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In this paper, we analyze single-sideband amplitude-modulation digital
communication systems to develop a method for jointly and optimally
sefting the carrier phase and the automatic transversal equalizer of such
systems. Mean-square equalization error is used as the performance
criterion. We develop a simple receiver structure and study the convergence
of the method. Ezact locations of the stationary points in the parameter
space are determined and the classifications of the stationary points are
obtained. We show that the mean-square equalization error has only global
mintma and saddlepoints, buil not local minima and mazxima. Thus, the
mean-square equalization error will converge to the absolute minimum by
the proposed method, regardless of the initial seitings of the parameters.
A simple condition on the step sizes of the adjustments is also obtained
which ensures the convergence of the process. Explictt formulas of the
joint optimum parameter settings and of the corresponding minimum
mean-square error are oblained. For illustration purposes, a single-sideband
digital communication system using a five- or nine-tap transversal equalizer
is simulated on a computer. Both theory and simulation show that the
equalization error depends critically on the carrier phase when the number
of equalizer taps is not large, and that the minimum equalization error
can be obtained by using the proposed method.

1. INTRODUCTION

In single-sideband amplitude-modulation digital communication sys-
tems with transversal filter equalization,’* the adjustment of the
carrier phase is critical to the system’s performance when the number
of equalizer taps is not large. In this paper, a method is proposed for
setting the carrier phase jointly with the automatic equalizer to minimize
the mean-square equalization error.
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We formulate a mathematical model of this study in Section II;
in Sections ITI and IV, we analyze the system and develop a receiver
structure. The problem of convergence is studied in Sections V and VI
to determine if the equalization error will converge to the absolute
minimum by the proposed method and whether such convergence
depends on the initial settings of the parameters. We also consider
step sizes of the adjustments. In Section VII, we derive explicit formulas
for evaluating the system’s performance. A voiceband data communica-
tion system is simulated on a computer to test the proposed method
and the results are described in Section VIIL.

II. MATHEMATICAL MODEL

As shown in Fig. 1, a single-sideband amplitude-modulation system
is considered. When an impulse §(f) is applied to the transmitter input,
a signal a(f) is received at the receiving filter output. The Fourier
transform of a(f) is denoted by A(f). (The Fourier transform of a
function will be consistently denoted by the appropriate capital letter.)
It is assumed that A(f) is band-limited between f, and f,, that is,

A(f) # 0, only for f{<|f|<f2- (1)

The signal a(t) is demodulated as shown in Fig. 1, where the demodulat-
ing carrier frequency is f, . In single-sideband systems

a( TRANSMISSION
t) TRANSMITTING MEDIUM RECEIVING a(t)
FILTER |w(+‘)|ej‘""’ FILTER
a(t) Low-pass [Y(t).

Tor—* To —————="= T

FILTER

2cos (2mfct +4)

s(t)

Fig. 1—An amplitude modulation system with coherent detection and transversal
filter equalization.
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fe=h (2

or

fe Z 12 (3)

The demodulating carrier phase is denoted by 6. The demodulator
output is a signal ¥(¢) with Fourier transform T'(f). Since A(f) is band-
limited, T'(f) is also band-limited, that is,

rf) =0, [fI>1 (4)

where f, is f — f, when f, is f, or fa (fo is larger than f, — f, if f. is less
than f, or larger than f.).

As shown in Fig. 1, the channel is equalized by a conventional trans-
versal equalizer consisting of 2N + 1 taps with gainse, ,n = —N to N,
spaced at T'i-second intervals, where

T, = S.’lfo seconds. (5)
When an impulse 6(f) is applied at the transmitter input, the trans-
versal equalizer output is s(t). Clearly s(¢) is the overall impulse response
of the system. The receiver parameters (that is, the demodulating
carrier phase # and the equalizer tap gains e, , n = —N to N) will be
set to minimize the difference between the overall impulse response
s(t) and a desired impulse response ¢(f). The familiar mean-square
error criterion is used. That is, # and e, , n = —N to N, will be jointly
set to minimize the mean-square error

&= [ B0) — aF at. (©)

For brevity, the tap gains e,, n = —N to N, will be abbreviated
{e,] in the sequel.

ITI. ANALYSIS

In this section, we analyze the system to develop a receiver structure
for jointly setting 6 and |e,! by the method of steepest descent.

In analyzing carrier signals, it is most convenient to use Hilbert
transform techniques. As is well known,' the demodulator output ()
is related to the input a(f) by

() = cos (2rf.t + Oa(t) + sin (2«f.t + 6)d(D) (7)
where d(f) is the Hilbert transform of a(t). { When dealing with lengthy



1072 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1970

time functions, we shall sometimes use the sign 3¢, that is, 3C[a(f)] =

a().|
It is seen from Fig. 1 that

N

s(t) = EN ey(t —nly — NT,). (8)
We shall use the partial derivatives d8&,/d6 and 9&,/de, in the method
of steepest descent. Since ¢(f) is independent of 6, we obtain from
equation (6)

28 " 260 — g1 % ar. ©

In writing equation (9), the order of differentiation and integration
has been exchanged [the underlying conditions for making such an
exchange are easily satisfied by s(t) and ¢(f) encountered in communica-
tion systems]. Substituting equation (7) into equation (8) and taking
the partial derivative give

E {—sin [2xf.(t — nTy — NTo) + 6la(t — nTy — NT,)

+ cos [2nf.(! — nTy — NTo) + 0ld4(t — nTy — NTo)}. (10)

From equations (8) and (7),
N

8 = 3 e.se{cos [2nf.(t — nTy — NT,) + 6la(t — nTy — NTo)}

+ ge{sin [2xf.(t — nTo — NTo) + 60la(t — nTy — NTy)}]. (11)

In single-sideband modulation, we have either inequality (2) or
inequality (3). Let us consider inequality (2) first. When inequality
(2) holds, the frequency spectrum of a(t), A(f), does not overlap the
spectra of cos 2xf.t and sin 2xf.t. Furthermore, A(f) occupies a higher
frequency band; therefore, equation (11) becomes

5e[cos (2nf.t + Ba(f)] = cos (2nf.t + 6)d(l),
and
Je[sin (2nf.0 + 6)a()] = —sin 2aft + 6)a(t), f.=h.

Substituting the above into equation (11) gives
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N
§(1) = > eufcos [2nf.(t — nTy — NTo) + 6]a(t — nTy — NT,)
n=—N
— sin [2#f.(t — nTy — NT,) + 6la(t — nTy — NTy)},
f.=fH. (2
Comparing equation (12) with equation (10) shows that
as(t
=20 g<y. (13)
Substituting equation (13) into equation (9) gives
680
= [ 200 - qor0a, Lt (14)

Since a function and its Hilbert transform are orthogonal, equation
(14) reduces to

oo o [“qsat, 1.5t (15)
Thus, d8,/08 can be generated by correlating g(f) with 3(f). Note
that the transversal equalizer output will be §(f) instead of s(f) if
the demodulating carrier ecos (2«f.t + 6) is replaced by cos [2=f,t 4
8 + =/2]. However, even though §(f) can be generated in this simple
fashion, we prefer not to generate §(t) because the system must be
used instead to generate s(f) to compute the other partial derivatives
d8,/de, . Therefore, we convert equation (15) into the form

8% 2fanM¢ <1, (16)

This step ean be verified by Parseval’s theorem. Now we need only to
correlate s(f) with an easily generated §(t) to obtain 98,/96.

The above is for the case f, = f,. In the other case, f, = fi, the
frequency speetrum of a(f) occupies a frequency band lower than f, ;
therefore, the two equations above equation (12) should be rewritten as

Je[cos (2rf.t + a(f)] = sin 2xf.t + Da(l),
K[sin 2nft + 0)d(l)] = —cos 2nft + O)d(t), fo=fo.
Repeating the steps from equation (12) to equation (16), we get

L 2 [sina, fzh. an
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Note from equations (17) and (16) that the sign of the correlator output
must be reversed when one shifts the earrier frequency from one side
of A(f) to the other side.

About the equalizer tap gains, it is seen from equations (6) and (8)
that

38
de,

= [ 20 - a1 50,

= fw 2As() — gt — nTy — NT)dt, n= —N to N.
(18)

Thus, d8&,/d¢, can be generated by correlating the error signal [s(f) —
g{f)] with the output v — nT, — NT,) of the nth tap. This is the
concept introduced in Ref. 3 where the problem of setting the tap
gains {e,} was considered.

IV. RECEIVER STRUCTURE

It has been shown in the previous section that 08,/88 can be easily
generated simultaneously with 48,/de,, n = —N to N. Therefore,
the method of steepest descent can be used to adjust simultaneously
6 and {e,}. In the training period prior to data transmission, isolated
test pulses are transmitted. For instance, 6(f) in IFig. 1 may be one of
the test pulses. The transmission of §(f) generates a signal s(f) at the
equalizer output. From s(¢} the partial derivatives d&,/d0 and 88,/de. ,
n = —N to N, are computed. The parameters 6 and {e,} are then
changed by amounts proportional to the partial derivatives, that is,

d &
6 — J— —_
new Bold (24 a0 ’

a8

de. n=—N to N,

new = (€)ora — B
where « and 8 are positive proportional constants which may vary
from one adjustment to another (the choice of their values will be
considered in Section VI). After the changes are all made, another
test pulse is transmitted and the process is repeated. The process is
terminated after a prefixed number of test pulses.

The receiver structure is shown in Fig. 2. The partial derivatives
d8,/06 and 98,/0e, are computed according to equations (17) and (18),
respectively (f, = f. is assumed). If f, £ f,, the correlator output in
Fig. 2 will be —38&,/a6.



EQUALIZATION AND CARRIER ACQUISITION 1075

y(L-nTENT,) c

280
den

=

o

e

e

dit t
LN P a(t) @

A 860
a0° -a(t) c o,

PHASE SHIFTER

Fig. 2—Block diagram of the joint method. (C' in the block denotes correlator.)

V. FURTHER ANALYSIS

We now analyze the system to answer the questions: (i) Will the
mean-square error converge to the absolute minimum by the proposed
adjustments? (#) Is the convergence ensured regardless of how the
parameters 8 and {e,} are set prior to the starting of the process? (4i%)
What is the minimum mean-square error that can be obtained by the
proposed method? To answer these questions, it is necessary to locate
the stationary points of &, to distinguish between various types of
stationary points, to determine conditions under which &, will converge
to a global minimum, to derive explicit solutions of &, when the param-
eters are set jointly or independently, and to obtain numerical data
by simulating a real typical channel. In this section, we determine the
location of the stationary points and distinguish between various types
of stationary points.

It is noted from equations (16) and (17) that 9&,/00 changes sign
when the carrier frequency f. is shifted from one side of A(f) (that is,
f. = f.) to the other side (f. = f.). To avoid this complieation, a quantity
p defined by

p=6  when f. =/, (19)

= —¢, when f{.={.,
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will be used instead of 6 in the following. By this change, the results
obtained in the sequel will hold for both f, < f, and f. = f.. Hence,
the position of f, will not be identified further.

Since it is more convenient to use matrix notations in the following,
time samples will be used. Let

8 = s(kTo + NT),

¢ = q(kTo + NTo), (20)
Vi = v(—KkT).
Then equation (6) becomes
1
8 = of
0 2fn 8
where
& = k_E_ (se — o)’ 21

Since f, is a constant, minimizing & minimizes &, .
It can be easily shown that equation (21) ean be written in the
following matrix form

& = E'yE — 2E'v + kz_) o (22)

where the prime denotes transpose, the vector E and v and the matrix
y are defined by

ir [ V-~
R =
i .
L énv i U
r:U—N.-—N v YN
y=| - - (24)
LYn,-n " Y~ .~
Yni = EZ_ Vh-KYi-k » (25)
U, = Z q.k'Yn—k . (26)

k==02
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Clearly, E and v are (2N + 1) X 1 vectors, and y is a (2N + 1) X
(2N + 1) matrix. One can easily show that y is nonsingular.

We now evaluate the partial derivatives 38/dp and 8&/de, ,n = —N
to N, to determine the optimum parameter settings. From equation (22),

98 _ O prp 59 oy
ap—apEyE 2apEv. 27

To evaluate the terms in equation (27), we note from sampling theorem
that equation (25) can be written as

thi = 2o [ A0l — (b — IT] at @3)

By Parseval’s theorem, equation (28) becomes

o= 2o [ 17O F exp [=j2efh — T . (29)

For single-sideband systems, the demodulating carrier phase p appears
only in the phase characteristic of T'(f), while the amplitude char-
acteristic | I'(f) | of I'(f) is independent of p. Therefore, from equation
(29), y».: is independent of p and

9 prom —
£EYE—0. (30)

This greatly simplifies the results. (It is important to note that this
simplification is not possible for double-sideband and vestigial-sideband
systems because p appears in | T'(f) | in such systems.) Substituting
equation (30) into equation (27) gives

98 _ 5990
9 26pEv' (31)

To evaluate equation (31), we convert the elements », of v into explicit
functions of p. For single-sideband systems, I'(f) can be decomposed
into the form

I(f) = H(f) exp (—jo), = 0;
= H(f) exp (jp), f=0;
where H(f) is independent of p.* From equations (26), (20), (4), and

(32)

* H(f) is the Fourier transform of v(¢) when p = 0. The amplitude and phase of
H(f) ]will be denoted by [H(f)| and n(f), respectively, that is, H(f) = [H(f)| exp
[n ().
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(32), it can be shown that

v, = paexp (—jp) +v.exp (jp), n=—NtoN (33)
where
w= 3 0 [ H e L2 — w7 df (34)
and
= 3 a [ HO) exp li2ef( — wT3] . (35)

Note that g, and », are independent of p. From equation (33), we can
evaluate the term 9/9pE’v in equation (31) to obtain

a8

28 — 2jfexp (—in)E's ~ exp (BN (36)
where
H-N VN .
u = ﬂ—;?’-v—l , y = V—if’+1 . (37)
My VN

The above is for 8/dp. The other partial derivatives can be obtained
from equation (22) as
a8
IE = 2yE — 2v. (38)
A necessary condition for a specific p and E to be jointly optimum
(that is, to jointly minimize &) is that they satisfy

a8

5 =0 (39)
and

XS

3E = 0. (40)

There are special cases where the optimum setting of p is arbitrary
(for instance, if an infinite length tapped delay line is used, the taps
can always be adjusted to reduce the mean-square error & to zero
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regardless of how p is set). We shall not consider such special cases here.
This implies, as can be shown from equations (36), (38), (39), and
(40), that the special cases where u'y 'u is zero are disregarded.

From equation (38), equation (40) can be written as

E=y"v (41)
From equations (36) and (41), equation (39) can be written as
exp (—jp)u'y"'v — exp (jp)v'y"'v = 0. (42)

One can show from equation (33) that equation (42) is equivalent to

vyl
VY v exp (j4p). (43)

It ean be shown from equations (34) and (35) that
Re [w'y 'u] = Re 'yl
and
Im [y'y'y] = —Im p'yY], (44)

where Re and Im denote real and imaginary parts of the complex
number, respectively. From equation (44), one can show that equation
(43) is satisfied if and only if

Im [Efy_ 19] (45)

— L 1 -1
p= Mg + 3 tan Re [w'y 'ul

where m, can be any integer including zero. Substituting equation (45)
into equation (33) and substituting the resulting equation into equation
(41) give

1ol
E = exp I:—j(m'.f—; + 3 tan™' %z—})]y—ly

: T o I [u'y™! -

+ exp |:j'(’m0 3 + % tan™' i{e—{zgl:ﬁ)]y 'v. (46)

The value of p and E which satisfies the necessary conditions (39)

and (40) is given by equations (45) and (46), respectively. It is clearly

seen from equations (45) and (46) that, since m, can be any integer,

there is more than one set of solutions of p and E from conditions (39)

and (40). In the following, we determine which of these solutions
actually minimizes &, .

In conventional terminology, each solution of conditions (39) and
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(40) is a stationary point of & . We shall determine which of the sta-

tionary points is a global minimum.

We first identify the minima, maxima, and saddlepoints. As is well
known,* a sufficient condition for a stationary point to be a local mini-
mum is that the quadratic form

F = h'Qh (A7)

be positive-definite at that stationary point, where Q, known as the
Hessian matrix, is

A - i -1
ap° dp de_y dp dey
9’8, 8% &, 98
Q = |de_ydp ey de_y ey
8 38 &
| dey dp Oey de_y dey

and
h' = [h1 By --- h(zzv+2)]-

A stationary point is a local maximum if F is negative-definite at that
point. At a saddlepoint, F is indefinite. To evaluate F, note from
equations (16), (17), and (19) that

%%1 -y f. i 4(Ds(t) dt (48)
and
as(t) _
9 = 8(8). (49)
From equations (48), (49), (8), and (18), we get
‘ZP‘E” -2 : o(s() d; (50)

2 -]
I8 _ f ot — Ty — NTY4() di, n=—N to N; (51)
dp de, —w

and

38 = . _
de; a:,- =2 f_w y(t — Ty — NTo)v(t — jTo — NTo) dt,
i,j=—N to N. (52
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Substituting equations (50), (51), and (52) into equation (47) and
rearranging, we obtain after some steps

F=2 fm [h].&(t) '+' i h2+n+N7(t - nTO - NTO):r dt

n==N

-]

+ on? f o()s(t) dt

— o f " dt. (53)

Now we may substitute equations (45) and (46) into equation (53)
and evaluate the resulting expression over all possible h; to hoyia
to determine whether F is positive-definite, negative-definite, or in-
definite at a given stationary point. This determines if that point is
a local minimum, a local maximum, or a saddlepoint. While these steps
are important in the analysis, they are rather complex and are therefore
given in Appendix A. It is also shown in that appendix that all the local
minima are equal and hence all are global minima. The results in
Appendix A are summarized in the following proposition.

Proposition 1. &, has a global minimum when p and E are given, re-
spectively, by equations (45) and (46), with m, in these equation being
an even integer. &, has a saddlepoint when p and E are given, respec-
tively, by equations (45) and (46), with m, in these equations being
an odd integer.

It is seen from this proposition that there is an infinite number of
global minima, each one corresponding to an even integer m,. The
distance in p between two adjacent global minima is therefore w. There
is also an infinite number of saddlepoints, each one corresponding to
an odd integer m, . The distance in p between two adjacent saddlepoints
is also 7. The distance in p between a saddlepoint and its adjacent
global minimum is «/2. It is instructive to illustrate these with an
example and a figure. Consider a transversal equalizer with only one
tap e, (such a single tap serves as an automatic gain control and
the problem is to jointly set the automatic gain control and carrier
phase to minimize the mean-square error). For simplicity, suppose
that the term tan™' [Im (u'y 'w)]/[Re (w'y 'w)] in equation (45) turned
out to be zero. Then from the proposition &, has global minima at
p =0, £r 42m, -+, and &, has saddlepoints at p = +7/2, £37/2,- - ..
The global minima at p = 0 and = are illustrated by points 1 and 3
in Fig. 3 and the saddlepoint at p = =/2 is illustrated by point 2.
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€o

Fig. 3—An example illustrating the global minima and saddlepoints of &.

The curved surface in the figure illustrates the variation of &, with p
and e, . For instance, when p is fixed at , &, varies with e, as shown by
the convex eurve passing through points 4, 3, and 5. (For fixed p, &
is a convex function of the tap gains e_y to ey .) As can be seen, point
2 is a saddlepoint because varying e, away from point 2 with p constant
increases &,, while varying p away from point 2 with e, constant
decreases & .

To summarize, in this section we have located the global minima
and saddlepoints and proved that there is no local minimum or maxi-
mum. There is also no valley® since the global minima are all distinet.
These results will be used in the next section for the study of con-
vergence and in Sections VII and VIII for the computation and com-
parison of performances.

VI. A CONDITION OF CONVERGENCE

As deseribed in Section IV, after a test pulse is transmitted and the
partial derivatives are computed, the carrier phase and the tap gains
are adjusted according to the equation
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- — o9&
8new - Bold o FY) ] (54)

38

(en)new = (en)old - B 68,, )

(55)
where a and B are positive proportional constants which may vary
from one adjustment to another. As is well known,® the process always
converges when a and g8 are sufficiently small, but may not converge if
o and B are too large. In this section, we derive a condition on « and 3
which ensures the convergence of the process.

To facilitate analysis, we shall, as in Section V, replace 8 with p,
&, with &, the tap gains e_y to ey with the vector E, and the partial
derivatives d&/de_y to d8/0ey with the vector 98/9E. The adjustment
made after the kth test pulse will be called the kth adjustment (k =
1, 2, ---). The values of p, E, &, d8/dp, and 98&/9E prior to the kth
adjustment will be denoted by p,, E., &(p., E.), (8/9p)&(p: , E,) and
(8/0E)&(p. , Ey), respectively. The « and 8 used in the kth adjustment
will be called «, and B, respectively (note that a. > 0 and 8 > 0
for all k so that the adjustments will be made in the negative gradient
direction). The values of p, E, &, 36/dp, and 38/9E after the kth adjust-
ment will be denoted by pyv1 , Erer y 8(prrr » Erir), (8/0p) 8(prs1, Erer),
and (8/9E) &(px+1 , Err1), respectively.

With the above notations, equations (53) and (54) can be written as

ad
Pr+1 = Pr — O “a'; S(Pk ’ Ek): (56)

i)
Eisi = E. — 5 E S(Pk ’ Ek)- (57)

The decrease in mean-square error due to the kth adjustment is denoted
by A8, , that is,

A8, = &(pr; Ev) — &(pr+1 s Erra). (58)

Clearly A&, approaches zero when the partial derivatives approach
zero. A stronger statement that may sometimes hold is that “As,
approaches zero only when the partial derivatives approach zero.”
By this statement is meant that for every ¢ > 0, we can find a § > 0
such that

| A& | = 6 (59)
if
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[;p E(pe E)] + [% &(ps E)][fﬁ E(pe ,EA)] > (60)

We shall say that & converges to a stationary point if for every e > 0
there is an N such that

[5‘% &(ps Eﬁ)]g + [aiE &E(px ,Ek)]’[g% &(pi Ex)] <e (6

forallk > N.
The following lemma is needed in our discussion.

Lemma. If A8, > 0 for all k and A&, approaches zero only when the
partial derivalives approach zero, & must converge lo a slationary point.

Proof: The proof of this lemma is simple. Assume that & does not
converge to a stationary point, that is, for an e > 0 it is not possible
to find an N such that equation (61) holds for all k¥ > N. Then equation
(59) must hold for an infinite number of k’s. From this and the assump-
tions in the lemma, we see that A&, = 6 > 0 for infinite number of k’s.
This implies that & reduces without bound as k increases, contradicting
the fact that the mean-square error cannot be less than zero. Hence
the lemma holds.

The lemma provides a means of determining a; and g, . According
to the lemma, & will eonverge to a stationary point if we can determine
o, and 8, such that A8, > 0 for all £ and A§, approaches zero only
when the partial derivatives approach zero. Theoretically, such o,
and 8. can be determined using known mathematical techniques.’
But unfortunately these techniques were developed for use with com-
puters and are too complicated to be used in a receiver (for a discussion,
see Appendix B). In the following proposition, it is shown that o
and 8, can be determined rather easily if E and p are set in some alternate
fashion.

Proposition 2. Let the set of positive integers be divided arbitrarily
into two disjoint subsets &, and &, , each containing an infinite num-
ber of positive integers. Let o, = 0 when k ¢ X,, and 8, = 0 when
k e 3, . Let A, denote the maximum eigenvalue of y (A, > 0 since y
is positive definite), and let [[Z,, s°(!) di]g, denote the value of 2, s*(¢) d¢
when E = E,. The mean-square error & will converge to a stationary
point if

0<13,,<)\l (62)
1
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forkeXx,, and

ok
0< a, < = (63)

2;.,[ [ m s°(0) df:lEk + 2f, f_ 3 q'(t) dt
for ke X, .

The proof of this proposition is complex and is given in Appendix C.
The proposition states that p and E may be adjusted in any alternating
fashion' and the mean-square error & will converge to a stationary
point if B, satisfies equation (62) during the adjustment of E, and
a, satisfies equation (63) during the adjustment of p. The term A, in
equation (62) and the terms [[*,, s*(f) df]g, and [, ¢°(¢) dt in equation
(63) can be estimated or measured. Consider first A, , the maximum
eigenvalue of y. There are various methods of estimating the maximum
eigenvalue of a matrix.”” For example, it is possible to estimate A,
from amplitude characteristics of the transmission medium. [Note
from Fig. 1 that the amplitude and phase characteristics of the trans-
mission medium are denoted by | W(f) | and w(f), respectively.] It is
seen from equation (29) that the elements y,,; of y can be computed
from | I'(f) |. For single-sideband systems, | T'(f) | depends on | W(J) |,
but not on w(f) and the demodulating carrier phase p. Thus, if statistics
of | W(f)| are available (for example, in a voiceband system), ¥,.;
can be computed from equation (29) and A, can be estimated. The
maximum possible value of \; then can be used instead of A, in equation
(62).

The factor [*, ¢*({)dt in equation (63) is known because the desired
signal g(t) is given. The other factor [[*_ s*(f)dl]g, is simply the energy
of the signal s(f) prior to the kth adjustment, and can be easily measured
at the equalizer output.

Summarizing the above, a condition of convergence has been described
in the lemma. Based on the lemma, a specific condition of convergence
has been obtained in Proposition 2. The upper bound in equation (62)
can be estimated from a priori channel statisties and the upper bound
in equation (63) can be easily determined prior to each adjustment.
Thus, «, and . can be set accordingly prior to the adjustments to
ensure that & will converge to a stationary point.

It has been shown in the previous section that a stationary point
must be a global minimum or a saddlepoint. Thus, & may converge

 For example, one may fix p and adjust E until a&/9E approaches zero, then fix E
and adjust p until 8&/dp approaches zero, and repeat the ¢ycle until both 9&/0E and
a&/dp approach zero,
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to a saddlepoint instead of a global minimum. Fortunately, such a
possibility is remote. A great advantage of gradient methods is that
they will inherently stay away from saddlepoints.® It has been found
by researchers that gradient search computer program avoids saddle-
points so dependably that the only way they could test their program
for exploring the neighborhood of a pass was to start the search there.
Wilde and Beightler suggested the reason by sketching a bimodal
surface to show that only one gradient line out of the infinite number
possible actually passes through the saddlepoint.” The other gradient
lines all lead directly to 2 minimum or a maximum. Hence the possibility
of converging to a saddlepoint is remote.

It has been shown in the previous section that the distance in p
between a saddlepoint and its adjacent global minima is x/2. From
this, several tests can be devised for distinguishing between global
minima and saddlepoints. The following one is particularly simple.
At the design stage of the system, one may compute the value of &
at global minima and saddlepoints (the detailed steps in Section VII
may be used. The value of & at global minima is equal to &x;. in equation
(64), while the value of & at saddlepoints is equal to &;,4 evaluated at
Ap = w/2.) As illustrated in Section 8.1 and Fig. 4, the value of & at
saddlepoints can be many times larger than that at global minima.
Consequently, a threshold can be set up such that when & converges
to a value above the threshold it may be concluded that a saddlepoint

0.036

0.032 [~

0.028 —

0.024

0.020 —

0.016

0.012

ME AN~ SQUARE ERROR, &ing

0.008 |-

T

0.004

_ _Emi
0.0014 % —— 7 omin . i |

o} 30 80 [0 120 150 180
Ap IN DEGREES

Fig. 4—Variation of &, with Ap. (See example in Section VIIL.)
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is reached. Then p will be shifted by /2 and E readjusted. If & con-
verges to a value below the threshold, the process is terminated. This
and other possible tests all require additional ecircuitry. Since the
possibility of converging to a saddlepoint is remote, one should decide
from actual trials whether such a test should be employed.

VII. PERFORMANCE COMPARISON

In the previous sections, we have considered jointly setting p and E
for minimizing the mean-square error &. It has been shown in Prop-
osition 1 that the joint optimum settings of p and E are given, re-
spectively, by equation (45) and (46) (with m, in these equations being
an even integer). Substituting these optimum settings into equation
(22), we obtain the minimum mean-square error

Bmtn = k_Zﬁ g — 2|y | — 20y (64)
It has been shown that this &.;, can be obtained by setting p and E
jointly. Now we wish to compare &,;, with what can be obtained by
another scheme. In single-sideband systems, it is possible to transmit
a carrier pilot to the receiver to demodulate the received signal. The
demodulating carrier phase therefore is

p = p.+ py

where p, is the phase of the received carrier pilot and p, is a fixed phase
shift that is sometimes introduced for signal shaping. With p fixed at
p. + pr, E can be adjusted to minimize & The value of & thus obtained
will be denoted by &;.4, where the subscript “ind” indicates that p
and E are set independently. We now compare E,,, with E_,,, .

To determine E,,, , let the difference between p, + p, and the optimum
setting of p be denoted by Ap. From equation (45),

| 'y

where m, can be any even integer (including zero). Since E is set to
minimize & after p is set to p. + p;, E is equal to y~'v evaluated at
p = p. + p;, that is,

E=yv, (66)

where v, is v evaluated at p = p. + p,. Substituting equation (66)
into equation (22) gives



1088 THE BELL SYSTEM TECHNICAL JOURNAL, JULY—AUGUST 1970

1nd = Z qk - ch‘an . (67)

k=—o0
It can easily be shown from equation (33) that
viy'v. = exp [—j2(o. + o)’y e + 20y
+ exp [12(p. + p)IVY 'v. (68)

Substituting equation (65) into equation (68), and substituting the
resulting equation into equation (67), one can obtain after some manip-
ulations that

Simt = qu~9(cos Ap) | oy 'u| — 20y v (69)

k=—cx

From equations (64) and (69), the difference between &;,q and 8., i8
€iog — Bmin = 2[1 — cos 24p] |w'y 'u|. (70)

Note that u’ and y~* are independent of Ap. Thus, the only term in
equation (70) that depends on Ap is cos 2Ap. Now we can make the
following observations.

First, &ina — Omia i nonnegative, meaning that independently
setting p and E increases the mean-square error. Second, 8ina — Emin
varies periodically with Ap with a period of . Third, because of the
nature of cosine, &inq — Emia is small when Ap is small, but increases

rapidly when Ap increases (note the factor two in cos 2Ap).

For a given system, one may compute &, Emin, and their dif-
ference from equations (64) and (69). The computation can best be
carried out by a computer program in the following steps (see also the
example in the next section). First, specify fo, N, and the desired
signal ¢(f). Determine the time samples {g.} of g(?). Second, determine
H(f) from transfer functions of the transmitting filter, the transmission
medium, and the receiving filter. Third, compute the elements y,,:
of y from the equation

Sfa
Y = 4 f | B | cos [2nf(h — 9T df. 1)

Compute the elements a; ; of y' from y, ; . Fourth, compute the terms
| u'y"'w | and o'y 'y in equations (64) and (69) using the explicit equa-
tions

|wyw | = [(B: — B + 4Bi]}, (72)
vy v=B +B:, (73)
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where
N N
B, = h;N ‘__Z_‘,N an,Enks (74)
B, = A-E—N _;N @, i$als o (75)
N N
Ba = Z Z an, & (76)

h=—N i=—N

b= 3 a [ VH | cos ) + 260 — T df, (D)

k=—wm
] fo
fo= 3 a [ LHO) |sin (o) + 20/GT0 — TV ] (9)
Finally, compute &u;, from equation (64) and &;,4 from equation (69).

VIII. COMPUTER SIMULATIONS

We now apply the previous results to a single-sideband partial-
response voiceband data communication system using a five- or nine-
tap transversal equalizer. Since the results are largely similar, we shall
describe only the five-tap case.

Two computer programs have been written for this system. In the
first program, &mi, and &, are computed using the formulas in the
previous section. In the second one, &ui, and &;.q are obtained using
the method of steepest descent. The results of these two programs
are described separately in the following subsections.

8.1 Comparison of Emin and &;.a Using the Kxplicit Formulas in Section
VII
Consider the voiceband data communication system described in
Ref. 8. The desired signal g(¢) of such a system is the class IV partial-
response signal,” that is,

24 sin 2nfo(f — t)
{0 = uft — F =

(79)

where a time delay f, is included to take into account the time delay
in the channel. From Ref. 8,

fo = 1200 Hz. (80)

Hence, T, = 1/2f, = 1/2400 seconds. We shall consider a transversal
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equalizer with five taps, that is, N = 2. It has been defined that H(f)
is the Fourier transform of v(f) when p = 0. The amplitude and phase
of H(f) have been denoted by | H(f) | and 5(f), respectively, that is,

H(f) = [H({ | exp [jn(f]- (81)

It is assumed that the amplitude and phase distortions in the filters
are negligible compared with those in the transmission medium. Con-
sequently, | H(f) | and 5(f) can be determined from amplitude and
phase characteristics of the transmission medium (which is a voice
channel in this case). From Ref. 10 and Tig. 4 of Ref. 8, a typical
| H({f) | is found to be

| H(f) | = [sin 22 TofJ10%*77*", 0 = f < fo. (82)

The component sin 27T,f in equation (82) represents the desired am-
plitude characteristic of the class IV partial-response signal, while the
term 10%*7°“*~*” represents typical amplitude distortion in a voice
channel. The delay characteristic of five links of K carrier shown in
Fig. 24 of Ref. 11 is representative of the delay characteristic of a voice
channel. Therefore, it will be used here and

2(f) = 9.89 sin [2r(f + f.)-0.00019 — 2.203, 0 =f < f,. (83)

Constant phases and time delays in the transmission medium and the
filters are omitted in writing »(f) because their values are not available
and because they only change the phase and time origins in the com-
putations. However, such an omission makes it impossible to determine
the phase p, of the received earrier pilot because the carrier pilot does
not travel the same path as the signal. The signal is transmitted through
the transmitting and receiving filters, while the carrier pilot is trans-
mitted outside of these filters (these filters theoretically should have
infinite attenuations at the carrier frequency). Furthermore, the carrier
pilot is recovered at the receiver through a separate narrowband filter
or a phase-lock loop, while the signal is demodulated and passes through
a low-pass filter. With these differences and without detailed phase
characteristics of the filters, it is not possible to determine p, here.
Therefore, we shall simply leave p, and Ap as variables and compute
the variation of &;,4 with Ap. (It should be noted that Ap may assume
small values in some real systems.)

The variation of &;,; with Ap has been determined for various values
of #,. The curve obtained at {, = —27T, is typical and is presented
in Iig. 4. The value of &, is also indicated in the figure. It can be
seen that &;., can be as large as 0.034, while &, is only 0.0014. Thus,
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the mean-square error can increase 0.034/0.0014 = 24.3 times if the
demodulating carrier phase p is not set properly. Note that this large
increase is obtained for a five-tap transversal equalizer. A similar
result has been obtained for a nine-tap transversal equalizer. These
results demonstrate that the mean-square error depends critically on
the carrier phase setting when the number of equalizer taps is not large.
(It should be noted, however, that when a large number of taps are
used, the mean-square error will not be sensitive to the carrier phase
setting.)

8.2 Mean-Square Errors Obtained by Method of Steepest Descent

A computer program has been written to simulate the system de-
seribed in Section 8.1. The receiver parameters are adjusted by the
method of steepest descent described in Section IV. Five hundred test
pulses are used in each training period. The initial setting of the center
tap e, is unity, while the initial settings of the other taps are zero. The
parameter {, is fixed at —27, as mentioned in Section 8.1. The mean-
square errors obtained with various initial settings of p are shown in
Fig. 5.

The points marked by “X” in Fig. 5 are obtained by adjusting p
and E jointly using e, = 0.523 and 8. = 0.1 for all k. For instance,
point A is obtained by initially setting p to 40 degrees above the optimum

0.036

0.032

0.028 -

0.024 |-

0.020 [~

0.016 [~

B

o.olz2-

MEAN- SQUARE ERROR, &

0.008 I~

0.004 —

b = — — == ———— — — = ——————0

T

|

|

? 1
: 1
|

| !
| |
| |
h X

B A

0 | 1 1 1
o] 30 60 90 120 150 180

INITIAL OFFSET OF p IN DEGREES

Fig. 5—Mean-square errors obtained by method of steepest descent.
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p and then adjusting p and E jointly by the method of steepest descent.
It can be seen from these points that the mean-square error & always
converges to the value of &,;, determined in Section 8.1. This demon-
strates the fact that &.;, can be obtained by jointly setting p and E.

The other points marked by circles are obtained by fixing p and ad-
justing E only (& = 0 and 8, = 0.1 for all k). For instance, point B
is obtained by initially setting p to 40 degrees above the optimum p and
then adjusting E only by the method of steepest descent. It can be seen,
by comparing these circled points with the value of €;,4 in Fig. 4, that
the mean-square error § converges, as expected, to 8,4 .

Only 500 test pulses are used in each training period because &
converges within this period in all cases. For instance, the convergence
of & to the values shown by points A and B in Fig. 5 are illustrated,
respectively, by curves A and B in Fig. 6. It can be seen that & converges
rapidly to the final values.

IX. SUMMARY AND CONCLUSIONS

It is shown in this paper that in single-sideband systems the trans-
versal equalizer and the carrier phase can be set jointly by the method
of steepest descent to minimize the mean-square equalization error.

The system is analyzed and a receiver structure is developed. The
receiver structure is theoretically as simple as a conventional one.
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Fig. 6—An illustration of convergence.
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A well-known problem of the method of steepest descent is that the
function to be minimized may converge to a local minimum instead
of to a global minimum. To prove that this troublesome problem does
not arise here, the variation of the mean-square error in the parameter
space is analyzed. Exact locations of the stationary points in the param-
eter space are determined and the classifications of the stationary points
are obtained. It is shown that the mean-square error has only global
minima and saddlepoints, but not local minimum or maximum. Thus,
it is not possible for the adjustments to converge to a local minimum,
regardless of the initial parameter settings. This completely eliminates
the problem.

It is also shown that two adjacent global minima (or two adjacent
saddlepoints) are separated by 180 degrees in demodulating carrier
phase, while a global minimum is separated from its adjacent saddle-
points by 90 degrees in demodulating carrier phase. From this, a test
is described to determine whether a global minimum or a saddlepoint is
reached by the adjustments and to eorrect the settings if a saddlepoint
is reached. This test may not be necessary because both previous ex-
perience and theoretical considerations have shown that the method of
steepest descent inherently stays away from saddlepoints.

The choice of the step sizes of the adjustments is also considered.
There are methods for determining the step sizes; however, they require
complicated computations. As an alternative, it is shown in this paper
that the step sizes can be easily determined if the equalizer and the
demodulating carrier phase are adjusted in different steps (the steps
can be alternated in any manner).

Closed-form expressions of the joint optimum parameter settings
and of the corresponding minimum mean-square error are obtained for
computation of system performance. For illustration purposes, a single-
sideband data communication system using a five- or nine-tap trans-
versal equalizer is simulated on a computer. Both theoretical and simu-
lation results show that the equalization error can increase by ten times
or more when the carrier phase is not properly set. These demonstrate
that when the number of equalizer taps is not large, the equalization
error depends critically on the carrier phase setting. The computer
simulation also verifies the theory that the equalization error can be
minimized by using the joint method described in this paper.

X. ACKNOWLEDGMENTS

I wish to thank Miss A. C. Weingartner for writing a computer pro-
gram to simulate the data communication system deseribed in Section



1094 THE BELL SYSTEM TECHNICAL JOURNAL, JULY—AUGUST 1970

VIII, and Miss C. A. Reichenstein for the computer program used in
Section 8.1.

APPENDIX A

Classification of Stationary Points

In this appendix, we prove the statements that:

(@) F is positive definite when p and E are given, respectively, by
equations (45) and (46), and m, in these equations is an even integer;
(77) F is indefinite when p and E are given, respectively, by equations
(45) and (46), and m, in these equations is an odd integer; and
(#72) All the local minima of &, are equal.

Consider the first statement. Let Q be the set of all h except h = 0.
Let © be decomposed into two disjoint sets @, and Q, , where ©, contains
the k’s with &, # 0, and Q. contains the h’s with 2, = 0. Consider first
Q. . Since h; # 0in Q,, equation (53) can be written as

F = oK f " o) — qOF di + 282 f " s di — 22 f " Fw d

(84)
where
N
o) = X elf(t —nTy — NTo) (85)
n=—XN
and
T T 2 (86)

€ = hl L]

For the sake of brevity, we shall denote the entire right side of equa-
tion (45) by p, and the entire right side of equation (46) by E,. For
any funection @, the symbol [(],., denotes the value of G evaluated at
p = po, the symbol [G],, g, denotes the value of G evaluated at p = p,
and E = E,, and the symbol Min G denotes the minimum value of
G in Q, . These symbols and notations may be used jointly. For instance,
Min [G],, g, denotes the minimum value of [(],, g, in @, .

Sinee k, # 0in @, [Fl,,. g, > 0in , if and only if [F/2ki],,. g, > 0
in Q, , or if and only if Min [F/2h]],,.z. > 0. From equation (84),
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Min [:’%lu L= Min [[: [o(t) — (O] dt]pu
o[ awa]
Fwd

In writing the above equation, we have used the fact that #(f) is inde-
pendent of E, s(f) is independent of h, and ¢(f) is independent of p, E,
and h.

Consider the first term on the right side of equation (87). I'rom equa-
tion (85), ¢(2) is a function of §(t), where ~ indicates Hilbert transform.
It can be shown from equations (7) and (19) that

[’?(t)]ﬂu = ['Y(’J’)].owr/z . (88)

Now we have
Min [ f_ " o) — g dt]
= Min fm [ 3 e,,[-y(f —nly — NTy)1,, — g(t):r
~ Min f [ ely(t — 0Ty — NToosers — q(t):r dt

= {Min fm [ﬁ: ely(t —nly — NTo) — q(a‘):r dt} (89)
- potT/2 -

n=—N

Note that equation (88) is used in the second step above. Since the
term Ef__ v eyt — nTy, — NT,) in the last expression above is similar
to s(t) in equation (8), the whole term in the { } in the last expression
above is equal to &, minimized with respect to E. This proves that
Min [[*, [¢(t) — q®)]? d1],, is equal to & minimized with respect to E
and evaluated at p = p, + 7/2. It can be easily shown from equations
(21) and (22) that &, minimized with respect to E is equal to
1/2fol 25— @ — v'y™'v]; hence,

Min |: [ Z [o(t) — g(O dtl

1 & 1 -
= Q_fokz Qe — r)f L4020 J ISP

=—g0

o

=2fak,2_ q‘—_ [2u'y™"v — exp (—72p0)uw’y 'u — exp (12po)v'y ],

(90)
where equation (33) has been used in the last step.
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We have evaluated the first term in equation (87). Consider now the
second term in equation (87). From equations (20), (23), and (26),

f a(Ds(t) dt = —J,-v 'E. ©1)
Substituting equations (33), (45), and (46) into equation (91) and sim-
plifying, we obtain, after some steps,

[f: a(s(?) d‘],,,,,;, FUY Y+ o o (~ 2wy 'y

+ 5 B 2oy v (9
The last term in equation (87) is

o0

f_ Z FQ) dt = 5}— > d. 93)

-—c

Substituting equations (90), (92), and (93) into (87) and canceling out
the terms having opposite signs, we obtain

Min [;;] ']];L- exp (—72p )0’y 'u + ;— exp (i2pa)Vy 'v. (94)
1dpes. Es 0 0

Note that so far m, can be any integer. Let | u’y 'u | denote the magni-

tude of w'y 'w. It can be shown from equation (44) that when m,, is

an even integer, the right side of equation (94) is equal to 2/fo| u'y~ u .

Hence, when m, is an even integer (including Zero),

i35, ., = F 1oy 2

Since |’y 'w| # 0, equation (95) shows that Min [F/2h]],,,z, > 0.
Thus, [F],..g. > 0in Q, when m, is an even integer.
Now consider €, . Since h, = 0 in @, equation (53) is reduced to

F = 2[ [Z h2+n+)\r7(t - nTo - NTo)] dt. (96)

n=—N

Since y(t — nTy — NT,), n = —N to N, are linearly independent and
ha t0 hay.s cannot be all zero in Q,, the integrand in equation (96)
cannot be zero for all . Hence, F > 0 in Q, . This implies, of course,
[Fle.g. > 0in Q;.

We have shown that when m, is an even integer, [F],, g, > 0in @,
and 2, . Hence, when m, is an even integer, [F,,.g, > 0 for all h except
h = 0. This proves the first statement at the beginning of this Appendix.
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Now we prove the second statement at the beginning of this Appendix.
Note that the derivations from equations (84) through (94) hold for
all integer m, . It can be shown from equation (44) that when m, is
an odd integer, the right side of equation (94) is equal to —2/fo| w'y 'u |.
Hence, when m, is an odd integer, equation (94) becomes

.| F 2, .,
Since | w'y "w | # 0, Min [F/2h3],,.g, < 0. Thus, [F],, s, can be negative
in @, (and hence in Q). It can also be positive in @ (for instance, [F],, g,
> 0in ;). Therefore, F is indefinite when p and E are given, respectively,
by equations (45) and (46), and m, in these equations is an odd integer.
This proves the second statement.

Finally, consider the third statement. We have shown that F is posi-
tive definite and &, has a local minimum when p and E are given, re-
spectively, by equations (45) and (46), and m, in these equations is
an even integer. Substituting equations (45) and (46) into equation
(22) and letting m, be an even integer, we see that the local minimum
of &, is

& = 2%0 P2y e — i lw'y e | — fl—ov’Y' . (98)

Since the right side of equation (98) is independent of m, , all the local
minima of &, are equal and hence are all global minima. This proves
the third statement at the beginning of this Appendix.

APPENDIX B

Discussion of Existing Method

A number of methods are described in Ref. 5 for determining the
proportional constant in steepest descent adjustments. It has been
pointed out that these methods can be used to solve certain nonlinear
equations on computer.'

These methods require elaborate computations. For example, con-
sider the possibility of determining o, and g, using the theorem on page
31 of Ref. 5. Since it is assumed in that theorem that a single propor-
tional constant is used for all parameters, we change the scale of p
or E such that it is also appropriate to use a single proportional constant
in our case. After this is accomplished, we can use a single constant e, in
equations (56) and (57). To determine e, , define
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_ A&,
B o ] 4 £ ] ]

n=—N

- (99)

Choose a constant § in the range 0 < § < 1. Compute g(p:, E;, 1).
If g(pr, Ex, 1) < 6, choose o < 1sothat d < g(pe, Ev, au) =1 — 6
(it has been shown that this choice is always possible). If g(o: , E:, 1)
= §, choose o, = 1.

It can be seen from this description that the method requires elaborate
computations and e; must be determined on a trial and error basis when
g(pe , B, 1) < 6. It is therefore difficult to use this method in a receiver.

APPENDIX C

Proof of Proposition 2

In this Appendix, we prove Proposition 2. Consider first k ¢ X, .
Since o, = 0 when ke X, , we have p,,., = px and

A&, = S(Pk ’ Ek) - S(Pk ) Ek+1);

= EiyE, — 2Elv + > ¢

h=—c0

- I:EI‘:'+1YE.\=+1 - 2E£+1V + Z qi:l (100)

h=—co

From equations (57) and (38)
E.., = E; — B.(2yE, — 2v). (101)

Substituting equation (101) into equation (100), we rearrange the
resulting equation into the form

A8, = 4B, (YE, — v)'[I — BYI(YE, — v) (102)

where I is the identity matrix. Let the eigenvalues of y be denoted, in
the order of decreasing magnitude, by N\;, ¢ = 1 to 2N 4 1, so that

MZ A= Z Aowsr s (103)
It can be shown that y is positive definite; hence,
N> 0, i=1t%to 2N + 1. (104)

Let u;, 7 = 1 to 2N + 1, be a set of orthonormal eigenvectors of
y. Let

Q = [uu; -+ Ugyii] (105)
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That is, the 7th column of Q is u, . From well-known matrix properties,
y = QDQ’ (106)

where D is a diagonal matrix whose 7th diagonal element is A; . Further-
more,

QQ’' =L (107)

Substituting equations (106) and (107) into equation (102), one can
write

2N +1

A&, = 46, Z (1 — BA)(FE: — v)'u; % (108)

i=1
If . satisfies equation (62), we can write
1—8M =P >0 (109)
Then, from equations (103), (108), and (109), we have

2N +1

A& = 48P, 2 [(YE: — v)'u,]’. (110)

It can be shown from equations (38), (107), and (105) that

2N +1

[}E 8o | E)][a% 8o ,E,,)] =43 (OB - vul. (1)

Comparing equations (110) and (111) gives

T B[ m] A

Now we have the conclusion:

Conclusion 1. If equation (62) holds, A€, is bounded below by equation
(112) which shows that A&, is positive and approaches zero only when
the partial derivatives (8/9E)&(p: , E:) approach zero.

The above is for k ¢ &, . Next we consider k £ X, . Since 8, = 0 when
ke X, , we have E,,, = E, . From equations (58) and (22)

Agk = 8(pk r Ek) - S(pk-i-l |Ek)1 (113)
= —2E[(vi — Vi),
where
Vi = exp (—jpu + exp (jouv, (114)

exp (—jper)u + exp (pi.)v. (115)

Vi1



1100 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1970

From equation (56) and the two equations above,

Vi = Vi1 = {1 — cos [ﬂk ;_p &(px Eh)]}[exp (—ipwt exp (jouv]

— jsin [ak 56; &(px ,Ek)][exp (—ip)u — exp (jpu)v].

(116)

The vectors u and v are defined in equation (37) and their elements
are defined in equations (34) and (35). It can be seen from equations
(34) and (35) that the elements of w and v are complex numbers. Let
p be written as

p=E+jC (117)

where the elements of ¥ and ¢ are real numbers that can be determined
from equation (34). Comparing equation (35) with equation (34), we
see that the elements of v are complex conjugates of those of u. Hence
v can be written as

v=E—ji (118)

Substituting equations (117) and (118) into equation (116) and then
substituting the resulting equation into equation (113), we obtain after
some steps,

Ag, = 4{005 |:Ct'k é% &(pk , Ek)] - 1}[Er:f cos p; + E[Tsin p]

— 4sin [akgag &(ps Ek)] [Ei cos p, — E(Esin pi]. (119)
From equations (36), (117), and (118),

2jEi(exp (—jp)u — exp (jou)v),

0
a G(Pk , Ek)

2jE[(—27 sin p.£ + 2j cos pil),
= 4[E/£sin p, — E[T cos p.). (120)

- Itis clear from equation (56) that, if (3/9p)&(px , E+) = 0, then py.y =

p. and from equation (115), A&, = 0. So we need to evaluate A&, only
for (8/9p)&(ps , Ex) # 0. It can be seen from equation (120) that, when
(8/9p)&(p: , Ei) # 0, EL¥ and E/{ cannot be simultaneously zero. Hence,
we can define a quantity
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-1 Eid

¢ = tan™ o (121)
and a quantity
C = [E®* + ELOT > 0. (122)
From equations (121) and (122), equation (120) can be rewritten as
a .
—a_p &(pr , Ey) = 4Csin (p, — ¢). (123)

Substituting equation (123) into equation (119), using equations (121)
and (122), and rearranging, we obtain, after a number of steps,

A&, = 4C{cos [pp — ¢ — 4Ca sin (o, — ¢)] — cos (p. — )} (124)

or
A8, = 8Csin [p, — ¢ — 200y sin (p, — ¢)] sin [2C ey sin (p, — ¢)].  (125)

It may be assumed that 0 = p. — ¢ = 27 (a factor of 27 or its multiple
can be dropped). Since (d/3p)&(ps , Ex) # 0, p. — ¢ cannot be 0, =, or
27 [see equation (123)]. Hence, we have either

0<p—o<m (126)
or
T < P — ¢ < 211'. (127)

We shall consider equation (126) first.

As can be seen from equation (56), the constant «, determines the
size of each adjustment (note that «, > 0 is required so that the ad-
justments will be made in the negative gradient direction). We wish
to determine the permissible range of «; , that is, to determine a number
d such that A&, > 0 for every «, in the range 0 < e« < §. It can be
shown from equations (124) and (126) that & can only be as large as
1/2C; hence, the permissible range of a; is

0<ay < (128)

1

2C"

From equations (128) and (126), we obtain
0 < 2Ca; sin (p. — ¢) < 1. (129)

It can be easily shown from equation (129) that

sin [2Ce sin (o, ~ )] > L aCaysin (o — 9) > 0. (130)
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Tt can be shown from equations (126) and (128) that [p, — ¢ — 2Ca, sin
(px — ¢)] must be in the range

(131)

l\DI‘-'i

0 < [px — ¢ — 2Ca;sin (p, — ¢)] <
or in the range

5 < lo— ¢ — 2Causin (o — ¢)] <. (132)

When equation (131) holds,

sin [py — ¢ — 2Cay sin (p, — ¢)] 2 '21; [px — ¢ — 2Ca sin (o — ¢)].
(133)

Combining (133) and (130) and using equations (125) and (123), we
obtain, after some simplification,

2
AS > 2“" 2 — 40%1[ &(os , Ek)} (134)
It can be shown in a similar manner that when equation (132) holds,
8Ca;
Ag, > Tf" [—- &(ps , E;,)-J (135)

It has been shown from equations (126) and (128) that either equation
(134) or equation (135) holds. In a similar manner, it can be shown
from equations (127) and (128) that either equation (134) or equation
(135) holds. Thus, we have the conclusion:

Conclusion 8. When equation (128) holds, either equation (134) or
equation (135) holds. Physically this means that, when equation (128)
holds, A&, is positive and approaches zero only when (9/8p)8&(px , Es)

approaches zero.
It is not easy to determine whether equation (128) is satisfied in

practice because the constant C depends on E, , £ and ¢ and is some-
what difficult to compute. Hence, we wish to replace equation (128)
with inequality (63) in Proposition 2.

From the definition of v, in equation (114) and from equations (117)
and (118), we can write

2E/v, = 4[cos p,]EL¥ + 4[sin p:ELL. (136)
From equations (136) and (22), one can show that
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Lk - g(pj, ’ E;) = ‘J:E;:E COS pg + 4E;c sin Pk (137)
where

L, = EiyE, + E qf .

h=—c0

Note that the terms EZyE,, 2.2 _. ¢*, EZ£, and E[{, in equation (137)
are independent of p. Furthermore, equation (137) holds for all p .
Letting p. = 0 in equation (137), we obtain

Lk - [8(]3;‘ ) Ek)]u—o = 4EA’:£ (138)

where [E(p. , Ey)]ou-0 is &(pe , E;) evaluated at p, = 0. Since &(p, , E;)
= 0 for all p, , we have from equation (138)

L, =z 4EJ&. (139)
It can be shown from equation (22) that
(8o » E]psma < 2Ly . (140)
From equations (140) and (138),
—L. < 4E[L. (141)
From equations (139) and (141),
(BLo)® = 5L (142)

We have obtained equation (142) by letting p, = 0 in equation (137).

If we let p, = 7/2 in equation (137), we obtain, in a similar manner,
(EL0)* = &L;. (143)

TFrom equations (142), (143), and (122),

1
C = 50 L . (144)

Using sampling theory, we can verify that

L = 2}‘0[ f i £(0) f”]g + 9f, f_ T 20 dr (145)

where [[2, s°(t) dl]g, is [%, s°() dt evaluated at E = E, .
It can be seen from equations (144) and (145) that, if equation (63)
holds, equation (128) is satisfied. Thus, we have the conclusion:

Conclusion 3. When equation (63) holds, equation (128) holds and,
from Coneclusion 2, either equation (134) or equation (135) holds. Hence,
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when equation (63) holds, A&, is positive and approaches zero only when

(8/9p)&(ox , Ex) approaches zero.
Now, let us summarize the results presented in this appendix. It has

been shown that when equation (62) holds in X, , A&, is bounded below
by equation (112) (see Conclusion 1). It has also been shown that when
equation (63) holds in X, , A&, is bounded below by either equation
(134) or equation (135) (see Conclusion 3). It is seen from the lower
bounds in equations (112), (134), and (135) that A&, is positive and
approaches zero only when the partial derivatives approach zero. Since
%, and %, each contain an infinite number of &’s and since the mean-
square error & cannot reduce without bound, & must converge to a
stationary point. This proves Proposition 2 in Section VI.
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