Analysis of a Thin Circular
Loop Antenna Over a Homogeneous Earth

By S. C. MOORTHY
(Manuseript received March 31, 1969)

In this paper, the current distribution on a bare conducting loop, sit-
uated in free space over a semi-infinite medium, is obtained for arbitrary
time harmonic excitations. The loop is assumed to be thin, perfectly con-
ducting and the standard one-dimensional integral equation and its Fourier
sertes solution are used as the starting points. The field due to the current
in the loop, where the semi-infinite medium 1is absent, is expressed as a
superposition of plane waves. The tangential component of the field reflected
by the interface, of the semi-infinile medium, is evaluated using appropriate
Fresnel reflection coefficients. This reflected field serves as a new source
for the loop and induces a current on the loop. The field due to the induced
current is treated in the same manner, and this process is repeated indef-
initely. The summation of the original current and all the induced currents
gives the steady-state current on the loop.

I. INTRODUCTION

It is well known that a high altitude nuclear burst generates an
intense electromagnetic transient which covers a large geographical
area.' This transient field induces currents in communication cireuits
and, if these are large enough, adversely affects communieation channels.
One problem of particular interest in land-line communication is the
coupling to large loops formed by cables.

The loops formed by cables deployed in practical communication
systems are very complex and cannot be analyzed easily. Typically,
they run for many miles over inhomogeneous terrain and contain many
junction points; nevertheless a great deal of insight into the behavior
of these irregular loops can be obtained by studying the behavior of
a large regular loop over a homogeneous ground. In this paper, the
theoretical foundations for an analysis of a circular loop over a homo-
geneous ground are developed, for time harmonic excitations. The
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response of the loop for transient fields may be obtained by standard
TFourier transform techniques.

Various problems related to the thin circular loop have been con-
sidered by numerous authors. These may be broadly classified under
two categories: loop in an infinite homogeneous medium and loop in
a stratified medium.

In the first category, Pocklington, Oseen, Hallen, Storer, and Wu
have analyzed the problem of a bare thin perfectly conducting circular
loop in free space.””® All these authors use the Fourier series expansion
to solve the integral equation for the current in the loop. A good analysis
of the problem is given in Wu's paper. Adachi and Mushiake analyze
the same problem by solving the integrodifferential equation for the
current using an iterative method.”® Mei, Baghdasarian and Angelakos,
and Tang have discussed the direct numerical solution of the integral
equation.”™" A variational approach for determining the scattering
cross section of a loop is given by Kouyoumjian.'* Problems concerning
loaded loops are considered by Iizuka, Harrington and Ryerson, and
Harrington and Mautz.®"'® The analysis of a loop in a conducting
medium is an extension of the analysis of a loop in free space and lends
itself to certain approximations. Kraichman, Chen and King and
King, and Harrison and Tingley have discussed the bare loop in a dis-
sipative medium;*™** Galejs has discussed an insulated loop in a dis-
sipative medium." Finally, the solution to the problem of two identical
coaxial coupled loops in a homogeneous medium has been solved by
Tizuka, King and Harrison.”

In the second category the literature is mostly on small loops or
magnetic dipoles over different types of media and is very extensive.
(See Ref. 21 for an extensive bibliography.) Wait has considered the
problem of loops over a homogeneous earth;**** recently, Sinha and
Bhattacharya have analyzed the problem of a vertical magnetic dipole
buried inside the earth.**

The treatment of a small current carrying loop as a magnetic dipole,
while satisfactory for many purposes, is nevertheless inexact. Moreover,
we do encounter situations where the loop diameter is comparable to
the wavelength of the excitation frequency and here we cannot assume
the current to be uniformly distributed on the loop. A typical example
would be the excitation of a loop by a narrow electromagnetic pulse
which contains a broad spectrum of frequencies. The purpose of this
paper is to solve the problem of a bare loop over a homogeneous earth
taking into account the current distribution on the loop.

Specifically, the system under consideration is a bare, thin, perfectly
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conducting circular loop of mean radius b, formed by bending a cy-
lindrical wire of radius g, situated in free space with its plane parallel
to and at a distance d from the interface of a semi-infinite, linear homo-
geneous, isotropic medium (Fig. 1). The loop is excited by an electro-
magnetic wave of harmonic (exp jwt) time variation (the slice generator
used to compute the admittance being a limiting case). It is assumed
that k,a << 1 and @ < b, so that, if the loop were situated in a homo-
geneous medium the current distribution induced by a specified time
harmonic excitation is given by the so-called one-dimensional integral
equation.’ In addition it is assumed that d >> a.

It is desired to determine the current distribution I(¢) on the loop
in the aforementioned system. This is accomplished in the following
three, more or less self-contained, sections. In Section II the field of a
circular filamentary current in free space is expressed as a superposition
of plane waves. Section ITI evaluates the reflected field when an arbitrary
field, of the general form obtained in Section II, is incident on the
interface between free space and the semi-infinite medium. In Section
IV the results of Sections II and IIT are combined with the integral
equation for the current on a loop in free space to determine the steady
state current I(¢) on the loop using a recurrent ‘“‘reflection-induetion”
scheme.

II. THE ELECTROMAGNETIC FIELD OF A CIRCULAR FILAMENTARY CURRENT

Consider a circular filament of current I(¢) (Fig. 2a) of radius b
situated in free space. The coordinate system is so chosen that the
loop is parallel to the zy plane at a distance d from it. The loop current
may be expressed as a surface current density K, in the z = d plane,
in the following manner.

K = a,I(¢)é(p — b)é(z — d) 6y

where p, ¢ and z are the cylindrical coordinates and a, the unit vector
in the ¢ direction. The electromagnetic field due to K may be expressed
as a superposition of plane waves as follows.

HY = ffm [£P, £Q, (IP + mQ)(1 — * — m")™}

exp {jk,[lz + my F (1 — I — m*)z — d)]} dl dm,
z2d. (2



1218 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1970

Z>0, FREE SPACE

\
\

Fig. 1—A thin circular loop over a homogeneous semi-infinite medium.
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Fig. 2—(a) A filamentary loop current in free space, (b) A filamentary loop current
over a homogeneous semi-nfinite medium.
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where

P, m) = @80 [ Koo, ) exp (ke + m)) dody, @)

QU m) = —8%) [[ T Ke, ) exp —dklle + m)) dody, (3

k= o'me, and n, = (u/e,). ©)

The quantities ! and m are in general complex and the integrals in
equations (2) and (3) are contour integrals, the choice of contours
being dictated by physical considerations. A possible choice of [ and m
is defined by the following transformation

[ = r cos yb,} 0 £ 7, ¢ being complex. (7
m = rsin ¢,
Let
I(¢) = ; I, exp (jng). ®)

Substitution of equations (1), (7) and (8) into equations (4) and (5),
and changing from rectangular to eylindrical coordinates yields the
following equations

Plr, §) = (/87 35 (=" exp i ulkb) (s + Lv),  (0)

Qr, ) = —i50/87) 3 (=3 exp (Wb (ams — L), (10

where J, denotes the Bessel function of order n.

ITI. CIRCULAR FILAMENTARY CURRENT OVER A SEMI-INFINITE MEDIUM

Here again we consider the filamentary loop of Section II, but instead
of being situated in free space it is situated over the homogeneous
semi-infinite medium z < 0 (Fig. 2b). The total field in the region
z = 0 consists of the primary field E'”, H’ of the filamentary current
[equations (2) and (3)] and the field E’, H* reflected by the interface
z = 0. We proceed as follows to evaluate the latter. Let

HY@, 3,9 = [[ H,m) e [—jkal, ma dldm, 2 <4,

(11)
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E¥z, y,2) = ff_ E.(I, m) exp [—jk.n,(l, m)-r] dldm, =z =d,

(12)
where
H,(, m) = [—a.P — a,Q + a.(P + mQ)1 — I — m*)™"]
cexp [—jkd(1 — I — m")*], (13)
E,(, m) = n{a[lmP + (1 — BQI1 — F — m)™*
+ a,[(m* — DP — ImQ](1 — I* — m")™} + a.(mP — 1Q)}

-exp [ k(1 — IF = m)], (19
n(l, m) = —a,l —am — a,(1 — I — m*)}, (15)

and
r=ax+ay+ a.z (16)

Each one of the constituent plane waves propagates in the ‘‘direction”
n,(l, m). Let R, (I, m) and E,(l, m) represent the Fresnel reflection
coefficients for the cases where the incident electric field is perpendicular
and parallel respectively to the plane of incidence. Evaluation of the
reflected field is achieved by resolving each plane wave into components
with the electric field perpendicular and parallel to the plane of incidence.
To this end we define a local coordinate system' as shown in Fig. 3.

The plane of incidence is defined by the unit vectors a, and n,(l, m).
Let

(az >< no)/[l - (az'na)zl%:

a, =a, Xa,.

a,

a7)

Then a, , a, and a, form a right-handed coordinate system, a, is normal
to the plane of incidence and a, and a, lie in the plane of incidence.
In terms of a, and a, we have

a, = (' + m") (ma, — la,), (18)
a, = (* + m)¥(la, + ma,). (19)

t The propagation vector n, becomes complex for certain values of I and m, the
associated plane wave being inhomogenous. When this happens some of the terms
used in the analysis (for example, plane of incidence, coordinate system, normal,
and so on) become inaceurate and should be interpreted in a generalized sense.
The results obtained are quite general and valid.
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Fig. 3—Loecal coordinate system.
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The field vectors H, and E, are now resolved into components per-
pendicular (H,, , E,,) and parallel (H,; , E,;) to the plane of incidence

as follows
H, = H,, +H,,

where

H,, = a,(' + m")}1Q — mP) exp [—jk.d(1 — ' — m®)?],

H, = [a.(1 —  — m) ™ — a,(* + m)7Y(IP + mQ)

cexp [—jk.d(1 — I — m)}],
E, =E, + E,,

where

E.. = am,(I* + m)7(1 — I — m*) (P + mQ)
exp [—jk.d(l — IF — m*)1],
E, = nla, — a,(I* + m)7'(1 — I — m»(mP — 1Q)

-exp [—jk.d1 — P — m».

It may be easily verified that
I-InLI = no_l(no X En.l.):
Eﬂ\l = _’?ﬂ(no x Hal)-

(20)

2D

(22)

(23)

(24)

(25)

(26)
(27)
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The reflected field corresponding to the incident field defined in
equations (11) and (12) may be represented as

H @, y,2) = [[ B, m exp[—ikn,mrlddn, 220,

E"z, y,2) = fj: E.(l, m) exp [—jkn,(l, m)-r] dldm, 2z =0,

(29)
where
n(om) = —al—am+ (1 - —mdla,. (30)
Let
H, = H., + Hy, (31)
E,=E, +E,. (32)
According to Fresnel’s laws
E,, = R.(l, mE,. , (33)
H,, = R, mH,,, (34)
where
By(l, m) = {uk,(1 = I — m")" — w[k* — k(" + m")]'}/
k(1 — B — m)' + wk® — K20 + md)]Y, (35)

Ry, m) = {ph*d — B — m" — uk,[k* — KX + m*)]}}/
(p k(1 — I — m®! + pk [k — k(@ + mD)), (36

k= —jop(o + jue). 37

We also have the relations
Hy = 7, (0. X Eul), (38)
Ey = —n.@m X Hal). (39)

Substitution of equations (33), (34), (38) and (39) into equations (31)
and (32) yields

E, = R,E,, — n,Ri(n. X H,)), (40)
H,=RH, + 7, Ri(n; X E,y). (41)
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Equations (40), (41), (28) and (29) specify the reflected field com-
pletely. The ¢ component of the electric field is of special interest since
it induces a current in an actual circular loop. Taking the ¢ component
of equation (40), using polar coordinates for z, y, and equation (7),
we obtain

By = [R(1)(1 — P sin ¢ — Q cos ¢) sin (¥ — ¢)
— R.(D(1 — )P cos ¢ + @sin ) cos (¢ — ¢)]

exp [—jk.d(l — )1, (42)
where
Ry(r) = [wk'1 — )} — uk,(&* — kir"4/
[wak®(1 — 7' + ko (6 — kor)Y], (43)
Ry(r) = [uk,(1 — )" — (K — kir)")/
k(1 — 7)) + wl&® — K™Y, (44)

P(r, ¥), Q(r, ¢¥) are defined in equations (9) and (10), and after re-
arrangement yield the following equations

P cos ¢ + @sin ¢ = j(4x) kb i I.J(k,bT) exp I:-m('l’ - g)] !

n=—od

Psin ¢ — Q cos ¢ = (4x7) " 'nk, i I,J,(k,br) exp [m(¢ — ’;ﬂ ,

fn=—c0

(46)

where the prime denotes differentiation with respect to the argument.
The ¢ component of the reflected field is contained in equation (29)
and is explicitly given by

E;”(P: $,2) = ./:D /; Eou(r, )

cexp [jk,pr cos (¢ — @) — jk2(1 — ) dyrdr. (47)

The contour of integration C in the complex ¢ plane is to be chosen
from physical considerations. An examination of equations (42), (45)
and (46) shows that the ¢ integrals g, , J, are of the form

gia= [0 - g ew [m(w# ~7) + dhor cos (9 — ¢)] dy. (48)

¢ COS
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Since g, ., are solutions of Helmholtz equation in eylindrical coordinate
system, we expect them to be eylindrical functions (compare with Ref.
26, pp. 367-368). The requirement that they be bounded when the
argument of the Bessel functions approach zero determines that they
are the ordinary J functions. Thus we obtain,

9 = 2mn(k,pr) ™" J.(kop7) €xp (jnd), (49)
9» = — 2w J(k,p7) exp (fng). (50)

Substitution of equations (42), (45), (46), (48), (49) and (50) into
equation (47) yields the following expression for the ¢ component of
the reflected field

E:&r)(P: ¢’; Z) = 211' Z Inzn(p.v 2) exp (.Tnd)): (51)

n==c0

where
2.(p, 2) = (4m) k3D, f (k2 pb) T (e, p7) (e, b7) 7 (1 — 7°) 'Ry ()
Yo

— T (kb (kopr) (1 — )R (7]
cexp [—ik.(z + d)(1 — )Y dr. (52)

In particular,
2(b, d) = (o) by, [ 0D TGS — PR
a

— J2k,br)r(1 — )R (7)) exp [—j2k.d(1 — )4 dr
(53)

IV. CONDUCTING CIRCULAR LOOP OVER A SEMI-INFINITE MEDIUM

In this section we consider a perfectly conducting thin eircular loop
of mean radius b situated over the semi-infinite medium (Fig. 1) with
its plane parallel to the interface. The radius of the wire forming the
loop is @ and the height of the loop above the interface is d.

4.1 Current Distribution

Let F(”(¢) be the ¢ component of the applied electrie field, I © ()
the current distribution that would be created by E;”(¢) on the loop
if it were situated in free space and I(¢) the current dlstrlbutlon caused
by E{” (¢) when the loop is situated as shown in Fig. 1. Typical examples
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of E{”(¢) are the slice generator (used in admittance computations)
and the ¢ component of the electric field that would exist at the loop
location in the absence of the loop (as in scattering problems).

The relation between the applied tangential electric field and the
currents induced on a loop takes the form of coupled integral equations
which are extremely difficult to solve.” However if the loop is “thin”
(@ < b, a < \) the current distributions on the loop is given accurately
by the so-called “one-dimensional integral equation.” Thus we have

ES($) = f G — ¢ @) d¢, (54)
where
2

G(z) = j(41r)_1n,,|:kab cos x + (k,b)™" ;'?](Za-r)_1

.f_‘i': {R(z) exp [—jkoR(x)}}n_,zui” de, (55)

R(z) = bl4sin® (z/2) + (a*/b")]". (56)

A formal solution to equation (54) is obtained by using Fourier series
representations as follows. Let

196 = 3 1 exp (), )
- BOW = 3 o exp (jnd), 59)
G~ ) = 3 6aexp line — 4], (59)

where
19 = @™ [ 16) exp (—ind) do, (60)
o =0 [ "EP (@) exp (—ing) de, 61)
go=cn" [ " G(2) exp (— jnz) d. 62)

Substitution of equation (57), (58) and (59) into equation (54) yields
the following relation between the Fourier coefficients

I = 2m)7 (" /8. (63)
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The current distribution is given by

+o0

I%%) = 207" 2 (@”/B.) exp (ing).

n=-—o0

(64)

Let E” (¢) be the tangential electric field, at the loop, of the reflected
field Whose incident field is caused by I’(¢) and let I'”(¢) be the

current distribution on the loop caused by E{" (¢). Let

E{(¢) = E ! exp (jng),

n=—u

+

IV(g) = 2 I exp (jng).

n=-—o0

Then
I = (2m) /8.

(65)

(66)

(67)

[compare with equation (63)]. Also from equations (51) and (65) we

obtain
ol = 2xI"z,(b, d).

Hence
I’(‘l) — I;")[z"(b, d}/.Bu]'

(68)

(69)

In general, if 7¢* denotes the nth Fourier coefficient of current distribu-

tion I (¢), induced by the kth reflected field we have

Iik) = Ir(ak—l)[zu(b; d)/ﬁu]: ,l{; = 1? 2? T

Let
@) = 3 Luexp (ind).
Then
I = EI(H
that is,

I,=I" 41" +17 + ---
= 191 + [z2.(b, d)/B,] + [2a(b, D)/BT + -1,

= I;7{1 — [z.(b, d)/B,]}™", provided | [z.(b, d)/B.]

| < 1.

(70)

@1

(72)

(73)

Henceforth, we assume that | z,(b, d)/B.| < 1. Substituting for I;”
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in equation (73) from equation (63) we obtain

In = (QW)_I‘I}ID)[B“ - zn<b? d)]_la (74)
1@) = Qo) 3 a8 — 2, d)" epjng. (T9)

The following expression for 3, is obtained by simplifying equation
(62):

By = j(drk,b%) ™ n,(2/m)
T/2
[ BED @ + Vas(@] = 2 M@)o sne 46, (T6)
where
M,(z) = 1 fm (sin’ 8 + 2%/4b")7}
W) =~ J, s @

-exp [—72k,b(sin® 8 + 2°/4b*)*] cos (2n8) d8.  (77)
Let

K, = (2/m) f " @ a0. (78)

a—2a sin §

Then
B = j(4ak,b*) 0 [3(k,0) (Kner + Komy) — 2°K,). (79)

4.2 Input Admittance

Let the primary source be a slice generator (delta function source)
of voltage V located at ¢ = 0. That is

E (@) = [Va(g)/bl. (80)
Substituting equation (80) into equation (61), we obtain
al” = (V/2xb). (81)

Substitution of equation (81) into equation (75) yields

+w0

I@) = V@AD" 2 [8. — z.(b, d)]™" exp (jng). (82)

n=—w

The admittance ¥ at the input terminals at ¢ = 0 is given by

Y = I0)/V = (420 35 (8, — zlb, )] (83)

n=—w
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The use of the delta function generator will give rise to an infinite
input admittance® so that the series in equation (83) is divergent.
However this difficulty is overcome by computing the difference be-
tween the admittances of two loops of different radii.”

V. SPECIAL CASES

5.1 The Magnetic Dipole Over a Semi-Infinite Medium

When the radius, b, of the loop becomes very small compared to the
wavelength (that is, kb << 1) the current distribution on the loop
becomes uniform. This enables us to retain only the zeroth terms in
the infinite series representing the different quantities of interest. The
field of a dipole over ground is well discussed in the literature and will
not be considered here. The input impedance of a dipole over a semi-
infinite medium is of considerable interest and may be obtained from
equation (83). Thus we obtain

Zin = 47"2b[6o - za(b: d)]‘ (84)

The term 47°bB, represents the input impedance of the loop in the
absence of the semi-infinite medium and the term —d4x°bz, represents
the contribution of the semi-infinite medium. That is

Zin = Zpes + Zigoo s (85)
where
Zye = 47°bB, , (86)
Z oo = —A4rbz,(b, d)

li

(b)n f T byr(l — )R (7)
0
cexp [—i2k.d(l — r)dr.  (87)
5.2 Thin Circular Loop Over a Perfectly Conducting Plane

Let
2%(b, d) = lim z,(b, d). (88)

=0

When ¢ — « the reflection coefficients simplify to
RBy(r) = +1, R.(r) = —L (89)
Substituting equation (89) into equation (53), we obtain
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z¥(b, d) = (4m) kb,

[ Wb b A = )+ TR b — A

cexp [— 2k, d(1 — )Y dr. (90)

The integral in equation (90) may be simplified, by making use of the
properties of Bessel functions, and yields

zt(b, d) = (4ab) "0 [3(kb)* (Car + Lurr) — 1°C), (91)
where

t = f f(1 — 22 (0kbr) exp [— 2k d(l — D dr. (92)
]
An alternate expression for {, is obtained as follows:

Tikbr) = f J.(2k.br sin 6) cos (2n6) d6; 93)
0

substituting equation (93) into equation (92) and changing the order of
integration we obtain

o = j(kd) ™" M, (2d), (94)
where M,(x) is defined by equation (77). Therefore,
24(b, d) = j(4rk,b*)™"
o (3) (D) *[M 1 (2d) + M,1(2d)] — n*M,(2d)}. (95)

A comparison of equations (95) and (76) reveals a strong similarity
between the expressions for 8, and z%(b, d). The input admittance of
a thin circular loop over a perfect ground plane is given by

Y = (@dn’b)™" Y [B. — 2¥(b, d)]". (96)

The above formula agrees, with that derived by Iizuka and others,
for the input admittance ¥ of a loop in the presence of an identical
coaxial loop ecarrying a current distribution which has an opposite
phase. They use the simpler Kernel given by Storer® to computer 8, ,
a procedure satisfactory for small loops. However they make use of the
similarity between 8, and z%(b, d) to compute the latter using the
approximate expressions given by Storer. This procedure will yield
erroneous results for large separation, d, for the following reason.
The approximate expressions for 8, given by Storer, or for that
matter Wu, are valid for k,a << 1. The corresponding condition to be
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imposed in the evaluation of 2%(b, d) is, (2k,d) < 1. Thus it is seen that
the approximate expressions of Storer give accurate values of z%(b, d)
only for very small separations.

VI. NUMERICAL COMPUTATIONS

Equation (76) was further analyzed and approximate expressions
for the B, coefficients were derived in terms of Bessel and Legendre
functions. The integral defining the z, coefficients could not be expressed
in terms of known functions and so was evaluated by numerical integra-
tion. However, in the evaluation of z% it was possible to use some of
the formulae developed for g8, for small values of d [compare with
equation (95)]. The numerieal integration was carried out by using
the Romberg integration scheme. All the computations were done by
FORTRAN programs on a GE-635 computer.

Figure 4 shows the variation of the input admittance of a loop,
when it is in free space, over moist earth and over an infinitely con-
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Fig. +—Input admittance of a circular loop, over different media, as a function of
frequency (d/b = 0.25; a/b = 0.002). G—conductance; B—susceptance. I—loop in
free space; II—loop over moist earth; III—loop over perfect ground (¢ — «).
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ductive ground plane, as a function of frequency. The values of the
various parameters used in these calculations are 2xb = 30 meters,
f = 5 MHz to 13 MHz, d/b = 0.25, a/2b = 0.001, ¢ = 5 millimhos/
meter, and e/e¢;, = 15. The last two parameters characterize the moist
earth. The frequency range was deliberately chosen so that the moist
earth cannot be approximated either as a highly conductive medium (low
frequency approximation) or as a lossless dielectric (high frequency
approximation).

The real part @ of the input admittance shows its characteristic peak
near k,b = 1 (these oceur for values of kb near 1, 2, 3, ---) but the
exact location of the peak as well as its magnitude depends on the
medium below the loop. When the loop is located above a highly con-
ducting ground plane the resonance is particularly sharp at kb = 1
since at this frequency the loop and its image are exactly half wavelength
apart. The imaginary part B of the input admittance changes from
inductive to capacitive near k,b = 0.7 and back to inductive near
kb = 1. Here again the transition at k,b = 1 for the loop over a highly
condueting ground plane is almost discontinuous.

Figure 5 shows the variation of the input admittance of a loop over
a highly conductive ground plane as a function of the distance between
the loop and the ground plane. The curves are plotted for kb = 1,
a/2b = 0.001 and d/b ranging from 0.25 to 5.0. It is observed that as d/b
inereases, the input admittance approaches the free space value in an
oscillatory manner,

The aforementioned calculations are presented only as examples
of the different types of investigations that may be carried out based
on the theory developed. The computer programs developed in this
connection are very general and may be used for computations of loops
as large as k,b = 10.

VII. SUMMARY

The problem of a thin, perfectly conducting, circular loop situated
in free space over a semi-infinite homogeneous isotropic medium was
solved. Expressions for the current distribution on the loop caused by
an arbitrary time harmonic source [equation (75)] and the input admit-
tance [equation (83)] were derived. The results are applied to special
cases to evaluate the input impedance of a vertical magnetic dipole
over a semi-infinite medium [equation (84)] and the input admittance
of a circular loop over a perfectly conducting ground plane [equation
(96)]. Some numerical results are also given. The analysis for the general
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Fig. 5—Input admittance of a circular loop over an infinitely conducting ground
plane as a funetion of height (k0 = 1, a/b = 0.002). G—conductance; B—suscept-

ance.

case of a circular loop in an arbitrary homogeneous medium (as opposed
to free space assumed here) over another homogeneous medium can

be easily done by modifying the parameters.
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