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To provide a mathematical tool for the evaluation of cable pairs, this
paper suggests a quality measure which is based on information theory.
While a group of cable pairs (paired wires) with a given gauge and con-
struction are nominally equivalent, manufacturing tolerances and differences
in installation and environment lead to variation from the nominal param-
eters.

To measure the quality of a group of channels (for example, cable pairs
leaving a central office), this paper recommends the following procedure.
Choose a fraction p of the original group and evaluate the mutual informa-
tion between inpul and output of each channel in the subgroup, subject
to the input to each channel being chosen from the same process. Then, by
choosing the proper process, maximize the smallest mutual information in
the subgroup. This largest possible minimum mutual information is a
quality measure for the subgroup. Next, apply this measure to all subgroups
of fractional size p; the subgroup with the highest measure provides the
numerical value of the quality measure for the original group relative to
fraction p. Repeat this procedure for all p (0 = p = 1). The resulting
function s the suggested quality measure of the group.

To illustrate the above measure of quality, we derive the capacity of an
ensemble of channels with stationary Gaussian inputs, addilive noise,
and crosstalk. In the Appendix we derive the capacity of a single such
channel.

I. INTRODUCTION

Cables are usually analyzed as if all of the components had a par-
ticular set of parameters (for example, nominal, worst case, and so on).
Because of manufacturing tolerances, installation differences and various
environmental effects, however, transmission parameters actually vary
from pair to pair. To account for these variations, this paper takes an
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approach based on information theory. We consider the cable network
to be a statistical population of channels which have parameters that
vary from channel to channel. We propose a quality measure for the
network based on this model.

After defining channel capacity, we present the suggested capacity
definition for a group of channels (as outlined in the Abstract). Using
this definition, we provide an example in Section IV in which the
capacity of a group of channels with stationary Gaussian inputs, additive
noise and crosstalk is derived. The capacity for a single such channel is
found in the Appendix. In Section 4.1 the crosstalk is assumed to differ
from channel to channel; in Section 4.2 the channel attenuation is
assumed variable; and in Section 4.3 both the crosstalk and attenuation
vary from channel to channel.

These results indicate the trade-off between design rate for a trans-
mission system and the expected fraction of channels which will be
capable of error-free transmission at the design rate.

This technique can also be used to evaluate different parameter dis-
tributions as may result from tighter production controls.

II. CHANNEL CAPACITY

A channel is defined as a probabilistic mapping of one stochastic
process onto another (for our problem we consider the processes to be
time functions). (See Fig. 1.)

Let

s(?) be the input stochastic process,
r{) be the output stochastic process,
sp = {s(f) :te[— T/2, T/2]},
s be s, .
Then the operation of the channel can be written in terms of a prob-
abilistic mapping F' as

Fis} = r. 1)

The capacity is defined as the maximum (over input processes) mutual
information between input and output, that is,

s(t) ——={ CHANNEL f—=T(t)

Fig. 1 — Channel model.
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C = sup lim sup % IGr ) 52) = sup (G, 9)) @)
] T—w 5
where
{I{r, s)) = lim sup % I(ry , sq). 3)
T—oo

I(ry , 8p) is the mutual information* between sy and 7y

the supremum is taken over all possible distributions of input signals
subject to some constraint (for example, fixed power),

and for a large class of channels including memoryless channels and
colored Gaussian channels (' is the maximum information rate (that is,
the maximum error free transmittable rate).

The maximization of equation (2) will yield not only C, but more im-
portantly perhaps, the properties of s() which will achieve C.

III. CAPACITY DEFINITIONS FOR A GROUP OF CHANNELS

Now, consider the extension of the capacity definition to a group of
channels. Capacity is dependent not only on the nature of the channel,
but also the nature of the constraints placed on the input. For different
sets of input constraints, different capacities will be obtained. This
section contains two possible alternate capacity definitions [equations
(5) and (6)] followed by the recommended definition [equation (10)].

A natural extension of equation (2) to a class of channels (formally
the set {w: we Q})

F@ s} = ¢, we
(that is, /'’ is the mapping corresponding to channel w) would be to

define the capacity as the sum of the individual capacities, or the aver-
age capacity for an infinite set . That is, the capacity of each channel is:

C(m) — Sl(lp) (I(T(wjj S(u]))}

where the supremum is performed for each channel separately, con-
strained as before. Then one measure of the capacity of the ensemble
could be the total capacity (for a finite set):

Cr= 2,0, 4

wefl

Another measure could be the average per-channel capacity

* See for example Gallager.!
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(C)r = E{C™}, (5)

where E denotes the expectation.

As for the single channel, equation (4) [or (5)] yields both Cr (or (C)r)
and the properties of the set § = {5’ : w ¢ @] which will achieve C;
(or {C)r). This number defines the maximum transmittable rate when
the input processes are chosen for each channel individually. In many
instances this may not be a practical measure in that it may be desirable
to use a single signaling set on all members of Q. A measure using a
single signaling set has been suggested in the literature:*

Cy = sup in£ T, ). (6)

The desirable property of C is that it will result in a signal distribu-
tion which, when applied to any member, w = 2, will permit transmission
at rates arbitrarily elose to C with arbitrarily small probability of error.
That is, C is the maximum rate which will work on all members of the
group when one process is sent over all channels. However, this seems
to be an overly pessimistic measure in that if @ should have even one
member with poor transmission properties, C will reflect this single poor
member in exactly the same way as if all of @ were equally bad.

To overcome this difficulty a new capacity definition is introduced.
This definition is actually a function rather than a single number for the
group of channels. This definition is essentially Cp , restricted to the
best subset, of size p, of the original group of channels, as a funetion
of p. To formalize this notion:

Let Q,(p) be a subset of @ (indexed by A) of fractional size p. That is,
forwe @

Pr{w:weMhp)} = p. (7)

Let Q(p) be the set of all such subsets:

Q) = (@)} (8)
Find Cj for each subset 2, (p):
Cal(p)] = sup inf (I, 9)). C)]
8 wely ()

Finally consider the supremum over all such subsets, that is

C(p) =supsup inf TG, )

1 welh(p)

= sup Cﬂm- (IO)
x
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Note that equation (10) can also be written as:
C(p) = supsup inf (I, s)).

A wtiip)

The following coding theorem can be proved almost by inspection:
C(p) is the supremum of rates which can be transmitted error free over
at least the fraction p of the original ensemble of channels when the
inputs to all channels are from the same signal distribution. (Clearly,
for larger p, more channels are required to be capable of error free
transmission at rates arbitrarily close to C'(p) than for smaller p. There-
fore, C(p) decreases as p increases, more of the set of poor channels
included.)

C(p) would then be plotted as in Fig. 2 which intentionally represents
an ensemble for which most of the channels have near nominal param-
eters, a small percentage have worse parameters, and a small percentage
better parameters. From the figure, if all channels must have error-free
transmission, then the design rate for any system can be no greater
than €y . However, if design criterion only requires p, of the channels
to be error free then rate C, can be used. Similarly, if only p, of the
channels need operate without errors, rate C; can be used.

C(p) is a useful measure for the following reasons:

() If it is desired that a given fraction of the channels have satis-
factory transmission, then C(p) indicates the maximum permissible
rate.

(7i) If the objective is to provide a given transmission rate C(p),
then the value of p indicates what percentage of the channels will be
capable of operating without errors.

ERROR-FREE FRACTION

Fig.2 — C(p) vs.p.
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(175) When deciding between two alternative groups of channels,
C(p) can indicate those transmission rates for which one type is better
than the other.

1V. EXAMPLE

To provide an example for the use of the C'(p) function, consider an
ensemble of channels, each of which can be modeled as shown in Fig. 3.*

where

H(w) is the channel transfer function,
X (w) is the crosstalk transfer function,
s(t) is the signal with one-sided power spectral density Ss(w),
4(t) is the signal on an adjacent channel with the same power spec-
tral density, and
n(t) is the noise with power spectral density Sy(w).

If only stationary Gaussian inputs are considered the average mutual
information between the input and output of any channel in the en-

semble is:***
I(r, s) = ——i j;w log (1 — é}ixgﬁd}) w, (11)

where

Ss(w) is the input signal power spectral density,

Sa(w) = Ss(w) | Hw) " (1L + | X (@) [)) + Sx(w), (12)
is the output power spectral density, and
Ssn(w) = SS(W)H*(GJ): (13)

is the input-output cross power spectral density.
Then,

I, 9) = =5

e 3 Si(w) | Hw) |° ]
fn log [1 7@ |Hw P+ | X@ P + Ss() Sy
(14)

*w is used here to represent frequency and not probability spaces as in the
first part of this paper.
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n(t)

s(t)—— H) r(t)

X (w)

St H ()

Fig. 3 — Channel model.

Define

_ Sy
Sy(w) = THW) {2- (15)

Then

1 S
U“”‘%L“ﬁﬁ*mwﬁ&@+&w}” 16)

4.1 Fized Noise and Channel, Distributed Crosstalk

Assume that the crosstalk parameters of all of the cables are the
same except for a multiplier, that is:

| Xew) | = & [ X(w) |- (17)

Equation (16) indicates that for any choice of Sg(w), (I(r, s)) de-
creases as ¢ increases. Thus, while equation (9) requires a minimization
followed by a maximization, it is elear in the case that the “inf”’ for a
given p occurs for the largest ¢ in the subset 2,(p). Further, the “sup” is
achieved using the spectrum that achieves capacity on the channel
with the largest ¢ . Finally, the “sup” in equation (10) is achieved by
choosing the 2,(p) such that 0 < ¢ < ¢, where ¢, is such that

p= [ @ de, (18)

where p.,(e) is the probability density of e . Thus using the capacity
result obtained in the Appendix

So(@) = [Sx(wmu) — Syl — 1€ X(w) (] X (@) [* + 1) + ---].
(19)
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The capacity function can now be found:

co - £{[ s+ 777

L Sy (Wmnx) }
+ 3 Iog{l + 46 | X | s | X [+ 11757 }]d"’}

(20)
Consider the following example to illustrate the above:
Let Sy(w) be zero. Then from equation (16) the mutual information
is independent of the signal spectrum and

o) = 5 f log[1+2|X()|:| 1)

(This is achieved for any spectrum with finite power which is strictly
greater than zero for all frequencies.) Let

| X(@) [F = o* (22)

and let log ¢, be normally distributed with mean —8.2 and ¢ = 0.17.
(The crosstallk figures are idealizations of typical figures for 22 gauge
PIC). Then

_ log e, + 8.2
p = erf {-—-_0_17 } + 0.5 (23)
where
-y1/2
erf (@) = o [ € dy, (24)
and

Clp) = 2%11“ > (inbits)
- i (in nats). (25)

These results are indicated in Fig. 4. For p = 0.8, C(p) is 6.3 X 10".
For p = 0.1, C(p) is 1.3 X 10°. Thus a factor of two is realized in ca-
pacity by reducing the required usable fraction of channels by a factor
of eight.

4.2 Fized Crosstalk and Noise, Distributed Channel

Assume
SN(W) = €N, (26)



ENSEMBLE CAPACITY 423

2.0xi108

1.5x108

1.0x108

CAPACITY IN NATS

5.0x107

| | 1 I
0 0.2 0.4 0.6 0.8 1.0
ERROR-FREE FRACTION

Fig. 4 — Capacity vs. fraction of satisfactory channels.

| Hw) | = e, 27
and that a;(w) is such that
ap, (@) > ap(0) = ag (@) = a,(w;). (28)

That is, if the attenuation of channel £, is greater than the attenuation
of £ at one frequency, it is greater at all frequencies. Then, again design
for the worst case, that is,

p= [ pode) da. )
(Again the smaller @, the “better’” the channel.)
Solw) = e’ ™ — &1 — } | X(w) " (| X@) " + D], (30)

and

0 = 3" Yoo 1+ 7ty

2ap(wmsx
+ 1o [1441X0 F (X0 P+ 0 T b @D

4.3 Fized Noise, Distributed Channel and Crosstalk

Proceeding as in the previous two sections, choose the signal spec-
trum to achieve capacity on a channel with a particular ¢, and «,, ,
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that is:
SO.(“’) = EN{BXp [2&,,,({.0,,1“)] — €exp [2&,,(@)]]
1= 1g, | X@ |* (6. | X |* + D], (32)
1 Wmax 1
Gl = 5 {f {1°g (1 T ETXO |2)
+ 1 log |:1 + 46, | X(@) |* (. | X(@) |* + 1)
exp lza,,(wm,,)l]} L.
exp 120, ()] 1) } (33)

Here, p is found by integrating the joint density of a; and e over the
region where the mutual information is greater than C.(p). That is,

p = ff Dey a, (€ @) de da (34)
R
where R is the region in the (e, @) space, where
—l_ fwml! [ 1 ] >
oy ENTLTROTF @ op2e@] @2 GO 9

The difficulty with this problem at this point is that there is no
unique ¢,, and @, which yield a given p in equation (34). Thus it is
necessary to search all such sets (e,, , @,,) which yield the same p, and
choose the one which yields the largest C.(p). While this may seem
difficult, it can be implemented with a computer search.

V. CONCLUDING REMARKS

The quality measure suggested herein should be considered part of
the development of a technique for comparison of groups of cables.

Tt should be pointed out that, while the definition of capacity for a
single channel is straightforward, the definition of capacity for an
ensemble of channels depends on certain assumptions concerning the
use of the channels.

(C)y , the average per channel capacity, [equation (5)] assumes each
chanriel will be used individually, and optimized individually. Cj ,
Blackwell’s definition, [equation (6)] assumes the same input distribu-
tions will be used for all channels in the group and that the channels are
used individually. Further, no more than the minimum rate transmit-
table over the worst channel will be sent over each channel.
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The recommended definition, C(p), equation (12), is similar to Cp
except that the fraction 1 — p of the worst channels will not work
satisfactorily and could be discarded.

The example carried out in Section IV uses a new result on the ca-
pacity of a single channel with crosstalk and additive Gaussian noise
which is derived in the Appendix. The discussion on the calculus of
variations, contained before equation (40), can be used to rigorously
prove some old results for optimum spectra in the presence of additive
Gaussian noise [see footnote, following equation (52)].

In applying C(p), it is noted that when only one parameter is un-
known (for example, the magnitude of the crosstalk), the capacity of
the group of channels as a function of p (the fraction of usable channels)
is a simple calculation. However, when more than one parameter is
unknown (for example, the magnitude of the crosstalk as well as the
channel attenuation), search techniques are indicated.

APPENDIX

Capacity Calculation for a Single Channel

Consider the channel model of Fig. 3. The mutual information ex-
pression is given in equation (16) and is repeated below:

_1 Ss(@) ]
ao. =5, [ o |1+ xR e 36
Now capacity for this channel is defined as
C = sup (I, 9)), (37
Sglw)
subject to

- ‘)Lf Ss(w) do = P = power,
m Jo

and
Ss{w) =20 for all w. (38)

The method of variational calculus ean be applied to determine the

optimum solution.
Let

Sy(w)  be the assumed optimum solution, and
5-e(w)  be a small perturbation, then
Ss(w) = Selw) + 8- e(w).
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In order to account for S3(w) = 0, §-e(w) must be nonnegative when-
ever Sy(w) = 0. That is, in order that Sg(w) be a power spectral density,
whenever S;(w) = 0, the perturbation at that frequency must be such
that the resulting density at that frequency remain nonnegative. Note
that since So(w) is to be the optimum solution, (I(r, s)) must be a
maximum at § = 0 for all permissible 6-e(w). This implies that
9{I)/d8 |5-0 Will be negative for all permissible §-¢(w) which approach
zero from the positive side (5-e(w) — 0%), and d(I)/36 |;-, will be
positive for §-e(w) — 07. Or finally, 9{(I)/86 |;.0 = 0 whenever §-e(w)
can approach zero from either the positive or negative side and the

derivative is defined. Now,
1
1 dw
+ 5y ] }

?ﬂr@=i’:f log
0

s 38 | X(w) |* + Solw) + 8-¢(w)
+ éa_a [—u {fm [Sow) + 8-)] dw — 2xP }] ‘ @

where u is a Lagrangian multiplier used to introduce the power con-

straint.
Or

ol
a8

— = Sy(w) _ .
aw‘ﬁdd;@$@+3@&@+sm» dd' (40)

where
A = [ X@ " X@ P+ 1D,
B(w) = [2 | X(w) |* + 1]8y().

In equation (20) one now considers all permissible e(w). Whenever
So(w) is nonzero (that is, 8- e(w) is unrestricted), the integrand is zero,
since for these frequencies, e(w) is arbitrary. However, when S,(w)
is zero (8- e(w) = 0) all that can be said is that the integrand is negative.
That is, as one approaches the boundary of permissible §- e(w), {I(r, 5))
must be monotonieally increasing.

This yields:

Sy (w) —
AW)Siw) + B@)Syw) + Salw) “

for all w suchthat S,() = 0, (41)

and
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1
SN(&’) #

(This equation is simply the integrand for Sy(w) = 0.)
Or from the above for Sy(w) # 0,

—B(w) + [Bw) — 44()C)}}
2A (w)

=0 forall w suchthat 8S,(w) = 0. (42)

Solw) =

where
Clw) = 8y(w) — Sw(w)/p- (43)

Now, S,(w) must be nonnegative. In order that equation (43) yield a
nonnegative result, the positive root must be taken, and further the
following inequality must be satisfied:

(B*(w) — 44()C(w)}* = B(w). (44)
Relation (44) implies
C(w) £ 0 for all w such that Sy(w) > 0. (45)
Relation (42) (which implies 1/ = 0) can be rewritten as
C(w) = 0 for all w such that Sy(w) = 0. (46)

If we assume that Sy(w) is a monotonically inereasing function* of w,
relations (45) and (46) imply

= Sx(wmax), (47)

T =

and
So(w)
Hence' rewriting equation (43)

{1 4 44(w) Sy(wms)/ Sx(@)}? — {1 4+ 44()}
2A(w)

I
=)
£
I

Wrmas - (48)

Sg (w) = SN (w) (49)

where wp. can be found from
l Wmaz
o f Sy(w) dw = P. (50)

This can be used to obtain a relation between w,., and P.

* This is not at all necessary. It just simplifies the form of the following equations.
t In what follows, it is understood that the expression given for Sy(es) holds for
w = tmax, and that Sy(w) = 0 otherwise.
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Now if the crosstalk is small [| X (w) | < 1], each of the radicals in the
equation for Sp(w) can be approximated by the first few terms in the
binomial expansion. Then

Sn(w) = [5n'(wmux) - SN(W)][I - ‘l‘ | X(w) [2 ([ X(ﬂ’) |2 + 1)

P11 (X (S ) ] e

So(@) =2 [Sylma) — Sy@I[1 — 1 | X@) I (| X@) [* + D],
= [SN(wmax) - &v(w)]- (52)

This result indicates that for small erosstalk, the signal spectrum ought
to be designed independent of the erosstalk spectrum. Equation (52)
is the familiar “spectrum filling” result for additive Gaussian noise.*
This is shown in Fig. 5. The exact solution [equation (51)] (superimposed

EXACT
SOLUTICN
7
So(m)+ SN(m) U
¥ AN

Fig. 5 — Typical optimum spectrum 1.

with the broken lines) simply implies some shaping. Figure 6 illustrates
the solution when Sy () is not monotonically increasing.
With the solution obtained for Sy(w)

. 1 “mex 1
Capacity = o {f log l:l + W:l dw
1 e 2 2 SN(wmnx)} } .
1 2fo log {1 4] X [ X [+ 112 oy (53
Using the small crosstalk approximation for Sq(w):

* This result is contained in Fano?, pp. 173ff. That proof is not as rigorous as
the one presented here as Fano does not prove that the optimum spectrum is
zero whenever the noise is greater than a threshold. Fano’s result can be proved
directly by noting the discussion preceding equation (21) herein.
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EXACT
SOLUTION
\

\

R

Sol@) + Sn(w)

S (@)
Fig. 6 — Typical optimum spectrum 2,
Capacity
oo f log [I T [:i?’(tu:n13): ;g})} ¥ SN(“’)] e
=5 ) s [1 ] X(j“f?’;j;‘gm;x)s‘if‘”)&\,(w)] e,
~ —51; OM" log [1 X | + 8—?&’(&—‘;’)—)] doo. (54)

(Note that even for small crosstalk, capacity is still a function of the
crosstalk spectrum.)
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