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A closed-form solution for the potential in a curreni-free semiconductor
surrounding a semi-infinite flat plate, carrying a small potential, s
derived. We show that, just as in the case of the classical potential problem,
there 1s a weak (square-root) singularity in the electric field at the edge of
the plate. The solution also supplies an estimate of the effect of edge cur-
vature, on edge field for a thick plate, found from equipotential contours.
For a plate along the positive x-axis the normalized potential w is given by

_ v oric (£2+ ) n e"’[l _ erfe (&'2— n):l '

where erfe is the complementary error function; £, n parabolic coordinates,
such that (¢ 4 in)* = x + 1y; and x and y are in units of Debye length.

I. INTRODUCTION

In this paper we calculate the electrostatic potential in a current-
free semiconductor surrounding a semi-infinite flat plate carrying a
small potential. Qur objective is to determine the nature of the sin-
gularity in the field at the plate edge. Such information should be
useful in the application of finite difference methods to similar, but
more complicated, problems. We find that the field near the edge has
the same weakly singular behavior as in the classical potential problem,
being inversely proportional to the square root of the distance from
the edge.

It turns out, more or less fortuitously, that the present boundary
value problem has a closed form solution, in terms of exponentials
and error functions, so that it has some intrinsic mathematical interest.
The solution was originally obtained by a very tortuous path. The
problem was first attacked by the Wiener-Hopf technique. Then it
was recognized that the inverse of the Fourier transform of the z-
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derivative of the solution had a very simple form. After several changes
of integration variable, integration of this derivative led to the closed
form solution.

Here we bypass this involved procedure and derive the solution
directly, first factoring a particular solution and then transforming
to parabolic coordinates. This after-the-fact derivation is admittedly
artificial; in particular, up to now no other nontrivial boundary value
problem has been solved by this “method.”

In the sections which follow we first derive the solution, then record
various special forms, and finally eonsider its behavior in the neighbor-
hood of the plate edge. The method of solution is discussed in Sections
IT and IIT; the results are discussed in Sections IV and V.

II. THE BOUNDARY VALUE PROBLEM

The potential u(z, y) due to a semi-infinite flat plate electrode in a
current-free semiconductor or a quasi-neutral, stationary plasma sat-
isfies the equation

Viu = U, + U,y = U, (1)
the boundary condition
w(z,0) =1, for z = 0, (2)
for unit potential on the plate, the symmetry condition
u,(z,0) = 0, for 2 <0, (3)

and the limiting condition
u(z, y) — 0, (4)

far from the plate. In the above the Debye length A, has been taken
as the unit of length and the plate potential —¢.(< 0) as the unit of
potential. The potential ¢(X, ¥) in dimensional form is then given by

e(X, Y) = —gu(X/Np, Y/\p).

Equation (1) only holds for small electrode potential. Specifically,
for an n-type semiconductor, we require that

Q’pﬂ/kT < 11

for electronic charge ¢, Boltzmann constant k, and absolute tem-
perature 7. In this case the Debye length is given by

A = (kT/¢*N )}

for semiconductor dielectric constant ¢ and donor number density N, .
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ITI. THE SOLUTION

Without preamble we now write down the solution to the above
boundary value problem, justifying its form after the fact. Its structure
is best displayed in a mixed notation. We find

uw=¢€fE+ )+ e[l - f(& - ) (5)
where £ and » are parabolic coordinates, such that

x'__Ez_ﬂz) ?J=25ﬂr

and the function f is given by

2f(s) = erfcs =1 — erfs = Qﬂ_-;f e dl

By using the identities

£+ 9 =r*(cos;_§:l:sing),

=,

we may also express w in terms of polar coordinates r = (z* + 3%},
0 = tan™" (y/z).

Now let us attempt to unravel this rather involved expression for w.
The occurrence of parabolic coordinates is not surprising. They are
natural coordinates for flat plate problems with the family of parabolas
n = constant degenerating into the positive z-axis for n = 0 and the
orthogonal family { = constant giving the negative z-axis for £ = 0.
The way in which £ and 5 appear in equation (5) and the factors e**
are a little more unusual. As we shall see, these two features are tied
together.

The exponential factors explicitly display the behavior of the po-
tential far out along the plate, for fixed y and large z, where the potential
should approach the one-dimensional potential e™'*'. For our purposes
they are also essential in simplifying the form of the differential equa-
tion in parabolic coordinates. If we transformed equation (1) directly
_ to parabolic coordinates, the resulting equation would be complicated
by the presence of the “magnification factor” of the transformation,
a function of £ and 5. On the other hand, with an exponential factor
removed, the resulting differential equation does not contain the
magnification factor. We have a special case of the following general
result for equation (1):

Suppose that w*(z, y) is any particular solution of equation (1).
Then u(z, y) = w*(z, y)v(z, y) also satisfies equation (1) if v satisfies



1486 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1970

the equation
V% 4 2V (n u*) - Vv = 0.

Now, because the same factor occurs in both the Laplacian and in
the product of gradients, this equation has the same form in all or-
thogonal coordinate systems; that is,

Vgg + Vs + 2[(1]1 u*)GvE + (]_Il u*)'lvn] = 0.

In general, this identity is of no help, since In u* is a complicated
function of ¢ and »; but, for u* = €’, In w* = y = 2&y. Then we have

Ver 1 gy + 4(’?”5 + Evn) = 0.
Notice the way that £ and » occur in this equation. If we set

v(g m) = f& + ),

the equation reduces to the ordinary differential equation
'+ ) + 26+ nf(¢+2) =0,

an equation satisfied by f(¢+n) = constant and by f(£+n) =erfe (£+n).
A similar result obtains for the multiplier of ¢™*, except that now we
find a function of £ — n, g(¢ — 7), say. To satisfy the boundary condi-
tion on the plate, we must have g(§) = 1 — f(£). We are then left
with two arbitrary integration constants in f which are determined
from the conditions for fixed y and large positive and negative z. The
result is equation (5).

IV. THE POTENTIAL AND FIELD IN POLAR COORDINATES

In polar coordinates equation (6) becomes

+rainf
u="2 5 {1 — erf Iir*(cosg + sin g)]}
+ G_r,)m {l + erf I:?“(cosg — sin g)]}
(6)

Various special values of u are of particular interest. Along the z-axis
we have

u(z, 0) = J\

1, tfor (6 =0,r =2,

|2 ]),

=
v
==

2
lIA

erfc |z |*, for 0 =mr
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while on the y-axis (6 = /2, r = )

w0, 1) = 5 erfe ()} + 5

Since for large 3, erfe (2y)! ~ (2ry) ¥e™®, this vanishes exponentially
for large ¥, as it should.
Near the edge of the plate (that is, for small 7)

w1 — 2(/x)" sin 2.

The x and y components of electric field are given by
u, = (mr) %" sin Q (7

r

1 - (]
u, = —(mr) ke cos 5

+rsinf

+ ¢ 5 {l — erf [’r%(cos g -+ sin g):|}
e—r sin f ) 0 )

- 14 erf|r cos; —sing )| (8)

Note the simple form for u., a separable solution of equation (1) in
polar coordinates. The explicit form for « was in fact originally derived
by first calculating v, and then integrating with respect to z, a rather
laborious procedure. According to equations (7) and (8), the field near
the edge of the plate is weakly singular; that is, | Vu | ~ (r)7* for
small r, just as in the case of the classical potential problem. Along
the z-axis

|

D |

u (x, 0) = JO' for 2> 0,
1(’“’ | x D_%(’_"", for z <0,
u,,(.'t,', 0) = j_(?i'.',lf)_%(z‘—: - el‘f ('T)%u fDl‘ T > Ol

10, for x < 0.

Note that u, tends very rapidly along the plate to the one-dimensional
value u, = —1. The equipotentials near the plate then rapidly become
straight and parallel to the plate. Any one of them can be chosen
as an electrode in the form of a thick plate with the electric field large,
but not infinite, at its edge, which now has a finite radius of curvature.
Thus, at least for this family of plates, we can calculate the maximum
field strength as a function of edge curvature.
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V. THE EFFECT OF EDGE CURVATURE

Suppose that x = z(y) is the equation of the equipotential u
that is,

U,

ulz(y), yl = u, .
Then
ux’ + u, =0,
and
| " + unz” + 2u.,a’ + u,, = 0.
At theedgey = 0
z=z(0) = =z,, 2'(0) = 0,

where erfc |z, |* = u,. Thus the radius of curvature of the edge is
given by

R=1/]2"0) | = | ulz, , 0)/uw(z, , 0) |
= |u(z, , 0) |/ wz, , 0) — uz(z. , 0) [,
using the differential equation (1)}. Now
u(z, 0) = erfe | z |}
for z = 0, so that
w(x, 0) = ¢'/(x |z )},
and
uze(z, 0) = (1 + 3|z [u.(, 0).
Thus
R=2]z|/1+2]z|d - 1/w) (9)
where the normalized gradient
w= | Vulz,, 0) |/ulz,,0) = ' /(x |z, )} erfc |z, [*. (10)

If equations (9) and (10) are evaluated for various x,, one obtains
the edge field strength due to unit potential applied to a plate with
the shape 4 = u, , as a function of the edge radius of curvature, shown
in Fig. 1. As R increases, one might expect that the edge field should
approach the field on a circular conductor of radius R. This field,
shown as a dashed curve in Fig. 1, is given by K,(R)/K,(R), where
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EQUIPOTENTIAL ,U=U,
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Fig. 1—The edge gradient as a function of edge radius.
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Fig. 2—Equipotentials around a flat plate in a semiconductor.
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K, and K, are the modified Bessel functions of the second kind. Except
for very small edge radius, the fields very nearly coincide.

Figure 1 also shows a sketch of a typical equipotential, that is,
a thick plate of the family » = u,. The shape shown is typical of
moderately small edge radius R. For large R the plate thickness d
tends to 2R, so that thick plates in the family tend to have semicircular
noses. On the other hand, thin plates (u, — 1) have ‘“wedge-shaped”
noses, R tending to zero like (1 — u,)?, while d tends to zero like 1 — u, .

Figure 2 shows the exact shapes, for 0.1 = u, = 1. Note the sharp-
ness of the equipotential v = 0.9, compared with » = 0.1, even allow-
ing for the difference in horizontal and vertical scales. For small edge
radius then, unless the plate under consideration has a shape similar
to the above, the present analysis is not likely to furnish useful estimates
of the edge field.
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