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Near the edge of a charged electrode on the surface of a semiconductor,
the field in the semiconductor may become very large because of the accumu-
lation of charge at the electrode edge. Such large local fields are undesirable,
not only because they may cause local breakdown, but also because they
make the behavior of a semiconductor device difficult to predict.

In the present paper we consider a simple mathematical model of an
electrode edge-semiconductor-insulalor configuration and derive conditions
under which large local fields may be avoided. More accuralely, since the
electrode edge and semiconductor corner angles are assumed to be perfectly
sharp, we derive conditions under which the local field in the semiconductor
18 nonsingular. It is necessary to include the effect of the surrounding
insulator, because even for small insulator-semiconductor dieleciric constant
ratios, a field singularity in the insulator will be coupled back inio the
semiconductor.

I. INTRODUCTION

Beneath a charged electrode situated on the surface of a semicon-
ductor, at points far from the electrode edge, the electrostatic field is
regular and quasi-one-dimensional, with its maximum value at the
electrode. Near the electrode edge, however, the field may become very
large because of the accumulation of surface charge at the sharply curved
electrode edge.’ Also, the jump in dielectric constant between the semi-
conductor and the surrounding insulating material may produce a
large local field intensity. Such a field may be so large as to cause ava-
lanche breakdown near the edge, but, in any case, the presence of such
an edge effect makes the behavior of a semiconductor device difficult
to predict.

* On leave from the Technion-Israel Institute of Technology, Haifa, Israel, when
this work was performed.
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In this paper we consider a simple mathematical model of an electrode
edge-semiconductor-insulator configuration, namely a sharp-edged elec-
trode on top of a semiconductor mesa, as in Fig. 1. We study the be-
havior of the potential, or rather its singular part, in the two wedge-
shaped semiconductor and insulator regions shown in the inset circle
of Fig. 1, assuming that the potential is locally planar and that its
singular part satisfies Laplace’s equation, both in the insulator and in
the semiconductor. Since the treatment is local and the electrode edge
and mesa corner are replaced by mathematically sharp wedges, our
analysis can only predict the existence or nonexistence of a singular
field at the edge and cannot produce an estimate of local field strength,
which depends on conditions far from the edge.

We derive an estimate of the order of the singularity in the potential
of the form ¢ = 0(r*), where r is the distance from the corner and
p > 0. The local field is thus of order +*”", singular for p < 1. We con-
sider p as a function of the semiconductor wedge angle a, the electrode
wedge angle 8, and the insulator-semiconductor permittivity ratio
g, for a and 8 between zero and 180° and » between zero and one.

We find that, to avoid a field singularity, we must make g8 greater
than 90° and « less than 90°. In particular, if we take g8 = 180°, any
o less than 90° yields a nonsingular field. Such a configuration might
be realized, for example, by using an overhanging electrode on an under-
cut semiconductor mesa, as in Fig. 2. The length of the overhang must
be several Debye lengths for small electrode potential and several
depletion layer thicknesses for large reverse bias, in order that the
present theory be applicable.

Figure 3 summarizes our principal results. It gives the range of a,
for 90° < B8 < 180° 0 £ 5 = 1, within which the field is nonsingular.
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Fig. 1—Mesa with sharp-edged electrode.
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Fig. 2—Overhanging electrode on undercut mesa.

It should be noted that our results apply without modification to edge
fields in capacitors and, with the appropriate interpretation, to steady
temperature fields in conductors. In the latter case, it would be interest-
ing to study the corresponding thermal stresses, as, for example, in a
glass-to-metal seal.

II. A MODEL OF THE ELECTRODE EDGE

We consider the electric field in a current-free semiconductor, near
an electrode edge whose cross-section is sketched in Fig. 4. The sketch
shows a typical semiconductor mesa with corner angle «, surrounded
by insulating material, and supporting an electrode with corner angle
B. For given insulator-semiconductor permittivity ratio n = €/ (0.1
for air-silicon, 0.3 for silica-silicon), we wish to choose « and 8 to avoid
local field singularities.

In the semiconductor the dimensionless potential ¢ satisfies an equa-
tion of the general form

Vi = f(o), (1)

where the Laplacian operator is made dimensionless with the Debye
length for small potential and by the depletion layer thickness for large
reverse bias (see, for example, Ref. 2). “Large” or “small”’ distance then
means large or small with respect to one of these typical lengths. In
particular, we shall assume that the electrode is so large in a direction
perpendicular to the cross-section that the local field may be treated
as planar.

We seek solutions of equation (1) which have field singularities at
the vertex r = 0, that is, a bounded potential ¢ such that | V¢ | is
unbounded at r = 0. In the neighborhood of such a singularity the in-
dividual second derivatives which make up the Laplacian will be very
large, although they must combine to make the Laplacian equal to the
bounded function f(p). As far as the singular part of the solution is
concerned then, the specific form of f(¢) is unimportant and we can in
fact set f(¢) equal to zero. The singular solution then satisfies Laplace’s
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Fig. 3—Bounds on semiconductor angle « as a function of electrode angle 8 for a
nonsingular field.

equation
Vip = 8%/0r" + dg/r dr + %e/r’ 86° = 0, (2)
in the neighborhood of » = 0, both in the semiconductor (0 < 8 < a)

and in the insulator (@ < 6 < 2 — f). At the electrode faces we have
the boundary conditions

‘P(T) 0) = ‘P(TJ 2r — ﬁ) = 1t (3)
while at the semiconductor-insulator interface, in the absence of surface
charge, we have the continuity conditions*

* Ag we shall see, no matter how small 7 is, equation (5) couples any singularity

in the insulator back into the semiconductor. Satisfaction of this condition is an
essential feature of the problem.
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Fig. 4—Semiconductor-electrode edge configuration.

olr,a”) = ofr, a"), (4)
de(r. a”)/90 = nie(r, a™) /8. (5)
We now expand ¢ in positive powers of r, setting
[1 + > Ag sinp,4, for 0<6<a,
ofr, 6) = =

A

11 + Y Bp™sinp(2r — B — 6), for a =< 8=2r—8,
k=1

satisfying equation (2) and boundary condition (3). The A’s, B’s, and
p’s are chosen to satisfy the continuity conditions (4) and (3), which
take the form

A sinpa — Bsinpr — B —a) =0,
A cospa + nB cosp@r — B — a) = 0.

These equations have a nontrivial solution only if the coefficient deter-
minant vanishes, giving the characteristic equation for p

7 sin pa cos p(2r — B — a) + cos pasin p(2r — B — a) = 0. (6)

We wish to find the smallest positive value of p which will satisfy this
equation, as a function of @, 8, and 5. For this value of p we have

¢ — 1 =007,
| Ve | = 06",

singular for p < 1, in the neighborhood of » = 0.
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III. THE FLAT SURFACE AND THE MESA

Before treating the general problem, let us consider two special cases,
in order to gain insight into the behavior of p as a function of o, 8, and
7. In the very common case of a thin electrode (8 = 0) on a flat semi-
conductor surface (@ = =), as in Fig. 5, the characteristic equation (6)
reduces to

sin pr cos pr = 0, (N

for all 5. It is satisfied by p = 1, p = %, the latter being the smallest
value of p. In this case, near the electrode edge the field is singular, like
r~} no matter what insulating material is used. This is the same singu-
larity as that obtained in the classical Weber problem of the disk elec-
trode. The same local behavior was also found in Ref. 3, where a closed-
form solution of the above problem was derived for the linearized
semiconductor equation and » = 0, 3 = L.

Now let us attempt to reduce the singularity by cutting away the
semiconductor, placing the electrode on top of a mesa, as shown in Fig.
6 for « = w/2. For n = 0 this configuration gives a one-dimensional,
regular field, normal to the electrode, so that we might expect that it
would be advantageous for small n. With 8 = 0, @ = =/2, equation (6)
becomes

usin%r cos%—"—r-{-cos?;—wsmgsﬁ:ﬂ, (8)
satisfied by p = 1, for all n. However, note that, for n = 0, it also has
the smaller root p = 2. If we examine the equations for A and B, we
find that, in this case, A = 0, so that the root p = 3 gives a singularity
only in the insulator for = 0. However, a perturbation for small posi-
tive n shows that A is of order », so that the singularity is coupled back
into the semiconductor for any positive 5, no matter how small.

On the other hand, for n = 1, the smallest root of equation (8) is
p = %. In this case p is independent of &, for = 1 corresponds to a
single dielectric filling the whole space around the electrode. Now, if

B=0
\\
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Fig. 5—Flat semiconductor surface.
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Fig. 6—Right-angled mesa corner.

p is a continuous function of 5, its value for 0 < # < 1 must lie between
the value for n = 0 and the value for y = 1; that is, we must have

i<p<i

for8 =0, = m/2,and 0 < 5 < 1. For small 5, the singularity is weak-
ened in some sense, but not removed, by the formation of a mesa.

These two special cases indicate that the caleulation of p = p(a, 8, 7)
is not completely straightforward. They also suggest that the simple
cases n = 0, n = 1 can be used as a framework for the general calcula-
tion.

IV. LIMITING VALUES OF PERMITTIVITY RATIO
Let us first consider the case n = 1. In this case equation (6) becomes
sin p(2r — B) = 0,
independent of «, as one would expect. Its smallest positive root is

p=peB1) =@ =r/@2r - 8), (9)

singular for 8 < . Those familiar with potential theory will recognize
this as the singularity at the tip of a wedge-shaped electrode, protruding
into a uniform dielectric. It has been studied in detail by Wasow,
Lehman, and Joyece."™®

The other limiting case n = 0 gives two roots. Equation (6) becomes

cos pasin p(2r — B — a) = 0,
with the roots
p = ple, B,0) = pi(a) = /2, (10)
p = pl, B,0) = pila, B) = 7/C2r — B — a). (11)

The first of these roots gives a singular field in the semiconductor for
a > w/2; the second gives a singular field for & 4+ 8 < = (in the insulator
only, for = 0) but weakly coupled back into the semiconductor for
small positive 7.
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For 0 < n < 1, p must lie between p, and the smaller of the two
values p5 , p% . Now p3 > phfora < (2r — B8)/3, so that p lies between
p,and p} , for0 < a = (2w — B)/3, and between p, and p7, for (27 —
B)/3 £ a < m Also p3 < py, for @ > (27 — f)/2, so that we finally
obtain the series of bounds listed below:

L T 2r — B
21r—,6<p<21r——ﬁ—a' for 0 <a< 3 (12)
T L 2r — 8 2r — B
211__'6,<p<20t, for —3 <a< =5, (13)
T <p<— for 2B co<n (14)
% ~P S oy —p’ 2 '

Now the largest value of the upper bound is attained at the point where
the upper bound of equation (12), an ascending hyperbola as a funetion
of «, meets the upper bound of equation (13), a descending hyperbola,
that is at the point @ = (2= — §)/3, where p = 37/2(2m — B) = Dmas-
For 8 < m/2 this maximum is less than unity, so that a field singularity
can be avoided only by choosing the electrode angle 8 greater than 90°.
Similarly, the upper bound of equation (13) implies that the semi-
conductor angle a must be chosen less than 90° to avoid a field singu-
larity.

A particularly simple way of satisfying these requirements is the
combination of overhanging electrode (83 = ) and slightly undercut
semiconductor mesa (¢ = =/2) shown in Fig. 7. In order that the theory
be applicable, the length of the overhang must be several characteristic
lengths, i.e. several Debye lengths for small electrode potential and
several depletion layer thicknesses for large electrode potential. The
mesa corner needs to be undercut only enough to be certain that « is

Fig. 7—Overhanging electrode on undercut mesa,
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never greater than 90°, within fabrication tolerances. In Section V we
document these preliminaries.

V. ARBITRARY PERMITTIVITY RATIO

For detailed calculations it is convenient to rewrite the characteristic
equation (6) in the form

14+ 5)sinp@r — B) + (1 — p) sin p(2r — 8 — 2a¢) =0 (15)

from which it is a simple matter to ealeulate the derivative

ap 2(1—n)p cos p(2r—B—2a) _
da (141)(2r—p) cos p(2r —B)+ (1 —1)(2r—B—2a) cos p(2r—f— 2a)

(16)

Now, whereas it is difficult to solve equation (6) directly for p as a
function of a, 8, 1, because of the existence of neighboring higher roots,
it is a simple matter to integrate equation (16), starting from a = 0,
where p = x/(2r — @) for all 5. This calculation was carried out for
n =0,0.1,0.3,0.5, 0.7, 1.0 and for 8 = 0, v/2, 3x/4, =. The results are
shown in Figs. 8 through 11, for the two lowest branches of p.* As
Section IV predicts, a nonsingular field (p = 1) becomes possible only
for 8 = /2, with the range of permissible values of & and 4, increasing
frome =7/2,n=0,at 8 = 7/2, to 0 < a < 7/2,0 < g < 1, at
B =

This range of values of a for given 8 and 5 is easily found. If we set
p = 1 in equation (15), we find that it is satisfied by two values of «,
which bound the permissible range for a nonsingular field. Figure 3
shows the result of this elementary calculation. For example, for g =
3r/4, n = 0.1, the field is singular for & < 0.2917 = 52.5°, regular
for 0.2917 < a < 0.4597 = 82.5° and singular again for larger . The
slanting dashed line gives the minimum value of 8, and the correspond-
ing value of «, for which the field is nonsingular for given 7.
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* Two branches are shown to indicate the topology, although of course only the
lower branch is of interest.
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