

i=]1 m=0

Equation (4) can be used to find B, when a, is given, that is, to design
an encoder.* For each valueof 7, 1 < 7 = n — d,, , construct an array.
In the 7th array, list j and «;(j) as j runs from one to n — 7 4 1. To
encode a, , find in the first array the largest j (denoted by j,) such that

al(jl) = .

*¥The ideas in this paragraph are illustrated by a numerical example in
Appendix B.

388 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1970

Next, find in the second array the largest j (denoted by j,) such that
a:(jn) = a — al(jt)-

In the ¢th array, find the largest j such that
i-1
ai(jl’) = a — Eam(jm)-
m=1

The process continues until
o

Zl ﬂ‘sn(]m) = 0y
for some o < n — d, . It follows that B, has ones in positions
1,42y "y Jur and zeros in all remaining positions. Also, ' = w, the
weight of B, .
It is possible to obtain a recurrence relation for the elements of the
arrays. It is shown in Appendix C that

ai(.’i) + ai+1(j) = a.-(j + 1) (5)

forl<j=n—14,1=<7=n—d,— 1. Byknowing that ;(1) = 1 for
1 <is<n —d,andthat @,_4,(j) = jforl = j = d. + 1, equation (5)
can be used to generate elements of the arrays.

Also, equation (5) can be used to construct an encoder directly.
First, we specify the subtraction and storage device shown in Fig. 5.
Let R denote the integer stored in the device. The output is equal to the
integer stored in the device, that is, B. Let the input be an integer
R, 0 £ R’ = R. When the device is activated, the number stored in
the device becomes B — R’ and, thus, the output also takes the value

R — R.

R’ R
INPUT OUTPUT

ACTIVATE
Fig, 5 —Subtraction and storage device.

The encoder operates as shown in Fig. 6. The storage devices are
presetsothat B, = ¢, (n —7+1),1 £ i =n —d.,and T = a, the
integer representation of the A sequence to be encoded.* Position the

* For the (9, 7) code, the preset values are B1 = 93, B: = 29 and Ba = 7.

WORD STUFFING CODE 389

ACTIVATE

SEND O

YES

A

B SEQUENCE

= T<R
A T

T 3
ACTIVATE NO SEND 1

Fig. 6 —Encoder for arbitrary n and k.
Preset Values: T = «
Rl = al(n)
Ry = as(n — 1)

Ruay = n_dp(dm + 1)

switchso R = R, .If T < R, , then — d,, storage devices are activated
and their contents reduced. Also, a 0 is transmitted, that is, b, = 0.
However, if T = R, , a 1 is sent, R, is subtracted from 7T, and the
switch is shifted so B = R, . The process continues until the entire B
sequence is generated. Notice that the B sequence is generated and,
thus, transmitted with b, first and b, last.

The decoder is shown in Fig. 7. The storage devices are preset so that
Ri=a,(n—174+1),1=17=n— dn, and the accumulator is set
equal to zero. Position the switch so R = R, . Prior to the decoder, if
the weight of the received n-tuple is greater than n — d,, because errors
have occurred, the weight is reduced to n — d,, by arbitrarily converting
sufficient ones to zeros. Thus, we assume that w(B’) = n — d,, and
that B’ arrives with b/ first and b/ last. The decoder first considers b/ .
If b, = 0, the n — d,, storage devices are activated and their contents
reduced. If b, = 1, the accumulator is increased by R, and the switch
is shifted so R = R, . The process continues until b has been used.
After b} has been used, the accumulator contains the integer representa-
tion of A’.

For the stuff word detector, S and all other received words less than a
specified distance from S are deleted. Thus, the detector counts the
zeros in each word and, if the count is less than the specified distance,
deletes the word.

390 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1970

ACTIVATE

., B' SEQUENCE
w(B)sn-dy

ACCUMULATOR

ACTIVATE

Fig. 7—Decoder for arbitrary n and k.
Preset Values: R, = ai(n)
] ag(n - 1)

i

Rudn = anin(dm + 1)

Accumulator = 0

V. ENCODING, DECODING, AND STUFF WORD DETECTION: 7 = k + 1
In this section, we give a possible implementation for the encoder,
decoder, and stuff word detector forn = k + 1.

5.1 Case 1

Let the stuff word S be the all-zero (k -+ 1)-tuple. The encoder is
specified in (6) and shown in Fig. 8. In Fig. 8, the A sequence is assumed
to arrive with a, first and @, last. Similarly, by, is transmitted first
with b, last.

I wd) 2 [g] £1, by =0.

I w(d) < [’g] , bows = 1. ®)

Then b; = byoy P a; for 1 =2 = k.
Decoding is also straightforward. The operation necessary for de-
coding is
al = b, Db for 1 =1=k. (7

Figure 9 shows the decoder in equation (7). In Fig. 9, it is assumed
that b, is received first and b! is received last. The stuff word detector
is the same as in Section IV except ones are counted instead of zeros.

WORD STUFFING CODE 391

A= (alu Apyeesyag) (allaav--'rak) (b”bali“"bk) {b,,bz,...,bkﬂ):B

|
1
A
DELAY L

+

$

by =1

Fig. 8 —Encoder for Case 1.

The encoding-decoding technique in (6) results in some error multipli-
cation. Suppose that position 7, 1 < 7 < k, is in error and that position
k + 1is correct. Then, from equations (6) and (7),

a€=bk+1®1®b,‘=1®a;.

The error in position 7 is delivered to the customer. However, if position
k + 1is in error, from equations (6) and (7),

a,’f=1@b;‘“@b‘-=l®a,~ fOI' lgiék.

The point is that now all & data positions are in error. However, charac-
ter synchronization is maintained because the correct number of bits
are delivered to the destination.

As noted in Section III, it is possible to design a code for which the
stuff word is the all-zero word and then, for transmission, suppress the
all-zero word by adding an unused word to each word before trans-

B'=(b},b50en, b)) (Bfybboenbl) (8} @yeserdi) =4
| ! |
! |
: CL | ? | |
T |
b‘kl+|

Fig. 9—=Decoder for Case 1.

392 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1970

mission. However, it is easy to combine the encoding and addition
operations. We give two examples.

5.2 Case 2
Let the stuff word be

S=@0---0).
\._—Y—J
k positions
position k& 4+ 1

The encoder is given in (8).

k
If w(d) = [5] + 1, by = 1.
k
If w(A) é [5] 3 bk+1 = 0- (8)
Then b, = 1P by Pa; for 1=7=Ek
The decoder performs the operations in (9).
a,=1@bl,, Db, for 1 =i =k 9)
53 Case 3
The stuff word is
S=00-+-01---1).
"ﬂ"‘-—l
k, positions
position k& 4 1
The encoder is specified in (10).
k
If ‘T,U(A) g ['2'] + 1, bg.;.l = 0.
k
If w(d) = [ﬁ] ’ besy = 1. (10)
Then b; = 1 @ biss D a; for 12725k,
b; = beas D ay for kb, +1=<1i=k.

The decoder performs the operations in (11).

WORD STUFFING CODE 393

al = 1@ bl,, Dbl for 1212k,
a) = bl @b for ky+1=<4<k. (11)

Notice that if &k, = %, the decoder for Case 3 is identical to the decoder
for Case 2.

vi. THE (8, 7) CODE

Because Bell System PCM channels use a basic 8-bit word, the (8, 7)
code is of interest. From Fig. 3, it is possible to design an (8, 7) code
with d,, = 4. Let R, and R, denote the stuff rate and the rate of occur-
rence of the data words that are distance four from &S, respectively.
When the stuff rate is low (R, < R,), the decision rule at the receiver
is biased in favor of the data words by deleting as stuff words all received
words distance one from S and decoding as data words all remaining
received words. Conversely, for high stuff rates (R, > R,), the decision
rule is biased in favor of the stuff words by deleting as stuff words all
received words distance two or less from S and decoding as data words
all remaining received words. When the rates are approximately equal
(R, =~ R,), the two decision rules give comparable performance.

It is possible to modify the (8, 7) code by relaxing the minimum
distance requirement so that all data words are merely required to be
at least distance three from S. Received words distance one from S are
deleted as stuff words; the remaining received words are decoded as
data words. This balanced code gives roughly the same performance as
either of the biased codes when B, ~ R, . However, the reduction in
minimum distance provides for less error multiplication (see Section V).

Let T4, denote the mean time between erroneous conversions of g
stuff word into a data word and let 7',,; denote the mean time between
erroneous conversions of a data word into a stuff word. We use the
following assumptions:

(7) Transmission errors are independent of the transmitted bits,
independent of each other, and oceur with probability p = 107".
(#7) The transmission rate is 64 X 10° bits per second or, because
n = 8, 8000 words per second.
(427) All 7-bit input words are equally likely.
(i) The stuff rate is R, stuff words per second.*

*The value of R, will vary depending upon the application. For fine adjust-
ment of clock rates, R, typically would be less than 20 words per second. If word
stuffing is used for speed padding as well as adjusting clock rates (for example,
to send 50 kilobit service over a 64-kilobit line), K, could be 850 words per
second or larger.

394 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1970

The balanced (8, 7) code is applicable except for extremely high or low
stuff rates. Let N; denote the number of data words distance three from
S (the exact value of N; depends upon the encoder). Then

8
T, = 1 _993x10°
8 R,
36003.[(2)p’]
and
o 1 118 X 10"
T.M = J 3 = N3(8000 — R,) hours.
2 N,
3600(8000 — R.) | =5 p*

By a modification of the encoder-decoder in Case 1 of Section V, it is
possible to reduce the error multiplication in the decoder. The stuff

word is
S = (00000000).

The encoder is given in (12).
If w(d) = 3, bg = 0.
If w(d) =2, by =
Then b; = by@P a; for 1 =4
b; = a; for 5 =7

[
—

(12)

A 1A

The decoder performs the operations in (13).
al =bi@Pb; for 1 =1=4,
al = b} for 5=71=7. (13)

Notice that an error in position eight now results in four rather than
seven errors for the customer.

VII. COMPARISON WITH GROUP CODES

In the binary group codes normally encountered in error-control
work, the code words are a set of 2" n-tuples selected so that the code
words form a group under component-by-component modulo two addi-
tion. Because of the resulting perfect distance symmetries between the
code words,* the probability that a transmitted word is decoded in

* Let X and ¥ be code words. For any ¢(1 < ¢ = n), the number of code words
distance e from X is equal to the number of code words distance e from Y for all

Xand Y.

WORD STUFFING CODE 395

error does not depend upon the transmitted word (provided the trans-
mission errors are independent of the transmitted bits).

The code presented herein has 2* + 1 code words (the 2* elements of
D plus the stuff word S). The code words do not form a group and ex-
hibit highly asymmetric distance properties. It is the asymmetric dis-
tance properties that enable us to use the available redundancy to
protect against the loss of character synchronization due to transmission
-eITOTS.

We note that it is possible to design other asymmetric codes that
are, in a sense, generalizations of the code in (2). Instead of a single
stuff word, there are now several special words with unique distance
properties with respect to each other and the set D. Such codes might
be used in a data transmission system where, for example, one wishes
to provide more protection for control characters than for data words.
A wide range of capabilities is possible and future work in the design
of these codes should prove profitable.

VIII. CONCLUSIONS

For a given redundancy, we give the code that maximizes the mini-
mum distance between the stuff word and any data word. An encoder and
decoder are given for arbitrary n and k. For n = &k 4 1, a particularly
simple encoding-decoding technique is deseribed. Certain properties of
the (8, 7) code are considered in detail.

IX. ACKNOWLEDGMENT

The author wishes to thank E. J. Hronik for pointing out the im-
portance of this problem and for a number of useful discussions during
the course of the work.

APPENDIX A
Derivation of d,, forn = k + 1
Let n = k£ 4+ 1. From (2b), d,, is chosen so that

?i(k+1)§2k_ <Z(Ic+1) (19)

However,
k [~
oo 50T
1=1

Therefore, for k& even,

396 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1970
k/2
k+ 1)
2F 1 =
z -1 ;Z‘ (l
which, from (14), implies that

k
dn. = 5 +1
and, from (2¢), that 6§ = 0. For k odd,
E+1
2k + 1) 1
k _ =
2_1_2(1 T3 [g]-{—l (15)

where [k/2] denotes the largest integer < k/2. Thus, from (14) and (15),

d, = [g]+1.

APPENDIX B

Encoder for (9, 7) Code

For the (9, 7) code, d,, = 6. Thus, construct the three arrays shown
in Table II. Consider encoding o, = 22. In the first array, ,(5) = 15is
the largest a,(j) not greater than 22. Therefore, j, = 5. Next, in the
second array, we find that the largest a,(j) not greater than

a — () =22—-156=7

is a,(4) = 7. Thus, j; = 7. However,
2

> an(fn) = an(5) + @x(4) = 22 = a

m=1

TasLE II-—ArRraYs For ENcopiNg FoR THE (9, 7) CopE.

Array 1 Array 2 Array 3
j au () J as(j) J as(j)
1 1 1 1 1 1
2 2 2 2 2 2
3 4 3 4 3 3
4 8 4 7 4 4
5 15 5 11 5 5
6 26 6 16 6 6
7 42 7 22 7 7
8 64 8 29
9 93

WORD STUFFING CODE 397

so the process terminates. Therefore, B, has ones in positions j, = 5
and j, = 4, that is,

B, = (000011000).
11

position 5 — — position 4

APPENDIX C
Proof of Equation (5)
After substituting (4) into (5), we must show that
Min(n—dm—1+1,{-1) . 1 Min(n—dm—1,i—1) s _ 1
5L TET(

m=0 m m=0 m

_ Min(n—di—ﬁ-l.i) (;’t) (16)

m=0

forl=j=n—11=1=n—d,— 1 Choose an 7 and consider j as
j increases from 1 to n — 4. Suppose that 1 < j <= n —d, — 7 + 1.
Then (16) reduces to

2050+ 5057-20)

2771 2771 = 27,

or

Now, suppose that n — d,, — 74+ 1 < j = n — . Then (16) becomes
5L E 035)
However,
TR (L)
8GR+ 03]
L)
SE()

The argument is valid foreach 4,1 £ 7= n —d, — 1.

li

]

398 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1970

REFERENCES

1.
2.

Mattesich, R. R., and Richters, J. 8., unpublished work, Bell Telephone
Laboratories, December 13, 1968.

Butman, 8. “Synchronization of PCM Channels by the Method of Word
Stuffing,” IEEE Trans. Comm. Tech., COM-16, No. 2 (April 1968), pp. 252-
254.

. Johannes, V. I., and McCullough, R. H., “Multiplexing of Asynchronous

Digital Signals Using Pulse Stuffing with Added-Bit Signaling,” IEEE
Trans. Comm. Tech., COM-14, No. 5 (October 1966), pp. 562-568.

. Mayo, J. 8., “An Approach to Digital System Networks,” IEEE Trans. Comm.

Tech., COM-15, No. 2 (April 1967), pp. 307-310.

. Mayo, J. S., “Experimental 224 Mb/s PCM Terminals,” BS.T.J., 44, No. 9

(November 1965), pp. 1813-1841,

. Witt, F. J., “An Experimental 224 Mb/s Digital Multiplexer-Demultiplexer

Using Pulse Stuffing Synchronization,” B.S.T.J., 44, No. 9 (November, 1965),
Pp. 1843-1885.

