Traffic in Connecting Networks When
Existing Calls Are Rearranged
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(Manuscript received February 9, 1970)

Recent mathematical'® and engineering studies’* of the possibility
of rearranging existing calls in a connecting network (so as to add more
calls) have raised the problem of loss (probability of blocking) for networks
operaled in this manner. We consider and solve this problem in the context
of a Markov traffic model, for a connecling network operated according
to the rule that if @ mew call is blocked, but can be accommodated by re-
arranging the calls in progress, then it is put up, after some choice of
rearrangement.

I. INTRODUCTION

Each state of the network realizes a given assignment of inlets to
outlets, a specification of who is to talk to whom. There is a natural
map v that takes the set S of states into the set A of assignments.
The equilibrium probabilities of the process z, on S we use as a traffic
model are complicated and unknown functions of the offered load.
But it turns out that, because of the policy of rearranging whenever
necessary, v(z,) is also a Markov process, and one whose state prob-
abilities are easy to calculate.

We give explicit analytical formulas for the equilibrium probability
of a given assignment of inlets to outlets, for the probability of n calls
in progress. For networks that are one-sided (inlets = outlets) or two-
sided (inlets () outlets = ), all the important constants of traffic
engineering can be obtained from a partition function, a polynomial
in the offered load with coefficients depending only on network structure;
these constants are the loss, the load carried, the calling rate, and the
load variance. These analytical formulas arise from an unexpected
connection with the “thermodynamic” model for telephone traffic,
described in an earlier paper. As an application, we solve the problem
of calculating the loss in a connecting network, made of stages of
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rectangular switches, which is rearrangeable except for the fact that
the outermost stages are concentrators.

II. STATES AND ASSIGNMENTS

A mathematical model like that of Ref. 5 will be used. The elements
of this model separate naturally into combinatorial and probabilistic
ones. The former arise from the structure of the connecting network
and from the ways in which calls ean be put up in it; the latter represent
assumptions about the random traffic the network is to carry. We
discuss the combinatorial and structural aspects in this section; ter-
minology and notation for these aspects are introduced. The prob-
abilistic aspeets are considered in a later section.

A connecting network » is a quadruple » = (G, I, , S), where G
is a graph depicting network structure, I is the set of nodes of & which
are inlets, © is the set of nodes of @ that are outlets, and S is the set
of permitted states." Variables z, ¥, and z at the end of the alphabet
denote states, while 4 and v (respectively) denote a typical inlet and a
typical outlet. A state 2 can be thought of as a set of disjoint chains
on @, each chain joining I to Q. Not every such set of chains represents
a state: sets with wastefully circuitous chains may be excluded from S.
It is possible that 7 = Q, that 7 (| € = ¢ = null set, or that some
intermediate condition obtains, depending on the ‘‘community of
interest’’ aspects of the network ».

The set S of states is partially-ordered by inclusion =, wherez = y
means that state z can be obtained from state y by removing zero or
more calls. If z and y satisfy the same assignment of inlets to outlets—
that is, are such that all and only those inlets e I are connected in x
to outlets » £ Q which are connected to the same v in ¥ (though possibly
by different routes), then we say that x and y are equivalent, written
T~ .

We denote by A. the set of states that are immediately above z in
the partial ordering =, and by B, the set of those that are immediately
below. Thus

A. = [states accessible from z by adding a call}
B, = {states accessible from = by a hangup}.

Also, we let A., be the set of states that could result from z by putting
up call ¢. A ecall ¢ is new in z if the terminals of ¢ are idle in z. A call ¢
new in z is blocked in x if there is no y £ A, with ¢ in progress in y; it is
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completely blocked in z if there is no way of rearranging the calls of z
to an equivalent state z, z ~ x, such that ¢ is not blocked in z.

The number of calls in progress in state x is denoted by |z |. The
number of calls which are not completely blocked in x is denoted by
o(z), for “successes in z.” The functions | - | and o(-) defined on S
play important roles in the stochastic process to be used for studying
traffic. In addition, we use the notations

B:

a, = number of idle inlet-outlet pairs in state =,

number of idle inlet-outlet pairs completely blocked in state z,

and we note that « = 8 + o.

It can be seen, further, that the set S of states is not merely partially
ordered by =, but also forms a semi-lattice, or a partially ordered
system with intersections, with z (N y defined to be the state consisting
of those calls and their respective routes which are common to both
x and .

An assignment specifies what inlets should be connected to what
outlets. The set A of assignments can be represented as the set of all
fixed-point-free correspondences from subsets of I to @. The set A
is partially ordered by inclusion, and there is a natural map y(-): S — 4
which takes each state 2 ¢ S into the assignment it realizes; the map
v(+) is a semilattice homomorphism of S into A4, since

z = y implies v(z) = ¥(y),
vz Ny = v Nv®@).

Variables a and b are used for members of A. For a ¢ 4, | a | is the
number of inlets (or outlets) which are “busy’ if assignment a is speci-
fied.

A unit assignment is, naturally, one that assigns exactly one inlet
to some one outlet, and it corresponds to having just one call in progress.
It is convenient to identify new calls ¢ and unit assignments, and to
write v(z) U ¢ for the larger assignment consisting of y(z) and the
call ¢ together, with the understanding of course that none of the
terminals of ¢ is busy in y(z).

Remark 1: Not every assignment need be realizable by some state
of S. Indeed, it is common for practical networks to realize only a
small fraction of the possible assignments. Since we are studying a
network operated with rearranging when necessary, blocking will occur
in a state 2 only when a call ¢ idle in z is completely blocked in the
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sense that no state realizes y¥(z) U ¢; that is, when y(z) U ¢ ¢ v(8S).
The set v(S) of realizable assignments is also partially ordered by
inclusion. We use the notations, for a & v(S),

A,
B,

{realizable assignments immediately above a}

I

{realizable assignments just below a}.

| X | is the number of members of a set X.
Remark 2: ForxzeS, o) = | Ay |

The set of calls which can be put up in state y is the same
for all y e v~ '[y(2)].

III. ASSUMPTIONS

A Markov stochastic process z, taking values on S is used as a
mathematical description of an operating connecting network subject
to random traffic. A Markov process similar to that of Ref. 1 will be
used. This model can be paraphrased in the informal terminology of
“rates” by two simple assumptions:

() The hang-up rate per call in progress is unity.
(72) The calling-rate between an inlet and a distinet outlet, both
idle at time %, is A > 0.

The transition probabilities of x, will be described after a discussion of
system operation and routing.

It will be assumed that attempted calls to busy terminals are re-
jected, and have no effect on the state of the network. Successful
attempts to place a call are completed instantly with some choice of
route, or are rejected, in accordance with some routing policy.

It remains to say what happens to blocked or unsuccessful attempts
to make a call. We assume that a policy of total rearranging is followed,
according to which if a eall ean be put up at all, by a rearrangement of
the existing calls if necessary, then it is completed. We say a call ¢
is completely blocked in x if there is no state whatever satisfying the
assignment y(z) |J ¢, that is, if there is no way of rearranging the calls
in progress in = so as to create a free path for ¢. Completely blocked
calls are refused, with no change of state.

The map v is fundamental in our study of the effect of rearranging
on blocking. This is because if ¢ is a new call blocked in & which is
accommodated by rearranging, then the resulting state of the system
is one of the states in v ™' {v(z) U c}.

It is convenient to modify the matrix R, used in Refs. 1 and 5, to
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cover rearranging as well as routing. This will be done by adding some
more non-zero entries to represent ways of putting up calls by network
rearrangement, for example, calls that are blocked but not completely
blocked. A general description will be given which actually covers the
use of rearrangement for unblocked calls.

Consider the set v '{4 .}, consisting of all states obtainable from
z by (possibly) rearranging the calls in x and then adding another
call. The equivalence relation ~ of “having the same calls up” (or
satisfying the same assignment of inlets to outlets) induces a partition
T, of v '{A,»}. It can be seen that II, consists of exactly the sets
v '{y(z) U ¢} for calls ¢ not completely blocked in z. For ¥ 11, , 7., for
y ¢ Y is a probability distribution over Y, and r,, = 0 in all other cases.

The interpretation of the matrix R is to be this: any ¥ II, represents
all the ways in which a call ¢ (free and not completely blocked in )
could be added when the network state is x, both with and without
rearranging; for y ¢ Y, r., is the chance that if eall ¢ is attempted in
state z, it will be completed (by choice of a route for ¢ and possibly
by choice of a rearrangement for ) so as to take the system to state y.

It is to be noted that routing and rearranging are carried out with
complete knowledge about the current state of the network.

IV. PRINCIPAL RESULTS

The probabilistic and operational assumptions we have made give
rise to a Markov stochastic process x, taking values on S. This process
is determined by its transition rate matrix @ = (g.,), given by

1 ye B,

M., yey (A, )

—|z] — Ae(x) y=z

TV

0 otherwise.

Theorem 1: «v(z,) is a Markov process with transition rate matriv
T' = (Ya) given by

1 beB.
A be A,
—la] — X |4,] b=a
0 otherwise.

Yo =
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Proof: Since z, is itself a Markov process, it is enough to prove that
if0 <t < -+ <1, then

distr {y(z..), -+, v(@.) [ o}
depends only on v(z.). We have
Plv(@.) = a:, i=1,--+,n|)
= > Plz, =, 1=1 - ,n|x};

ziey " lail

with p.,(t) = P{a, = y | o = z}, thisis

E ﬁpzi—azi(ti - t-‘—l)

ey ~1{a;) zary " '(an) i=1

ziey ~(a1) Zn—1eY " '(an—1)

n—1

: H pn‘—.z.‘(t-‘ - J{—l) Z pln—lln(tﬂ - t"—|).
i=1 zTaey " (an)

If we ean show that for z, a ¢ S8 X A, the function ¢..(-) defined by
¢Iﬂ(t) = Z pzﬂ'(t)
vey ~(a)

depends only on y(z), the rightmost sum above will factor out because
it would depend only on a,-, . By iteration it would follow that with

z; an arbitrary element of v~'(a.)

n

P{"}’(Sﬂh) = ay, 1= 11 R l xﬂ} = H Z ,pzw(ti - ‘ti—i).

i=1 yey ~'layi

whence the theorem.
The matrix function P(f) = [p.,(t)] satisfies the backward Kolmogorov

equation

L) = Toa®+2 T rpald) = llal + o@lpald).

zeBsx eY " Ay ()

By integration, this is equivalent to the integral equation

Doy (t) — e—[!:l+)a’(:)]¢6ﬂ’

+ f gt [ Tpat—wAEN X rmpal- u)] du.

zeBs ey~ ' (Ay ()

Let a ¢ v(S), and sum over y ey '(a) to find, with ¢, = |z | + Ao(z),
w:u(t) = e_q-‘a']’(:]n

+ j: e [E et —uw) + A D Tl — u)] du.

zeBy ey " Ay (a)
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These equations can be solved by successive approximations as
o) = lim ¥;2°(0)

n—0

with ¢ @) = e " 8, (. and

v () = (@)
+ f e [ St —uw) + N > i — u)] du.
0 ztBsx ey " Ay ()
We have g, = |z | + Mo(@) = | v(@) | + A | Ay |, by Remark 1,
so ' depends only on y(z). As a hypothesis of induetion, suppose
that ¢ depends only on ¥(z). Then, since z ¢ B, implies v(z) ¢ Bﬂz,

and | B, | = | By | = | 2 |, with ¢{2’ (?) the value of y;3’(£) on v~ (),
Tyt —w = 2 il
teBe beBy (2}

depends only on ().
Similarly, since E,,.,-.m re=1ifbed, .,

> P -w = 2 X gt —w

ey~ Ay () btdy(e) zey~*(b)
- 2 ( 2 r,,) ¥is (¢ — )
bedAy () dzey T H(b)
= 2 (-,
bedy (2)

thus ¢"*" depends only on y(z). It follows that ¢., depends only on
v(x). Let @oa(t) = the value of ¢..(f) on v '(0)=Ply(z)=a | y(xs)=b}.
By differentiation we obtain

Ed;%(r) = fv;; eaall) + xﬂ; eaa(l) — [|0] + N [Au]lewa(D),

whence it follows that the Markov process y(z,) has the transition rate
matrix T' as stated in the theorem.
Theorem 2: The equilibrium distribution p of ¥(z,) is given by

P = DA, po = (Z(J) x'“')' = 1/2(\). M
It satisfies the equation
(10«1 + JAnDpn Z P+ A MZ Do, ae(S). (2)

Among all distributions q over v(S) satisfying the condition

> glal = E palal,

ary(8) aey (S
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p maximizes the entropy functional
=— 2 ¢logg. 3)

aey (8)

Proof: Equation (2) is the equilibrium condition for the matrix I' of
Theorem 1. The solution (1) can be verified by substitution, and the
external property (3) of equation (1) is well known.

Remark 3: It can be seen that v(z,) is the same stochastic process as
would be obtained by applying the so-called “thermodynamie’” model®
proposed by the author to the state space X = (8). This fact is the
heuristic reason behind Theorem 2. As a result, all the special features
of the “thermodynamic’”’ model are present here, with ®(-) playing the
role of the partition function.

Remark 4: +(z,) is a reversible process. Its rate matrix is symme-
trizable—that is, a symmetric operator in the space with inner product
D aer(s) SalaPa . From this fact follow useful inequalities for the co-
variance of y(z,), as noted in an earlier work.® These inequalities have
application to sampling error in traffic measurements.

Corollary: The carried load E | v(x,) | (=E | z,]) 7s given by

Ela,| = ?\ d log D(\),
and the variance of the load 1s
(A2i+>\—)1gq> (d log @ )

Theorem 8: If a. = a,,, , then the probability of blocking s given by

i Z IGIAIM

l _ = aey(S)

A Z alnlklal
ary(S)
Proof: This proof comes directly from Theorem 2 and Ref. 1, since
only completely blocked calls are rejected. Note that in Ref. 1, 8 counts
the blocked calls, whereas here it counts only the completely blocked.
Remark 6: 1If the network is two-sided with N terminals on a side,
then a, = (N — | z |)* and the loss is
d
. o * -
dﬂ
[ (2N—1))\—+)\‘—:|
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If it is one-sided, with 7' terminals, then «, = (T-‘QZ‘XI), and the loss
is
0 d
L 2 ® _
2 = 2 d2
[’1’ —T—(&?—G)?\ +4?\d;\j|¢

V. APPLICATION: CONCENTRATING OUTER SWITCHES

Let us consider a connecting network of the familiar type used in
recent studies’'* and depicted in Fig. 1. For our purposes the r X r
networks in the middle stage might themselves be multi-stage net-
works; we shall require only that they be rearrangeable, so that if
n = m the whole network itself is rearrangeable. However, we are
interested in the ease n > m of “concentrating outer switches”. We
pose and answer the question what is the probability of blocking if
n > m and if we follow a policy of complete rearrangement, that is, if
the existing calls are assigned new routes whenever this is necessary
to accommodate a new, not completely blocked, call. The blocking
is of course due entirely to the concentrators. By Theorem 3 and the
remark following it, it suffices to calculate the partition function.

It is evident that to caleulate the partition funetion ®(}) it is enough
to know | L, |, the cardinality of the set L, of realizable assignments in
which % inlets are busy, for £ = 0. Since the network can be obtained
from a rearrangeable one by substituting concentrators for square

o TR

n . {
:

mxn

Fig. 1—A connecting network.
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TABLE [—VALUES oF ¢(r, k) FORn = 3 AND m = 2

k
r 0 1 2 3 4 5 6 7 8 9
1 1 3| 3 0 0 0 0 0 0 0
2 1 6|15 18 9 0 0 0 0 0
3 1 9 | 36 81 108 81 27 0 0 0
4 1 12 [ 66 | 216 | 450 | 648 | 594 | 324 | 81 0

outer switches, the realizable assignments will be precisely those in-
volving m or fewer busy terminals on each outer switch. With m and n
fixed, let ¥(r, k) be the number of ways of choosing & inlet terminals
from among the nr available, so that no more than m are from any one
inlet switch. Let 2, , - - - , 7 be such a choice of inlets, and let o, , - - , 0x
be a similar choice of outlets, also feasible in ¢(r, k) ways. These chosen
inlets ean be mapped into the chosen outlets in k! ways; each of these
assignments will be realizable, and no others involving exactly & termi-
nals will be. Hence in this case,

| Lk | = ¢2(T: k)k'

To obtain a recurrence relation for ¢(r, k), let us calculate ¢(r+1, k)
in terms of ¢(r, 7}, 0 = § = k. In this case we have one more outer
switch available, and it can be seen that there are exactly m + 1 ways
of using it: With no calls on it, with one eall, with two, and so on up to
m calls on it. In the first instance there are & on the other r switches,
choosable in ¢(», k) ways; in the second there are & — 1 on the other
r switches choosable in (r, & — 1) ways, and so on, up to m. If the
(r 4+ 1)th switch is to have j calls, these can be chosen in (}) ways, but j
must not exceed m. Thus

m

ser1n=35 (v r-n oskse+om

i=0
It can be seen that ¢(1, k) = (§) for0 = k& = m. Introducing the generat-
ing function

mr

v, (z) = ; a“Y(r, k),
we find at once that
T, (z) = (;) (?:) xi)r = :; 2", k).

We recall that if A(x) = Za,x", a, real, then
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T alx" = .l—f Aze™YAle™*) de.
2r J_,
To calculate ®(}), finally, we note that
B0 = A"
aed

= > ML
k=0

= >N, B)E!
k=0

= > A, k) f e u" du
0

k=0

o0 mr

= Z ) (e, ) du,

0 k=0

LT (B Q) (5 (e
= ‘_)i-,-r j;m f-i Q (uneYQ (&™) do du,

where ¢ = (—1)} and

0@ = X (”)
i=0 \]

is the generating function of the binomial coefficients (") truncated
at m. This formula expresses ®(-) in terms of known polynomials and
constitutes a complete solution of the problem posed, since all interest-
ing quantities can be obtained from the partition funetion &(-).

For small values of m and n, the recurrence for ¢(r, k) is easily run
out to give numerical answers. In Tables I and II we give some values
of (r, k) and | L, | forn = 3, m = 2,andr = 1, -« , 4.

TaABLE II—VALUES OF L, FOR 7 = 3AND M = 2

k
T 0 1 2 3 4 3
1 1 9 18 0 0 0
2 1 36 450 1944 1944 0
3 1 81 2592 10566
4 1 144 8712
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