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It 1s well known that protection against additive gaussian noise can be
obtained in m-ary digital modulation systems by expanding bandwidth
or by increasing the channel signal-to-noise ratio. It is also well known
that arbitrarily small error probabilities can be attained in digital systems
by using long and complex encoding and decoding procedures. Based on
the results of Shannon and Slepian, we derive for an optimal system lower
bounds to the channel signal-to-noise ratio for various probabilities of error,
for various bandwidth expansions, and for a processing interval not greater
than the signaling interval of the source. It is assumed that all m characters
have equal a priori probabilities and that maximum likelihood delection
is used in the receiver. For a bandwidth expansion of two, and for equal
energy code words, we also show that the performance of a coherent phase-
shift keyed system s as good as that of the optimal system.

1. INTRODUCTION

Various m-ary digital modulation schemes [such as eoherent phase-
shift keying (CPSK), differentially coherent phase-shift keying
(DCPSK), frequency-shift keying (FSK), and others] are currently
under investigation for use in satellite, terrestrial, and other radio
communication systems.''** In such systems, the transmission channel
is noisy, and bandlimited, and one is interested in finding an optimum
form of modulation for the transmission of information from one point
to another. By optimum form of modulation, we mean that we would
like to transmit (with a given error rate) as much information as possible
in a given band of frequencies and for a given amount of (channel)
signal power.

The complexity of the equipment required for particular kinds of
modulation, or other considerations in the system, may rule out these
optimum transmission schemes in favor of simple and suboptimum
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schemes of modulation and demodulation. In order to compare the
performance of these simpler practical modulation systems with that
of the optimal systems, it is first essential to investigate the performance
of these optimal systems.

In this paper we shall assume that the noise in the channel available
for communication is gaussian and has a uniform power spectral density
over all useful frequency bands. [In terrestrial systems, in the frequency
bands above 10 GHz, close spacings of the repeaters are almost always
mandatory for reliable communication (during fading conditions pro-
duced by rain).” If low noise receivers are used in the system, it is pos-
sible that the total interference power (due to co-channel and adjacent
channel interferers) received by the system may be very much larger
than the (thermal) noise power in the system.’ In this case, note that
the total noise corrupting the channel may not be assumed gaussian
in all modulation systems (especially if the number of interferers is
small).*"’]

It is well known that protection against (additive) white gaussian
noise can be obtained in m-ary digital modulation systems by expanding
bandwidth and/or by increasing the channel signal-to-noise (power)
ratio. In fact, Shannon has shown that it is possible to transmit with
arbitrarily small error probability the output of a diserete source of
entropy R over a channel of bandwidth W perturbed by additive white
gaussian noise of average power N by using signals of average power
S provided R is less than W log, (1 + S/N) b/s.>’” However, such a
transmission scheme may involve long and complex encoding and
decoding procedures, and to attain these low error rates it may be
necessary to provide large storage (or long delay) in the transmitting
and receiving equipment. Practical modulation systems presently used
for large scale communication do not in general have such large storage
capabilities or unlimited bandwidths. Also, we must note that there
are practical limitations on the average power of a transmitter and the
power that can be received by a receiver.

Since most of the practical modulation systems have a certain band-
width expansion n and since bandwidth expansion usually improves
the (noise) performance of the system, we shall now investigate the
optimum performance of digital modulation systems that have a (chan-
nel) bandwidth expansion n, a finite channel signal-to-noise power
ratio S/N = p° and a processing interval which cannot exceed one
signaling interval T of the source.* The message source is assumed to

* It is assumed that the time interval over which the channel is used in decoding
one message symbol cannot exceed 7.



DIGITAL MODULATION SYSTEMS 1035

be of bandwidth W, , and the channel bandwidth is assumed to be W.
Further, it is assumed that all m characters (the output of the discrete
message source consists of m different characters or symbols) have equal
@ priori probabilities and that the characters generated by the message
source are statistically independent of each other. We also assume that
a maximum likelihood detection scheme is used in the receiver.

For such a system, we shall evaluate the lower bounds to the character
error probability P(m, n, p°) of the optimal system so that we can com-
pare its performance with that of any practical modulation system.
For a given error rate, the difference between the signal-to-noise ratio
required by the optimal system and that required by the practical system
will then be a measure of the quality of performance of the practical
modulation system.

Here, we would like to note that our approach is identical to that of
Slepian in Ref. 8 in which he evaluated upper and lower bounds to
P(m, n, p°) for n odd, n = 5, and m = 128 (numerical results for m =
32, 64, and 256 can also be found in an unpublished memorandum by
Slepian®) when 1 = P(m, n, p*) = 107°.* In addition to giving numerical
results when P(m, n, p°) < 107" (error rates as low as 10" are desired
in some digital modulation systems®) for m = 2, 4, 8, 16 and 32, we
give a method of evaluating upper and lower bounds to P(m, n, o)
for all values of n = 2. We also point out the special significance of
n = 2, and give closed form solutions for the lower bound when n =
2, 3 and 5.

II. COMMUNICATION SYSTEM MODEL'

The m-ary digital modulation system that we shall consider in this
paper is assumed to have a signaling interval T. Since we assume Nyquist
rate signaling, we shall assume that

1
T =g, @
where W, is the bandwidth of the message source. Iivery T seconds,
the message source generates one of m characters or symbols. Since the
characters generated by the message source are assumed to be sta-

tistically independent, the entropy R of the message source is given by
R = 2W, log, m b/s. (2)

* Note that Slepian uses P(m, n, p?) in determining the threshold in analog modu-
lation systems that expand bandwidth.

+ Compare the communication system model that we discuss in this paper to
that given in Ref. 8.
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If S is the average power in the channel of bandwidth W, it follows
from Ref. 6 that it is possible to transmit with arbitrarily small error
probability if and only if

2W,logam = W log, (1 + 8/N) (3)

when there are no restrictions on the way in which the transmitter and
receiver operate.
Equation (3) ean be shown to yield

S/N =z m* — 1 (4)
where

-
T W,

The lower bound to S/N given by equation (4) is then the smallest
signal-to-noise ratio required to transmit (with arbitrarily small error
probability) an m-ary digital signal through a channel of bandwidth
expansion n when there are no restrictions on the transmitting and
receiving equipments. This lower bound to the signal-to-noise ratio
8/N is shown in Fig. 1.

In the communication system model we are considering in this paper,
there is no provision for the storage of a large number of characters,
and hence it is to be expected that we will need signal-to-noise ratios
much larger than those given in Fig. 1 (when arbitrarily low error rates
are desired). Since the processing interval of our communication system
is assumed not to exceed one Nyquist interval (corresponding to the
message source), the channel signal corresponding to time T' can be used
to decode one and only one message symbol.* If the bandwidth of the
channel is W, the channel signal can be completely specified by samples
taken every 1/2W seconds. In the Nyquist interval 7', there are then
n = 2WT channel samples.! We are then assuming that n channel
samples are used to decode one message character, or that each of the
m message symbols are mapped into a channel vector having n com-
ponents.* (In the error-free transmission scheme of Shannon, £, £ = 1,
suceessive message symbols are mapped into one channel vector. By
making { sufficiently large, by choosing the m' channel veetors appro-
priately and by decoding appropriately at the receiver, the results given

n = 2T'W = the bandwidth expansion factor. (5)

* This is equivalent to saying loosely that the communication system does not
have storage capability for more than one Nyquist interval.?

t There are certain subtle points involved in this assumption. Some of these points
and their implications are discussed in Refs. 10 and 11.

* That is, we construct a dictionary that associates with each of the m message
symbols a particular n-dimensional channel vector.
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Fig. 1-—Lower bound to the signal-to-noise ratio for different bandwidth expansions
and ideal signaling.

by Shannon may be obtained.® It is to be noted that it is essential to
store { message characters before we can generate the appropriate
channel vector. In our scheme of transmission, we put £ = 1, and in-
vestigate the optimum performance of the system.)

As far as the average power in the channel is concerned, the channel
vectors can be chosen in a variety of ways.'® Since all the characters
are assumed to have equal a priori probabilities, we will make the
assumption that all of them have the same average power S (or the
same energy ST).*

Since the noise corrupting the channel is assumed to be white, each
component of each channel veetor is perturbed independently by the
addition of a gaussian variate of mean zero and variance N.

III. EVALUATION OF PROBABILITY OF ERROR P(m, n, p°)

Since the channel vectors corresponding to different message symbols
have the same average power S, all these n-dimensional vectors ter-

* Other types of restrictions (such as maximum power, maximum average power,
and so on) can also be put on the signal vectors to analyze the communication system
given in our paper. Since all symbols are assumed to be equally likely, we do not
consider a system in which there can be unequal distribution of power among different
channel vectors. In particular, some amplitude modulation systems (such as single-
sideband AM) do not satisfy the requirement that channel vectors corresponding
to different message characters have the same average power S, and hence such
systems are not covered in this paper.
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minate on the surface of a sphere of radius (nS)!. By choosing the chan-
nel vectors appropriately, and by using maximum likelihood detection
receiver, it can be shown'’ that the minimum probability of error
P(m, n, p°), averaged over all symbols, satisfies the inequalities

Qm,n, #) £ Plm,n, ) < Qm,n, 00, 9" =%, ®
where?''?
Qm,, 5) = L(u m ) ™)
Q(m,n, p’) = (6m WMy P g) , (8)
2 _ f _7 (n -1 1)
m f - sin? 0m,n 2 ;2 ’ (9)
L( ) Pa(N) dX, (10)
o(0,n, %) = L(e notl) +om [ pmema, an
B (n _ )ﬂ_(n-l)/2 L s
Q) = Mr(ﬂ T 1) '/; sin™™" u du, (12)
2
(k) = fm 2 dg, (13)
(n — 1) exp ( §sm h) sin"™% A
(N = 1
2n/2( )ir(n )
) 1 2
f ' exp l:—[r — p(n% cos \) :I dr, (14)
and I.,(a, B) is the incomplete beta function given by
L, B) = B(a—lﬁ) [ea—oa, oszs1 05

Bla, §) = f: T — OF dt. (16)
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The significance of the inequalities in equation (6) may be explained
as follows. No m-ary digital modulation system with a given bandwidth
expansion n and a given signal-to-noise ratio p° can achieve a lower
probability of error than that given by Q(m, n, p").* Also, we observe
from equation (6) that m-ary digital modulation systems can be built
to have an error probability given by Q(m, n, p).t

The bounds given by equation (6) can, therefore, be used in com-
paring the performance of practical modulation systems with that of
the optimal systems, and in estimating the quality of performance of
the practical modulation systems. For a given probability of error, and
m and n, we can compare the signal-to-noise ratio required for a practical
modulation system with the minimum signal-to-noise ratio predieted
by equation (6) for the optimal system.?

Sinee we are interested in this kind of comparison and since there
seem to be theoretical considerations which show'® that Q(m, n, p°) is a
very weak bound [it is shown in Ref. 10 that some explicit codes can be
constructed to make P(m, n, p°) very close to Q(m, n, p*)], we shall not
discuss the upper bound @(m, n, p°) any more in this paper.

IV. EVALUATION OF LOWER BOUND Q(m, n, p°)

For the sake of comparing the performance of proposed modulation
systems with that of the optimal systems, it is essential to evaluate the
lower bound Q(m, n, p°) for different values of m and n. The evaluation
of Q(m, n, p°) is rather difficult and is usually done by using a digital
computer. Slepian® has given methods of evaluating this bound when
n is odd, and numerical values are given for Q(m, n, p°) when 1 =
Q(m, n, p°) = 107°, m = 32, 64, 128 and 256, and n = 5.

Since error rates of less than 107" are desired in digital systems and
since no numerical results are available when m < 32 (in general, it is
easier to build digital modulation systems with low values of m), we
shall give some further numerical values for the cases considered by
Slepian. In addition, we shall give a method to evaluate Q(m, n, p°)
when = is even and point out its special significance when n = 2.

First we review briefly Slepian’s method of evaluating Q(m, n, p°).*°
For any given values of m and n, we evaluate by interpolation the value
of 0,,,(0 < 0,,, = m/2) from the set of tables for I, (e, 8) given in Ref.

* Of course, we assume that the digital modulation system satisfies other require-
ments given in this paper.
tForn = 1 or 2, it can be shown that we can make Q(m, n, p?) = P(m., n, p?).
Also, for all (mtegral) n, and m = 2, we can make Q(2, n, p*) = P(2, n, p*)
tIn making this comparison, we have to assume that we can estimate the band-
width expansion factor n for the practical modulation system.
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13. Sinee it has been shown'® that

L(6,n, ¢*) = L(6,n — 2,0%) + cos 6G(,n — 2,0, n >3, (17)
o =63, (18)

G(8,n, ¢*) = o cos fsin 6b,G(8,n — 1, o°)

+ : : ?sinﬂ 6G(6,n — 2,d°), n> 2, (19)

n—2
bn_n_lbn—2s n>21 (20)

and
b, = at, (21)
2

b2 = ;{ (22)
G(68,1,c") = % exp (—o"sin’ 6)[2 — erfe (s cos 6)], (23)

G(e, 2, ¢°) = lsm 6 exp (—a°) + ,}sm f cos 6G(0, 1, o°), (24)

I(0, 3, ¢*) = % erfe (o) + cos 6G(9, 1, o°), (25)

where
2 [= 2
o (@) = 5 [ exp (=) dt = 1 — erf @), (26)

Q(m, n, p°) can be evaluated for odd n from equations (7), (9) and (17)
through (25). However, for even n, we cannot use Slepian’s method of
evaluat.mg Q(m, n, p°) unless we can find an explicit expression for
L(6, 2, ¢°).

Now it has been proved'*'**''® that moderately high values of n(2 <
n < 5) are required for some digital modulation systems in order to
optimize transmission rates per unit bandwidth. Since we would like
to compare these systems (and other systems with similar bandwidth
expansions) with the optimal systems, we shall first express @(m, n, p *)
explicitly for odd n, and n < 5 before we discuss the evaluation of

Q(m, n, p°) for even n.

4.1 Lower Bound Q(m, n, p°) forn = 3,5
For n = 3, equations (7), (9), (10), (13) and (14) can be shown to
yield
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Q(m, 3, p) = (erfc [p(3)] + (1 — 2/m)

w2

Form = 2,1 < ¢ £ 5, we have evaluated Q(m, 3, p°) and have shown
the results in Fig. 2.

Let us now compare the performance of an FSK system (using square-
wave modulation, ideal discrimination detection with an integrate-
and-dump circuit as the post-detection filter) with a bandwidth expan-
sion of 3 with the performance of the optimal system. For the FSK
system the symbol error probability Py sk can be shown'™" to be given
by

(301}{E n_g}
1 4m—1 s . 2w — 2
Ppsxm—ﬁ-—{(o ) }* exp | —2p sin E—m 1 ,

ST Tn—2
cos 2m —1

Forn = 3 and m = 4 and 8 we have plotted Py g and Q(m, 3, p°) in
Fig. 3. Noting that the error rate of the optimal system can be made
close to Q(m, n, p*) for small =, it can be observed from Fig. 3 that the
error performance of the FSK system is inferior to the optimal system
by several decibels. However, note that the formula in equation (28)
is an asymptotic formula and that we have calculated the bandwidth
expansion factor for the FSK system by Carson’s rule. Also, note that
we have taken the bandwidth of the message source to be 1/2T, where
T is the signaling interval of the source. If all these assumptions are
reasonable, we must conclude from Fig. 3 that the performance of the
FSIK system is far from being optimum.

Let us now consider n = 5. For n = 5, we have

Q(m, 5, p*)

b | =

P> 1, n<m+ 1. (28)

Hp sin” 8 cos” 4§
= ; [erfc [p(D'] + g—p——(nloT exp {—p’%)

(NI

+ L cos 0 exp {—p'Ssin® 8} (sin® 6 + 5p° cos® 6sin’ 6 + 2)

(2 — erfe [p(3)F cos 6]}] , (29)
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where
_ dr 1 (_ _ )]
cosﬁ—2003|:3+3003 - 1)1, (30)
and
sin § = +(1 — cos® 6)*. (31)

Form = 2°, 1 £ { £ 5, we have plotted Q(m, 5, p°) in Fig. 4.

For n odd, and n > 5, derivation of an expression for Q(m, n, p°)
becomes rather tedious and long, and we shall not give these expressions.
However, for n = 7, 9, 11, 13 and 17, we have calculated Q(m, n, p°)
form = 2% 1 < { < 5, and the results are given in Figs. 5, 6, 7, 8 and 9.
These numerical results which add to the results given by Slepian were
obtained by using his method (see Appendix A for an alternative
method).
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4.2 Lower Bound Q(m, n, p°) for n even

Since we can calculate Q(m, n, p°) from L(8, n, ¢°) and since the re-
currence equation relates L(6, n, ¢°) to L(6, n — 2, ¢°) [see equation
(17)], we ean calculate Q(m, n, p°) for even n if we can calculate L(6, 2, ¢°).

It can be shown that

L6, 2,0) = [ pr, ) (32)
where
(N, @) = }r e + o(@? cos Ae ™ {1 + erf (¢ cos N)}]. (33)

Noting that p,(\, ¢°)/2 is the probability density of the phase angle
of a sinusoidal carrier of amplitude (24)* corrupted by random gaussian
noise of average power N (signal-to-noise ratio ¢* = A/N), we have
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shown in Appendix B that L(8, 2, ¢*) can be calculated for any 6. Hence
we can calculate Q(m, n, p°) for any even n. Now it can be shown*
(see Appendix C) that*

L8, 2, ¢°) = % erfe (o), f = x/2; (34)
L6, 2, o*) = erfe [¢/(2)}] — % erfc’ [o/(2)}], 0 =n/4
and

L orfe (o sin ) + max {0, L erfe (o sin 6)

_ m%g exp (—o*)[1 — 7' exp (¢°) erfe (5)]}

< L(8, 2, ¢*) < erfc (osin 9), 0< 8 =n/2; (35)

* Some of these results can be obtained from Ref. 4 by putting @ = 0.
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where
a, a=b;

max {a, b} = { (36)

b, a<b.

Since the upper and lower bounds to L(6, 2, ¢*) cannot differ by more
than a factor of two and since all quantities involved in equations
(17) through (25) are positive, we shall now write a modified bound

Q’(m: n, F‘z) = L’(Bmm y 1, 0'2) (37)
where
L'(6,n, 0% = L'(6,n — 2, 0°) + cos 8G(6, n — 2, ¢”), n > 3, (38)

and
L'(8, 2, ¢°) = } erfe (o sin 6). (39)
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Since
L, 2, ¢") = L'(8, 2, %), 0<6=q7/2 (40)
note that
P(m, n, p*) = Q'(m, n, p°). (41)

Let us now consider the particular case n = 2. For n = 2,

Bm.a
fo du _ 20,

(42)

or

(43)
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Since 8,, . = w/m, and p.(), ¢°) is given by equation (33), it can be
shown'*'® from equations (7) and (10) that Q(m, 2, ") is equal to
the error probability obtained in m-ary coherent phase-shift keyed
(CPSK) systems. Also, for n = 2, it can be shown'? that

P(m'J 2, Pz} = Q(ﬂ’t-, 2, PE)' (44)

It, therefore, follows that the error rates obtained in m-ary coherent
phase-shift keyed systems are identical to those obtained in any m-ary
digital modulation system that has a bandwidth expansion of two.*
Hence we conclude that the error rates of any digital modulation system
with a bandwidth expansion of two cannot be lower than the error rates
of CPSK systems for all m.

Since the error rates of CPSK systems have been investigated in

f“ CPSK systems can be shown %2 to have approximately a bandwidth expansion
of two.
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detail,™®"**'** we shall not give numerical values of Q(m, 2, p) in this
paper. However, we would like to note that'®'**"*

Q(2, 2, p°) = } erfe (p), (45)
Q(4, 2, p) = erfe [p/(2)*] — 1 erfc® [p/(2)Y], (46)

and

% erfe (p sin v/m) + max {0, % erfc (p sin 7/m)

_ tai;"& exp (—p°)[1 — 7*p exp (o°) erfe (p)]}

= Q(m, 2, p°) < erfe (psina/m), m > 2. (47)
For signal-to-noise ratios greater than 5 dB, it can be shown® that
Q(m, 2, p°) = erfe (p sin v/m), m = 4, (48)

and that the error in this approximation is less than 5 percent.

For n > 2, Q(m, n, p°) can be evaluated by using methods presented
in Appendix B and using equations (17) through (25). However, this
is usually difficult and tedious, and since Q(m, n, p°) and Q’'(m, n, p°)
can at most differ by a factor of two, we shall use the modified bound
Q'(m, n, p°). Observe that Q'(m, n, p°) can easily be evaluated from
equations (18) through (24), and (37) through (39).*

Forn = 4,8,12and 16, and m = 2 1 = { £ 5, we have evaluated
Q’'(m, n, p*) and the results are shown in Figs. 10, 11, 12 and 13.

V. DISCUSSION AND CONCLUSIONS

Based on the results of Shannon and Slepian, we have derived, for
different probabilities of error, lower bounds to the channel signal-to-
noise ratio required by optimal systems to transmit the output of an
m-ary message source through a channel of bandwidth expansion .
We assume that the channel is perturbed by additive white gaussian
noise, all channel signals have the same average power S, and that
the processing interval for decoding one message symbol is not greater
than one signaling interval. When this interval can be arbitrary and
when the transmission rate is not greater than the channel eapacity,
it is well known that the probability of error can be made arbitrarily

* For any n, note that 82 n = x/2, and that Q(2, n, p?) = Q'(2, n, p*) = } erfe
[p(n/2)172].
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Fig. 10—Lower bound @'(m, n, p*) forn = 4.

close to zero by using long and complex encoding and decoding
procedures.

TFor different practical modulation systems, we can then compare the
signal-to-noise ratio required for different probabilities of error with
the lower bound given in this paper for optimal systems. This will aid
us in deciding about the optimality or nonoptimality of different sys-
tems, and in evaluating the quality of performance of different modula-
tion systems.

By using Slepian’s method, we evaluate this lower bound for odd =,
andm = 2¢ 1 < £ < 5. We also give a method of evaluating the lower
bound for even 7, and derive a simpler modified lower bound for n even,
and n > 2. This modified lower bound has been evaluated for n even,
andm = 241 ={ =< 5.

For a bandwidth expansion of two, the performance of a coherent
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Fig. 11—Lower bound @’(m, n, p*) forn = 8.

phase-shift keyed system has been shown to be as good as that of the
optimal system.

A particular FSK system with a bandwidth expansion of three has
been compared to the optimal system, and it appears that its perform-
ance is substantially inferior to that of the optimal system.

APPENDIX A

Evaluation of Lower Bound Q(m, n, p°)

In this appendix, we shall give a second method to evaluate Q(m, n, p*).
It can easily be shown from equation (9) that

8, . =g forall =, (49)
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and that
P(Q) n, 92) = Q(Q: n, 92) = % erfe [P(n/z)’]' (50)
Hence, we can write
L(% M, az) = 1 erfe (o). (51)
Since
Lo, n, &%) = £ (V) d, (52)
or

on o) = [Trwa+ [ pwa @
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L(a, n, p* g) = T(G,n, o g) + 1 erfe [p(n/2)], (54)

(n — 1) exp (_‘-"'J T a—1 2
T(8,n, o) = a’r P exp (—r/2)
-exp (re(2)! cos \) sin"™* \ dA. (55)

Expanding exp (re(2)} cos \) into a Taylor series and integrating term
by term, we have

n _ (n—1) exp (=d”) [0(‘7)*] ton-1
TO,n, ) = Z exp — r°/2,
2»/?( )lr(n + 1) =1 f

/2
f cos’ Asin™™* A dA,
a

- ()

_1B(c+1,n—1)lmm(£+1 n—l)_ (56)

27\ 9 2 2 ' 2

= & &

Equation (56) ean be simplified to

2 —O' 2 ¢ - ].

(57)
Equations (54) and (57) yield

L0, n, ") = % erfe (0) + Ti); exp (—a°)

2 (20)° [+ 1 {41 — 1
Z(;) ( -‘}2_ )-L:os’ﬂ( -; pn 9 ) (58)

¢=0

For m not too large and for large n, it can be shown that

F= (59)

is small. If § is small, we can prove that the series given in equation
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(58) converges rapidly and that we may alternatively calculate
Q(m, n, p*) from equations (7), (9) and (58).

APPENDIX B

Evaluation of Distribution Function L(8, 2, ¢”)

Equations (10) and (14) can be shown to yield
160,209 =1~ [ p6) du, (60)
where
p(\) = % [exp (—a) + a(m)! cos A exp (—d” sir® \)

{1 + erf (¢ cos A)}]. (61)
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Note™ ™ that p(\) is the probability density function of the phase
angle A, 0 = \ < 2, of the sum of a sinusoidal carrier (of unit amplitude)
and gaussian noise [of average power 1/(2¢7)].

We ean also show' that

k=1

= 9
L(6,2,¢)=1— g -2 'Thksin k6, (62)
where

hens = 5 e (= /DU /2) + L /2],

T

£=0,1,2,:-- (63)

h?t = 711' Z A2n+1Bg:—t2n+1) ) { = 1' 2’ 3, cee s (64)
N
A sy = Aoy = (""t;) exp (—52/2)[15(0.2/2) 1+ IH[(O'?/?)],
S=0,1,2'--.; (65)
and

1 (o)} >
B—L’p—l = BE;H—l = (_])V;Eéﬂ-i—li exp (_J-/g)

(@ /2) + Ia(e®/2)], p=0,1,2 +--. (66)

I.(x) is the modified Bessel funetion of the first kind and of order n.

Sinee all A,’s ean be ealculated using either a set of tables or a digital
computer and sinee the series given in equation (62) converges, we can
calculate L(8, 2, ¢°) for all ¢ and 0.

APPENDIX C

Evaluation of Upper and Lower Bounds

From equations (10) and (14), and Appendix B, we observe that
L(0, 2, ¢°) is the probability that the phase angle A, 0 < X\ < 2m, of a
sinusoidal carrier of zero initial phase and unit amplitude lies outside
the range —# = A = ¢ when it is corrupted by random white gaussian
noise of average power 1/24°.

When 6 = 7/2, we can show'""** that

L, 2, % = }otfe (), 6 = m/2. (67)
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When 6 = n/4, we can also show'™'* that
L8, 2, ¢*) = erfc [¢/(2)}] —}% erfe’ [¢/(2)]. (68)

When 0 £ 6 < w/2, let the sinusoidal carrier be represented by
phasor OS in Fig. 14. Let z, and z, represent the in-phase and quadrature
components of white gaussian noise corrupting the sinusoidal carrier.
The quantity L(8, 2, ¢*) is, therefore, given by the probability that the
terminus of the veetor OT lies in areas marked 1, 2 and 3.

We, therefore, have*

tan 6
m

erfc (o sin 6) — exp (—a’)[1 — =le exp () erfe (0)]

< L8, 2, ¢°) < erfe (o sin 6). (69)

Also, since L(8, 2, ¢°) is greater than the probability that the terminus
of the vector OT lies in areas marked 1 and 2 {or 2 and 3), we can write

L8, 2, ¢*) > % erfc (o ain 6). (70)
Combining equations (69) and (70), we get equation (35).

QUADRATURE
AXIS

Fig. 14—Derivation of bounds to L(#8, 2, ¢2).
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