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In this paper, we study a number of stochastic models including station-
ary, nonslationary, and linear processes for the purpose of simulating
earthquake- or explosion-induced ground motions. The important sla-
tistical characteristics of each model and their effects on structural systems
are investigated in some detail. We obtain expressions for the mean-square
response of stmple linear mass-spring oscillators to each model. We discuss
numerical procedures for time series simulations of these models. The
objectives of this paper are (i) {o examine and compare the statistical
properties and effects on structures of all possible stochastic processes
applicable to model ground motions and (ii) to offer engineers a basis for
forming their own judgments.

[. INTRODUCTION

A primary concern in problems dealing with earthquake or blast
response is the proper definition of random force environments. Typical
problems include the design of earthquake-resistant frames for electronic
or mechanical facilities in a building, and the estimation of struetural
damage resulting from nuclear detonation in a given area. Normally
it is necessary to create ground-motion data artificially from information
derived from limited recordings. Therefore, in ground-motion analysis,
as in many other fields of engineering physics, time series modeling or
simulation problems emerge. This paper carries forward the concern
with such problems.

In a previous paper the statistical characteristics of a collection of
earthquake ground-motion data were analyzed." It was shown that a
stationary random process of finite duration could be used to model
the high-intensity phase of a ground-motion accelerogram. It was sug-
gested that a narrowband stationary process be used. However, the
narrowband process, like many other stationary models, fails to produce
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the initial buildup and the decaying terminations which are apparent in
many real ground-motion accelerograms. To simulate these portions,
nonstationary models must be used. In this paper we investigate a
number of physically realizable stationary, nonstationary, and linear
stochastic models, when applieable to the simulation of ground motions.
We derive the important statistics of these models and discuss numerical
simulation procedures. The covariance, autocorrelation function, and
power spectral density of the response process of a class of linear time-
invariant systems excited by the input process represented by each
model are examined. It is hoped that by comparing these models for
basie definition, for simulation procedure, and for effects on induced
structural responses, a practicing engineer will be able to select one that
will be suitable for the analysis of his specific problem. It is the intent
of this paper not only to sum up the current state of the art/science but
also to give to researchers in the field of ground motion study such hints
and directions for the development of advanced stochastic models as
mathematical sophistication permits.

11, STOCHASTIC MODELS

2.1 Stationary Models

A typical ground-motion acecelerogram from an earthquake or nuclear
detonation consists of three phases: an initial rapid-buildup phase, a
high-intensity primary phase, and a gradually decaying tail—all ob-
viously nonstationary phenomena. However, many researchers still
prefer to model earthquakes by stationary processes because the low-
amplitude starting and ending portions of an accelerogram do not sig-
nificantly affect the structural response as compared with the response
induced by the primary phase. Therefore it appears legitimate to model
the primary phase by a stationary process of finite duration. Further-
more, the stationariness assumption greatly simplifies the response
evaluations and numerical simulation procedures. This feature is partic-
ularly important from the practical viewpoint. Three stationary models,
designated as z,(t), x.(f), and x,(f), along with their autocorrelation
function and power spectral density are defined in Table I.

The first model, white noise x,(f), defined as a stationary random
signal having gaussian probability amplitude distribution and a con-
stant spectral density for all frequencies, is the simplest one of all.
Numerieally, it can be simulated by generating a sequence of gaussian
independent samples of gaussian random numbers g, , spacing them at
small time interval A¢, and assuming linear variation between amplitudes
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over each At. Bycroft® has studied this overly simplified model on an
analog computer. This model fails to provide any frequency descriptions
of the motions that are so important to the structural response analysis;
its use results solely from its mathematical simplicity.

For model z,(f), the filtered white noise, symbols hy(f) and H,(w)
in Table I represent the transfer function in the time and frequency
domains, respectively. The process z.(f) is a gaussian, covariance sta-
tionary, narrowband process. The use of z,(¢) in modeling earthquake
ground motions is based upon the resemblance of the autocorrelation
function, the power speetral density, and the response spectra of strong
motion earthquakes to those of the narrowband process.''** The
numerieal simulation of x,(f) based on prescribed power spectral density
is a routine exercise using the basic relationship between the power
spectral densities S.,(w) and S,2(w) of the input and output of the linear
filter:

Saa(w) = | Ho(w) [* 8.i(w). 1

This equation suggests that a signal x;(f) can be created from the random
process 2, () whose spectral density S.:(w) = 1 by passing x,(t) through
a filter whose transfer function H,(w) satisfies | Ho(w) |° = S.a(w).
A detailed approach to simulating stationary processes with a rational
spectral density function, which is represented by a quotient of two
polynomials in w, has been deseribed by Franklin.® Methods of estimat-
ing ground-motion spectral densities are given by Liu and Jhaveri.'**
A sample function of process z.(f), generated digitally by passing a white
noise through a linear filter with a natural frequency of 10 rad/s and
a damping ratio of 5 percent, is shown in Fig. 1 which demonstrates a
typical appearance of a narrowband process. The justification for using
this process to model ground motions is that both its power spectral
density function and its response spectrum resemble and can be made
to mateh those of real-world records. It reflects the predominant effects
of the site on motion and, by using a modal analysis, 2,(f) can model
ground motions which exhibit multiple peaks in their frequency spec-
trograms.*

For 2;(t) as defined in Table I the random impulses {a.} form a
stationary discrete parameter process, and {{,} is a stationary point
process independent of [a,}.®” As in the expressions for autocorrelation
funetion and power spectral density, g8 is the average number of impulses
per unit time interval and p,(f) represents the probability density
funection for n consecutive intervals of {#,} within a time duration ¢;
p(n) and P,(7w) are defined as
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p(n) = Ela.a,.,]  (any m) (2)

Pyio) = [ pult) exp (—iat) dt 3)
(1]

in which E[ ] denotes ensemble averages.

Notice that the model z,(t) allows correlation p(n) to exist among
the random amplitudes a, which are assumed to be independent for
many other stochastic models. The simulation of z;(f) can be achieved
by the spectral approach as described by Franklin or by the correlation
approach based on the matrix factorization procedure as proposed by
Moore and Anderson.® However, when p,(t) is poisson with mean arrival
rate 8 and Markov correlation p(n) = p"* and | p| £ 1, a sample func-
tion of z,(f) can be created by simultaneous simulations of independent
samples of {a,} and {#,}. In this case the probability density function
of the waiting time 7, = #;+; — 4 is an exponential distribution, that is,

p(r) = B exp (—Bry) and therefore a sequence 7, can be generated
from a sequence of uniformly distributed random numbers w;:
1
1—,,=—B]n(1—wk), 0 =w <1 (4)

The correlation p'*' can be introduced into {a.} by using an autoregres-
sive transformation of a sequence of gaussian random numbers g, with
zero mean and unit variance:

Il

a, = (1 — pla;

()

an

pn-y + Gu -

-8 I | | | I I
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TIME IN SECONDS

Fig. 1—Sample function of process za(t).
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A digitally simulated sample of z;(f) with p = 0.5, 3 = 1.0, and
poisson distribution for p,(+) is shown in Fig. 2(a); its autocorrelation
function and power spectral density are shown, respectively, in Figs.
2(b) and (c). The time response of a linear filter having a natural fre-
quency w = 10.0 rad/s and a damping ratio { = 5 percent to this input
sample member of z;(t) is shown in Fig. 3(a). The corresponding auto-
correlation function and power spectral density of the sample response
are shown in Figs. 3(b) and (c), respectively. Notice that Fig. 3(b)
exhibits a damped oscillatory motion with a frequency » = 10.0 rad/s
which is the natural frequency of the filter. At this frequency there is a
peak in the power spectral density as shown in Fig. 3(c) which is similar
to that of strong-motion earthquakes. Notice also that in comparison
with z,(t), which shows abrupt peaks and dips in the waveform, the
filtered impulse process more closely resembles a ground-motion ac-
celerogram. Based on these results, it appears that a filtered impulse
process may be more appropriate than the impulse process z;(f) itself
in modeling earthquake motions.

When ground motions are represented by stationary processes, it is
extremely important to properly determine the duration and intensity
of the processes because the induced response of structures depends
heavily on these two parameters. To those who are reluctant to neglect
the nonstationary effect resulting from the starting and tail portions of
earthquake accelerograms, the stationary models I through IIT ob-
viously are not satisfactory. One might therefore consider using the
following nonstationary models.

2.2 Nonstationary Models

Five useful nonstationary models, z,(¢) through w5(t), are defined in
Table II.

The model z,(¢) is a frequency-modulated nonstationary function.
For its definition in Table II, b; , «; , and w; are given sets of real positive
numbers, and w; are independent random variables from uniform dis-
tribution over 0 and 27. The use of x,(f) is based on the result that the
skewed bell shape covariance function of z,(t) is similar to and can be
made to match that of an earthquake. Numerical simulations of z,(f)
present no special difficulty as its sample members can be created di-
rectly for given sets of b; , ; , and w; according to its definition. It may
be expected that use of a large number of terms as given by z,(t) will
produce member functions that look much more like real earthquake
accelerograms.’

For the model z;(t), ¢(f) is a deterministic or envelope function and
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Fig. 2(a)—Digital realization of sample z3(t), the impulse process.
Fig. 2(b)—Autocorrelation function of sample za(¢).
Fig. 2(c)—Power spectral density function of sample za(f).
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Fig. 3(a)—Digital realization of sample response of z(¢).
Fig. 3(b)—Autocorrelation function of sample response of z;(¢).
Fig. 3(c)—Power spectral density function of sample response of xa(t).
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f(t) is a stationary random process with given autocorrelation function
and power spectral density. The funetion f(f) may be any one of proc-
esses (), z,(t), and z;(¢). This model in its various forms has been
studied by Peterson and Pullen'®'' and by MacNeal, and others.'
The process x5(t) has been suggested for model earthquake motions by
Shinozuka and Sato' and by Jennings, and others.'* The process ()
is the response function of z;(f). In Fig. 4 is shown a sample member
of z;(t) with ¢(t) = sin (xt/30) and f(f) as the sample member of z,(f)
in Fig. 1. Its response function to a linear filter with a natural frequency
of 10 rad/s and a damping ratio of 5 percent is shown in Fig. 5 which
represents a sample of the process z,(f). Figure 4 clearly illustrates
that the waveform is enveloped by a half-sine wave which produces a
strong phase between the times of 17 and 23 seconds. The high-ampli-
tude tail observed in Fig. 5 is obviously undesirable in modeling ground
motion. However, notice that this figure shows only the response history
cutoff at the end of excitation. If free vibration is allowed after the
termination of the input, the highly amplified portion will gradually
decay, and the resulting waveform will then compare more favorably
with real ground-motion records as shown.

A nice feature of process x;(t) is its separable property which greatly
simplifies the mathematics required to evaluate the response statistics.
Furthermore, the envelope function ¢(¢) can be chosen so that the pat-
tern of the rise and fall of the simulated waveforms is similar to that of a
real earthquake motion. However, because the choice of ¢(f) is arbitrary,
when using x;(t) the associated nonstationary effects resulting from the
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Fig. 4—Sample function of process zs(t).
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Fig. 5—Sample function of process zs(t).

total time duration, the time proportion of the three distinet phases of
the ground motion, and the rate of buildup and decay must be carefully
examined.

The shot noise z(f) and the filtered shot noise zs(t) are the nonsta-
tionary counterparts of the stationary white noise z,(f) and filtered
white noise ,(t), respectively. The nonstationariness is introduced into
these models by two sources: the time-dependent mean arrival rate
8(t) and the time-dependent amplitude joint probability density func-
tion p(a,, t; ; a;, t;). However, it is assumed that the impulse ampli-
tudes are completely uncorrelated, that is, the joint probability density
funetion is separable:

play, by as, ) = pla, L)plas, t).

Further, the probability of » impulses in a small interval dt is negligible
for n = 2. Based upon these conditions, it can be shown that the covari-
ance functions of z,(t) and zs(f) are also time-dependent:

Covs(ly , ) = Lho(t1 — mho(t: — T)E[GE(T)]IS(T) dr; (6)

Covaalty ) = [ ot = ) 8t = DELG(DIB() dr

= Eta?(tl)]la(tl) 8ty — 1)
= I(t) 8(t, — t); (7)
where I' denotes the appropriate time domain, and I(Z) is the strength
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function of the shot noise defined as
Elz;(Ox:(t + )] = I(t) 8(r).

Notice that, when I(t) is a constant, both z;(f) and z(f) become sta-
tionary.

The process z:(f) can be constructed by generating independent gaus-
sian random variables a, with zero mean and variance equal to I(Z,) At,
and by linearly connecting them over A¢ along the time axis. The
process 2s(l) ean be obtained in a similar way simply by shaping each
impulse with the transfer function hy(f) aceording to its definition in
Table II. Amin and Ang'® have used process zs(f) with a second-order
filter to model earthquakes. Both z;(¢) and zg(f) are justified on the basis
of the similarity between real and nonstationary waveforms and on
the matching (i) of their time-varying covariance functions and (7z)
of the induced response spectra with those of the real ground-motion

data.

2.3 Linear Models

Special cases of the mixed autoregressive-moving average process
2, of order (m, n) as defined below also can be used to model ground
motions:

T, = E¢ixt—l' + g + E 0:gi—: , t =0, £1, £2, --- (8)

i=1 i=1

where ¢; and 6; are characterization parameters, and process {g.} is a
white noise. An m-order autoregressive (ar) process is given by the first
sum of equation (8), that is,

T, = 2 ¢.:%—: T Gt (9)
i=1
and an n-order moving average (ma) process by the second sum
Ty = v — Z Bl'gg_i . (10)

i=1

The ar processes given in equation (9) are particularly useful in time
series simulations because they are very flexible and can be used to
model a wide range of real-world random data. For example, the auto-
correlation function of a seeond-order ar process, involving only two
parameters, can produce a wide variety of autocorrelation functions.
Therefore by matching the ground-motion autocorrelation function of
the damped oscillatory type, one can estimate parameters ¢; and fit
the observed motion to an appropriate linear stochastic model.
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III. RESPONSE ANALYSIS

Because a ground-motion model when chosen will be used to specify
vibration environments for structural testing and design, it is important
to examine its effects on the time and frequency response of some rep-
resentative systems. In what follows we shall compute and compare the
mean-square response of a class of second-order linear systems to stochas-
tic inputs represented by models as deseribed in the previous section.
The linear systems are characterized by two constant parameters, the
damping coefficient ¢ and a natural frequeney w,, and have transfer
functions

h(t) = m;fit")sin pt, = 0; (11)

=0 t <0
where p = w,(1 — )
Let the response function to z,(f) be y.(8);7 = 1,2, - - -, 8, for systems
defined by equation (11). The mean-square response is given by
Ey()"] f f Bt — Dh(t — )gi(r, ) dr dr’,
1=1,2,---,8. (12)
The funection g,(s, ') for each model is

g = 2x8, 8(r — 1),

g = Rualr — 1) = 2r f h(Dho(t + 7 — ) dl,
0

[

gy = Roa(r — 1) B[p(O) 8(r — 1) + g} p)p.(| 7 — 7' |)] )

g = 3 2 rr'al exp (—a;(r + 7)) cosaw,(r" — 1),
1

gs = ¢(ne(r)R(7r — '),
Js = [ [ h..(‘r - hn(’r - Br.)t;b(ﬂ )¢(ﬂ°)R (8" - 91) dﬁl b, '
g: = BEla’(n)]B(r) 8(r — ') = I(7) 8(r — 7'),

9s = [z = OBa(016(0) d0 [ hu( — DELa(9)8(0) do

+ [r ho(r — O)ho(r’ — O)E[a(8)]8(6) do. (13)
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The explicit expression for the mean-square response to stationary
models can be obtained by integrations using equations (11) through
(13):

B0 = 3205 + gt

(¢ cos 2pt — (1 — ¢*)*sin 2pt — 1/7) exp (—2fw,l), (14)
TS:?(“’")
2§. n

_[1 _exp (—22w,.§t) {
P

Elyi()] ~

p° + 2(w,t)*sin’ pt + w,ptsin Zpt}] .
(15)

It is assumed in equation (15) that S.;(w), the power spectral density
of z,(f), is given, and the main contribution of z.(t) to the response
comes from the region around w = w, ."* And:

Elya()] = Be, + 8 exp (—2¢wat) [cz cos 2pt + ¢, sin 2pt

15‘ Bpau :l

+ %‘E’ (F'wi — a°) sin® pt + cos’ pt — o7t

_28%

Y

inwhicha = (1 — p)8, p = a® + (1 — 2802, v = (@ + «))° —
4a*tw? | and

=2y o),

+ a))[(a + {w,)sinpt+ p cospt] (16)

v 20w 4¢w]
11 (aﬁpm L) gﬁd]
e [21) ¥ 2¢ T

_ 1Bt _L(l Bpu)]
ca—pl:‘y(wn+af) Qwi 2+ v

Notice that, as time increases, mean-square response to each of three
stationary models approaches its steady-state level, that is,

TSQ . 1
2;_‘03 ] =
lim E[y%(8)] = ”*z';i“’"), i=2 (17)

c, , 1= 3.
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Let the rate of convergence of the mean-square response be defined as

lim E[yi(0)] — Elyi(0)]

“ = im B[] (18)

t—oo

and N = w,!/2r be the number of cycles of the motion required to reach
e; . A lower bound to the estimate of N can be easily established for
processes z,(t) and z,(f) as the following:

11+ 40—
Nz ‘“[ 1 — e

From this it is noted that N is independent of the natural frequency
w, of the system but is heavily dependent on the damping ratio {. Figure
6 shows that systems with high damping, when excited by z,(f) and
(1), will approach steady-state level faster than those with low damp-
ing. A system with 10 percent damping will reach 90 percent of its steady-
state response in two cycles of motion.

Because the mean-square response to z;(t) involves more parameters
than that to z,(f) or z.(f), the response convergence rate for z,(t) is
more difficult to evaluate. However, { remains as the dominant factor,
not 8 or p. The mean-square response of (), as of z,(f) and ,(f), ap-
proaches its steady-state value rapidly when { is high, slowly when { is
low.

Explicit expression for the mean-square response to nonstationary
models can also be obtained similarly from equation 13 although the
integration involved in the time domain is quite cumbersome. Bogdan-

], 0<¢<l. (19)

NUMBER OF CYCLES,N

s} 0.1 0.2 03 04 0.5 0.6 07 0.8 0.9 1.0
PERCENTAGE ERROR, ¢

Fig. 6—Convergence of mean-square response of processes z,(¢) and za(t).
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off, and others,’ have shown that
1 o ay(t
B = -5 exp (~25a,0) 3 2740 (20)

where v;(f) and x; are both functions of «; , w; , and p.

Sometimes it is more convenient to calculate the mean-square re-
sponse by integration in the frequency domain than in the time domain.
For example, Brown'” has generalized Miller’s™ result for the process
x;(f) to the case where ¢(f) is bounded on (— e, o) and integrable on
every finite subinterval of (—w, ). His frequency formulation is

Covis (t, 1) = 5 [ Ble, 6)B*(w, £)5) de (21)

o0 ] 2

B0 =g [ | [ H@)®, — @) exp Gt da, | S, dos (22)
where H(w), ®(w), and B(w, t) are the Fourier transforms of k(t), ¢(t),
and h(t — 7)¢(r), respectively, and the star denotes the complex con-
jugate. Barnoski and Maurer," using equation (21), evaluated E[y;(t)]
numerically for cases where ¢(¢) is the unit step and rectangular functions
and f(f) is both white noise and noise with an exponentially decaying
harmonic correlation funetion, that is, R,(r) = A exp (—a | 7 |) cos br.
It was shown for white noise modulated by a unit step funection that
the system mean-square response will not exceed its stationary value
for white noise. For correlated noise modulated in this same way, the
system mean-square response may overshoot its stationary value. Note

from equations (13) and (21) that
go(r, 7') = Covys(r, ).

Substitution of this relation into equation (12) yields

Elyi()] = j; '[; ht — 7)h(t — 7') Covys (1, ') d7 d7’

1 , . . ’
- ;frfrexp (fwn(r + 7)) sin p(t — 7) sinp(t — ')

-Covys (7, ) dr dr’. (23)
Substitution of g, in equation (13) into equation (12) yields

E[(0)] = % exp (—2fwnd) f I(r) exp (2fw,7) dr

- j; I(7) exp (2{w,7) cos p(t — 7) dr. (24)
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Using the relation gs(r, ©') = Cov,; (r, ') and letting k() with param-

eters wo, to, and p, be of the same form as h(f) in equation (11), it
can be shown that

Elys(]

1
= opipt OXP (—2{wat)
.,; fP {exp [(fwn - fowu)(‘f + 'r")] sin p(t - 7) sin p(t _ T’)
. |:(‘,OS Po(r —7) f I(B) exp (2§'ng9) do

. f 1(8) exp (2{wob) cos po(r + 7/ — 26) dﬂ]} dr dr’. (25)

T
It should be noted that, in equations (24) and (25), I(r) = E[a*(r)]8(r).
The mean-square response to linear first-order moving average and
autoregressive processes (assuming a sampling interval Af) for first-
order and second-order filters are also found. Let the transfer function
for the first-order filter be h{t) = exp (—a.f) (corresponding to a dif-

ferential operator p = d/dt + a,) and that for the second-order system
be as given in equation (9), we obtain for the first-order ma process

Bly*(1)] = 53; [(1 + 8) — g6,](1 — exp (—2ac1)), (26)

(first-order filter);
Bl () = 53 exp (—2¢w.d)
+ ¢eos2pt — (1 — )} sin th]
+ B.‘:(l — Y sin 2pt — { cos 2pt
+ ¢ exp 2fw.t) + % (1 — exp (2{‘&)..0)]} ’ 27)

(second-order filter);
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and for first-order ar process

By ®) = - _1 . [1 — (¢, exp (?lﬂ);jgg(?cpag(*aa)%)' — 1 9y

1

(first-order filter);

2 _ [exp (—a,))(—a, sin pt — p cos a,1) + p]
Bly 0] = 1 — ¢))p'(ar + p)az + p°)
[exp (—a,t)(—a, sin pt — p cos a,t) + p] (29)
(1 — ¢Dp’(ai + p)(az + p) ’

(second-order filter).

In the above

¢ = AtElgl],
g = 2 exp (a, At),
a, = {w, + Ing,,

ay = {w, — In ¢, .

It follows from equations (26) and (27) that the mean-square response
to the first-order ma process approaches a steady-state value

lim E[2(0)] = — (1 — 8,)°, (first-order filter); (30)
At=0 20;[)
1+ 6
= iﬁ_f}—l) , (second-order filter). (31)

Similarly from equations (28) and (29)

o 1
Jm B0 = 0= gh — ey’

=0

it 0<e¢, <1, (32

(first-order filter);

1
1 — [ o) + & — dcalinoyy]

(second-order filter).

The above results indicate that the mean-square response of linear
systems to either of the ar and ma processes approaches a certain sta-
tionary value when the time of passage is sufficiently long.
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IV. CONCLUSIONS

When selecting a stochastic model it is important to consider not
only the matching of statistical characterizations of real-world random
data to those of the model, but also the effects of the model on vulner-
able structural systems. The statistical characterizations are provided
by joint probability distribution functions of the process conditioned on
its duration and intensity. Ordinary power spectra and time-variable
spectra such as the running spectrum

t
S(iw, t) = f x(7) exp (—iwt) dr
0
or the instantaneous spectrum
o, ) = o | S, O I
b at )

can be used to characterize and form the simulation basis for the sta-
tionary and nonstationary processes, respectively. For the latter case,
a second variable enters into the spectrum formulations and therefore
complicates the analysis considerably. One alternative for analyzing
nonstationary processes is to follow Priestley’s theory of evolutionary
processes and spectra.”””** Its applicablility to ground motion and
earthquakes will be investigated in a separate report. In general one
must exercise engineering judgment upon consideration of the specific
problem he studies in making an intelligent choice among all possible
models. At the present time it appears that an earthquake ground-
motion accelerogram can reasonably be treated as sectionally stationary
when broken into three distinct phases. Each phase of the motion ean
be regarded as a short process and the corresponding power spectral
density estimated by standard approaches to form the simulation bases
for the z,(f) model. The applicability of this procedure is illustrated in
Fig. 7 which shows the power spectrum densities associated with three
distinet phases of recorded S21W ground motion during the Taft,
California, 1952 earthquake. It is apparent from this earthquake that
most of the input power to structures is provided by the midsection
(from 3.3 to 13.6 seconds) of the motion. The power contained in low-
intensity fluctuations preceding and following this stationary portion is
relatively small.

Finally it should be pointed out that the stochastic models investigated
in this paper can be easily realized by using a computer. The response
statistics of these models are also reasonably easy to find. Although the
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Fig. 7—Power spectral densities of Taft, California, S21W, July 21, 1952 earthquake.

current study is concerned primarily with ground-motion simulation,
the results obtained can be applied also to many other engineering
problems when time series modeling is required.
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