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This paper examines the distribution of the maniissas of floating point
numbers and shows how the arithmetic operations of a computer transform
various distributions toward the limiling distribution

Lo ahszs

(where b is the base of the number system). The paper also gives a number
of applications to hardware, software, and general computing which show
that this distribution is not merely an amusing curiosity. A brief exami-
nation of the distribution of exponents is included.

I. INTRODUCTION

The main purpose of this paper is to examine, from the computing
machine’s point of view, the well-known (to comparatively few people)
unequal distribution of the “mantissas” of ‘“naturally occurring” sets
of numbers. The observed probability density distributions are often
close to the reciprocal density distribution

) =y A/bStSD, M
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where b is the number base (usually 2, 8, 10, or 16). The corresponding
cumulative probability distribution is

! ot dx
k@) = ,/;H, r(z) dz = ./:,,, zInb
_Int+Ind @)
o In b -

where, of course,
R(1/b) =0 and R(1) = 1.

From the cumulative distribution, it follows that the probability of
observing the leading digit N of a number that is drawn at random
from r(f) is

In(N +1) — In (N)

()

and this is usually what is measured in experiments.

A typical experiment is that of tabulating the number of physieal
constants in a table having a given leading digit (see Table I and Ref. 1,
p. 7). The result looks reasonable. Many other examples of observing
the reeciprocal distribution have been reported. For references see
Refs. 2 and 3.

The reciprocal distribution has been explained in many ways. One
popular but not immediately obvious explanation for the distribution of
physical constants is as follows. Consider the distribution of the leading

TaBLE I—THE DISTRIBUTION OF THE LEADING
Dicrrs or 50 PuysicaL CONSTANTS

Number of cases Expected number
Leading digit N observed eq. (3) Difference
1 16 15 1
2 11 9 2
3 2 6 —4
4 5 D 0
5 6 4 2
6 4 3 1
7 2 3 -1
8 1 3 -2
9 3 2 1
50 50
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digits of the set of all the physical constants that might occur. If the
units of measurement were to be changed then the corresponding leading
digit of any particular physieal constant would probably change, but
it is difficult to believe that the distribution itself would change sig-
nificantly. To believe so seems to indicate a belief that either the present
units of measurement or else the new set have some intimate connection
with the real world. An alternative, and more elegant, explanation is
given by Roger Pinkham in his classic paper (Ref. 2). The explanation
given in the present paper is based on how the computer transforms
distributions during arithmetic operations. In particular the paper shows
how, from any reasonable distributions, repeated multiplications and/or
divisions rapidly move the distributions toward the reciprocal dis-
tribution. The effect for addition and subtraction is somewhat different.
The paper also shows the persistance of the reciprocal distribution
once it is attained.

Since floating point numbers are the basis of most of numerieal
analysis one may well ask why this obvious and experimentally well-
verified distribution is so often ignored. Is it because it appears to
contradict the usually accepted model of the number system in which
numbers correspond to points on a homogeneous straight line? Not only
are the floating point numbers not uniformly spaced in a computer
(the difference between the two largest possible numbers is very large,
while the distance between the two smallest positive number is very
small, and zero is relatively isolated), but the reciprocal distribution
shows that even in intervals in which the numbers are equally spaced
they are not equally likely to ocecur.

Thus in analogy with non-Euclidean geometry this paper proposes
an alternative to the conventional identification of numbers with points
on a homogeneous straight line. Instead of adopting a measure for sets
that is invariant under translation

=z 4k,
we often prefer a measure that is invariant under scaling, namely
2 = kr (k £ 0).

The reciprocal distribution is of practical as well as theoretical interest
as we shall show in Section VII. In view of these examples, it is hoped
that by adopting the machine’s point of view with respeet to how
numbers are transformed by arithmetical operations, the computer
scientists will become more aware of the importance of this distribution
in many situations including numerical analysis.
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II. THE MODEL

The floating point numbers in a computing machine form a discrete,
finite set. As is true in so many applications of mathematics to practical
problems, we shall approximate a discrete distribution by a continuous
one of sufficient smoothness. Anyone familiar with the upper and lower
Riemann Integral sums can appreciate the degree of approximation
being made (provided common sense is used in choosing the values of
the curve between the given points). In the limit of the Riemann sum
all the | Az, | become less than any given e > 0; we of course need to
stop at the granularity of the number system used, typieally 10~ or
smaller.

In prineiple, it is possible to carry this error estimate throughout all
the subsequent steps of the mathematics to see how mueh the mathe-
maties errs from reality; but it is customary to recognize that a little
intuition will suffice to convince the user that the error will be much less
than the accuracy of the experiments that the theory is designed to
account for. Thus we have no need to get excited about such things as
the Banach measure of a set (Ref. 4); we do not intend in this paper to
let the mathematics obscure what is going on. The fact that computers
are finite and operate at a finite speed for a finite length of time spares us
from taking seriously all the confusions that can arise in mathematics
when dealing with the infinite.

III. THE BASIC FORMULAS

In this seetion we derive the basic formulas which describe how dis-
tributions are combined and transformed by the four arithmetic opera-
tions of a computer. Let f(z) be the density distribution of the factor z,
g(y) be the density distribution of the factor y, and k(2) be the density
distribution of the result z of the arithmetic operation. Further, let
F(z), G(y), and H(z) be the corresponding cumulative distributions.

For both multiplication and division, the mantissas are directly
combined and the exponents do not enter into the formation of the
distribution of the result of the operation. Thus, it is sufficient in these
cases to consider the distributions for (1/b £ 2,y £ 1).

For multiplication, an examination of Fig. 1 shows that when the
produect falls in the shaded regions then the mantissa of the produet is
in the interval (1/b, 2). Thus the cumulative distribution H(z) is given by

Ho = [ [ iwwaa+ [ [ i@ e

+ f f f@)9w) dy da
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= f f@)[G(/bx) — GO/ + (1) — G(1/bx)] dx
1/b

+ [ iwi6e/z) — 60/1)) da

Differentiating with respect to z to get the density distribution we have

hz) = {@)[G(1/b) — G(1/b) + G(A) — G(1/bz) — G(1) + G(1/b2)]

+ [ 1o/ as+ @)/ (L) de
-3 f@ o(e/be) dz + f( ) ge/) d. 4)

Similarly for division. The shaded region of Fig. 2 shows where the
quotient x/y is less than z; thus the cumulative distribution for the
quotient is

w0 = [ [ e avas+ [ [ 1) av e
+ [ [ @y as
= _/:/b f@[CE) — GA/b) + G(1) — G(x/z)] da

+ [ 16)106) — 6@/ d.
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Fig. 1—The cumulative probability distribution for the product z = ay.
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Fig. 2-—The eumulative probability distribution for the quotient z = x/y.

Again differentiating with respeet to z to get the density distribution
we have

h(z) = {(2)[GGE) — G(A/b) + G(1) — G(1) — Ge) + G(/b)]

b [ =g a0 e+ [ o/ )

: 1
=5 [ afwtels) de + 5s [ af@gte/ve) da. (5)
2z Jin z J

For both addition and subtraction the difference in the exponents of
the two numbers z and ¥ is used to shift one mantissa with respect to
the other before they are combined. For addition, we may suppose that
one of the numbers, say x, lies in the range 2/2 = 2 = z The other
term, y, therefore lies in the range z/2 = y = z-b™", where k is the
number of digits in the mantissa and we set b = e Thus the density
distribution of the sum is

h(z) = fz(l_i) f@)glz — ) da. (6)

/2

For subtraction we suppose, without loss of generality, thatz = y > 0,
and

E=r -y
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with z = 2 = z/e. Then the density distribution is given by

hz) = f 7 e + o) de, %

We have now derived the basie relations for the density distributions
that arise from combining two numbers from arbitrary distributions
according to the four arithmetic operations of a computer.

IV. THE PERSISTENCE OF THE RECIPROCAL DISTRIBUTION

In this section, we first show for both multiplication and division
that if one of the factors z or y comes from the reciprocal distribution,
and regardless of the distribution of the other factor, then i(z) is the
reciprocal distribution. In particular, if a number is chosen from the
reciprocal distribution, then its reciproeal is also from the reciprocal
distribution. For addition and subtraction we show somewhat less.

TFor the product set

g(y) = yIn b (8)
in equation (4). We get for any distribution f(z)
_ x) _br ) _x
h(z)_b[,b T zlnb h+,, & zlnb{h
1 : . ' 1
“Zlnb Ul,, J) de + [ fx) d“l Tilmb ©)

Obviously sinee z = zy, the same applies if we assume that f(x) is the
reciprocal distribution.
For the quotient, again assume equation (8) and put it in equation (5).

1 - p 11 bz
h(z) = ;2 ./;, af(x) b dr + a2 f xf(x) +Inb da

et ot [ b= a0

In the special case of f(x) being the “spike distribution’ with all of its
probability at z = 1 we see that the reciprocal of a variable having the
reciprocal distribution has the reciprocal distribution. The case of z
having the reciprocal distribution and producing the reciprocal distri-
bution, regardless of the distribution of the denominator, is covered by
the produet form, or can be worked out directly if desired.

Thus, if in a long sequence of multiplications and divisions at least one
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factor has the reciprocal distribution, then regardless of how the distri-
butions of the other factors are chosen the result is still the reciprocal
distribution; the reciprocal distribution persists under multiplication
and division and cannot be broken by any choices for the other factors.

For addition let  come from the reciprocal distribution for some range
with normalization factor N, , and y also come from a reciprocal dis-
tribution with its corresponding range and normalization factor N, .
Then writing e = b

z(1—¢€)
e [ N, N: g,

/2 T z—x

z(1—e)
— NN, [ 1P+ l]m
dzy2 X 2 — X

:NlNzln[ z ]
z2 z —

= & (11)

2

z(1—¢)

2/2

where N, is some constant.
Similarly for subtraction (different N)

z/€
M) = N?z—i -z

zlel 1 1
ﬁN1N2./; ;[Eﬁz+a;]dn

Tz In z 4+

N, .

=t (12)

It should be noted, however, that in the last two cases the assumption
of the reciprocal distribution for such great ranges is suspicious to say
the least, since we know from experience that all exponents are not
equally likely. That the reciprocal distribution over a large range implies
the equally likely distribution of the relevant exponents can be seen by
examining the base 16 number system in exponents, but where the
mantissas are in binary. Thus the mantissas can have one of the forms:

z

0.1zzz- - -
0.01zz- - -
0.001z- - -
0.0001--- .
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If we assume

1A

= 1),

o

1
p() = x In 16 (

what are the probabilities of each of the four forms? For the first one

f L o=l Mm1—my
y @ln 16 " 42 +

e

Similarly, each of the others is 3. This result is quite different from that
of the flat distribution (see Table IT).

V. THE APPROACH TO THE RECIPROCAL DISTRIBUTION

Having shown that once it arises the reciprocal distribution persists
for multiplication and division, we need to show how it can arise. For
this we need a measure of how far a distribution h(z) is from the recip-
rocal distribution »(z). It is obvious that

f Zb [hz) — r@)] dz = 0 (13)

for any h(z) and this does not provide a useful measure of distance. We
shall define the distance of h(z) from the reciproeal distribution r(z) by
hz) — 1)

r(z)

which measures the maximum of the difference relative to the reciprocal
distribution (it is natural to use the relative error when dealing with
floating point numbers).

max
1/bszs1

= Di{h@)} = D{h}, (14)

TaABLE II—PROBABILITY OF OBSERVING MaNTIssAs WITH LEADING
7Zuros IN Base 16 NumBERs WHEN WRITTEN IN BASE 2

Probabilities
Binary
Form Range Exponent Flat Reciprocal
0.0001.... |[1/16 == =1/8 -3 1/15 1/4
0.001x. ... 1/8 =z =1/4 —2 2/15 1/4
0.01xx. ... 1/4 =z =1/2 —1 4/15 1/4
0.1xxx.... 1/2 =z =1 0 8/15 1/4
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We showed in equation (9) that for a product,

(x)

r@) = f(_‘)r( /bz) da,+ff r(z/z) dx.

/b
Subtracting this from equation (4) and dividing by r(z) we have

h@) — 1) _ 1 [* f(@) [g(z/bx) — r(z/bm)]
r(z) bl x 7(z)

N f f(:c)[ zm,{;)ﬂz‘@]

But
bar(z) — L - r@/ba)

ar(@) = = r(z/x),

zInb

and we have

hz) —r@@) _ [* g(z/ba) — r(z/ba) |
7"(2') '/:/b j(t)l: __-—-| da

r(z/bx)

v Tae/s) — re/a) i
+ [ f(:c)[ b ] (15)

Since f(z) = 0for (1/b = 2 = 1),

40 =16 | < [* 1) Dighas + [ 1) Dig) as
< Dig}

for all z. From this it follows that

Di{h} = Dig} (16)

regardless of the choice of f(z).

We note that the equality would hold if f(z) were a single spike at

= 1, say, but that in view of equation (13), we generally expect a
great deal of cancellation in the square brackets of equation (15) as it
is integrated over the range.

It is easy to examine the rapidity of the approach in the case of all the
factors coming from the flat distribution

1 b
P& =TT h =1
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Equation (14) gives for two factors

L b N orde (b [tda
h(z)‘b(b—l) 1,,,.1:+(b—1)f, P

b
= (Z)"_—l—)p_ {1’[1 b — (b - 1) 1Ha}.
In the base b = 10, this is
hz) = $2{In 10 — 9 1n 2}, amn

which (for the proper range) is given by Ref. 5 (p. 37). The distance of
the flat distribution is
~10In10

10 In 10 ‘ .
ma z— — 1| = 1 = 1.558...
1/l0§:{§1 9 9 0
while the distance of equation (17) is equal to 0.3454- - - . See Table III
for further results.
Similarly for division using equations (10) and (5), we have

We) —rG) L[ [a/s) — r@/)
@ 7 fm,"””[ @ ]dx

1ot ale/be) — r(x/be) |
+ bz’ f .1](.1)[ r(z) :\ dz.

But

bz* T(—:) = r(x/b2),
and we have

h(z) — r(2)
r(z)

< D:gr{fl; @ dz + [ @) dx}

TaBLE III—THE DistaANCE OF A CONTINUED PRODUCT AS A
FuNcTioN oF THE NUMBER OF FACTORS SELECTED
FROM A FrAT DISTRIBUTION

Number of Factors Distance
1 1.558
2 0.3454
3 0.0980
4 0.0289
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or

In the case of flat distributions

W) = 35— )[”5]

which for the base 10 is (see Ref. 5, p. 37)

h(z) = 18 [10 + :I

and has a distance of 0.4071 - -- .

For addition we select g(y) as a reciprocal distribution (with suitable
normalization factor N), subtract the corresponding equations and
divide by r(2) to get

M=) [ [y B el @)

z(1—¢) f(x)
= r(@) -z )]
[ R ),

But by the mean value theorem for integrals

N,
he) — 1) _ [ﬁ") - 'E} [N r),
r(z) r(0) 2/2 z—z 1) "’

where z/2 < 8 = 2(1 — €). The integral has been shown in equation (11)
to be exactly 1. Hence

D{h(z)} = D{f(2)}.

A similar derivation works for subtraction.

In view of the dubious assumption of having the reciprocal distribu-
tion over a very large range we need to examine more carefully the
behavior of the mantissas of sums of numbers selected from some
distribution. Let us imagine a Monte Carlo experiment. We select
numbers from the range (0 < a = z = b) having the probability density
distribution p(x) with mean x and variance ¢°. Divide the range into
n equal intervals

(a':a'"'h): (a+h,a+2h),,[a-l—(n—l)h,b],
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where b = (b — a)/n. By counting how many numbers fall in each
interval we get estimates of p(x).
Let us add 2™ numbers of this set of numbers. The range for the sum is

(2"a, 2™b),

the mean p;, = 2"p and of = 2"°. But the central limit theorem says
that the distribution of the sum approaches a normal distribution about
the mean with half width o, . Suppose, for convenience, that u fell in
the middle of an interval. Then as m increases and we count the number
of cases of mantissas in each interval (note that the m in the term 2"
appears in the exponent only) we will ind more and more of them will
fall in the interval containing u (which has the same mantissa as u,);
the distribution approaches a spike! This does not contradict the central
limit theorem; it merely says thatif u 5 0 (u = 0 is the exceptional case),
the distribution contracts as seen from the point of view of floating
point numbers. In loose words, standing at the origin and viewing the
rapidly receding mean g, , the width of the distribution #, seems to get
narrower as compared to the sum—the sum recedes as 2", the half
width changes as 2™°.

VI. RANGE OF EXPONENTS

Tt is now clear that in order to examine carefully the effect of addition
(and subtraction) on the reciprocal distribution, it is necessary to know
the distribution of the exponents of the numbers to be combined.
Unfortunately at this time about the only model we have is as follows.
Assume a distribution of exponents. Under multiplication and division
the exponents are added and subtracted (with, due to carries an extra 1
occasionally added, or subtracted) and by the central limit theorem
we can expect: (i) that the distribution of the exponents will approach
a normal distribution (assuming that overflow and underflow do not
happen first) and (47) that this distribution will gradually spread out
proportional to the square root of the number of operations. Thus, it
appears that in practice the distribution of exponents is probably not
stationary. Addition tends to eliminate the smaller exponents, while
subtraction tends to increase them.

Experience in numerical analysis shows that the range of the output
numbers is usually much greater than the range of the input numbers,
enough so to make one suspect that the variance increases as indicated
in the above model.

As one thinks carefully about the matter of addition and subtraction
it seems reasonable to believe that they will not greatly perturb the



1622 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1970

reciprocal distribution; and the experimental data from ‘naturally
occurring numbers”’, which must have included some additions and
subtractions, seem to bear out this belief.

The feeling that under repeated additions and subtractions the central
limit theorem applies to numbers (which is true), and therefore con-
tradicts the reciprocal distribution of the mantissas, is typical of the
“fixed point arithmetic” viewpoint of numbers—we are representing the
sums and differences as floating point numbers, and it is the distribution
of these mantissas and their possible approach to the reciprocal distri-
bution that is of relevance here.

VII. APPLICATIONS OF THE RECIPROCAL DISTRIBUTION

Besides acecounting for the experimentally found distributions, the
reciprocal distribution is relevant to many optimization situations.

As a first example,’ consider the problem of placing the decimal
(binary) point in the number representation system in order to minimize
the number of normalization shifts after the computation of a product.
(It was probably the minimization of normalizing shifts that caused
IBM to adopt the base 16 in the system 360). If the point is placed
before the first digit, then products of the form

O.zzx...

O.exe...

0.0zzx...
will require a shift to normalize the result; while if it is placed after the
first digit, then products like
will require a shift. Clearly these two cases have complementary prob-
abilities. For the reciprocal distributions the probability p of

xy = 1/b
is

1 1/bx 1 1
p=j;n-j;/a Ilnbylnbdydw
! (]nl/ba:—lnl/b) _f‘ 1 (].nz)
_./:,blnr"b z dr = win®b \ =z dz

1 {_1n2.:v}]
T Inb 2

_1
=5

1/b
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But for a flat distribution,
-~ b )2 1 1/bx o ( b )2 1 (—1— _) .
”“*(bﬁl ff dydr =\ f be B
b V1 _ ( 1)]
(b —-1) b [hlb 1=

_blnb = (b —1)
B (h—1)7°

For b = 2 this is

Il

p=2In2— 122038

As a second application, consider the estimation of the effect of the
representation error of numbers in base 2 and base 16. In Ref. 7
MecKeeman reports that the maximum relative representation error
(MRRE) and the average relative representation error (ARRE) are
as shown in Table IV, where the average is over the reciprocal distri-
bution.

A third example is the application to roundoff propagation. If z, has
an error ¢ and z, has error e, , then in the product

r + e
Ts 1+ €

2,2y + Ti62 + Toe, + €62

it is the leading digits that control the estimate of the propagated error.
For the reciprocal distribution the mean is

__fl e o _1=1/b_b=1
=) imb™ T b T bmb
For base 2, this is

) 1

7 = 5y = 0.72134.

TABLE IV—MaXxiMuM RELATIVE REPRESENTATION ERROR AND
AVERAGE RELATIVE REPRESENTATION ERROR

‘ MRRE ARRE
binary } 1/2 X 291 0.18 X 279
octal | 9-u1 0.21 X 10~
hexadecimal ; 237 0.17 X 2737
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The second moment about the mean is
b— 1 {b +1 b-— 1}

_ 1 [ e—®,
Aq[z_lnb 1/6 x da_bzlﬂb

2 Inb

which for b = 21is

1 (3 1)
M, = in2 (2 - 1n2) =~ (.020674.
For the flat distribution, £ = 0.75 and M, = 0.020833.

Thus we see that the effect of the reciprocal distribution on the average
roundoff propagation is surprisingly small.

Another example in which the reciprocal distribution must be con-
sidered is that of producing “random” floating point mantissas. To
generate these mantissas we use the earlier result that a long sequence
of multiplications of numbers from a flat distribution will approximate
a reciprocal distribution. Thus random mantissas can be generated by

Y,=Y,rma (shifted)

where 7, is from the usual (flat) random number generator and “shifted”
means after each product the leading zeros are shifted off. How well does
this work? Experimental verification* is given by 8192 trials. Counting
the number of mantissas falling in each of N catagories (see Table V).

The last two columns of Table V give the sign changes observed in
the difference between the observed and theoretical reciprocal distri-
bution. The expected number of sign changes might be expected to be
(N — 1)/2, but since for N = 2 it is elear that one sign change will
occur (because the mean of the residuals is zero) we have used N/2 as
the expected number. The chi-square test shows that the two distribu-
tions are close; the sign change test shows that the residuals are not
systematically distributed. From these tests, we see that the generator
‘“works.” It is interesting to note that the period of this generator may
well be much longer than that of the underlying flat random number
generator.

It is easy to see as a general rule that when we try to optimize a
library routine for minimum mean running time (as against the
Chebyshev minimax run time) we need to consider the distribution of
the input data. Hence floating point numerical routines need to consider
the reciprocal distribution; the square root, log, exponential, and sine

* Thanks to Brian Kernighan,
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TaBLE V—DISTRIBUTION OF 8192 RANDOM MANTISSAS

Residuals
Degrees of Sign

N X Freedom Changes Expected
64 61.392 63 30 32
32 22,804 31 14 16
16 11.150 15 8 8

8 7.724 7 5 4
4 3.261 3 2 2
2 1.467 1 1 1

are all examples. In the case of the exponential and sine, some study of
the exponents is also necessary.
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