A Mathematical Study of a Model of

Magnetic Domain Interactions

By R. L. GRAHAM
(Manuseript received March 18, 1970)

In this paper, we iniliale a study into the combinatorial aspects of a
model of the interactions between discrele magnetic domains and their
potential use in information processing devices. Starting with a simple
model suggested by W. Shockley, we demonstrate certain (surprising)
capabilities as well as inherent limitations upon the possible applications
of the interactions described by this model. It should be noted that this simple
model does not take into account all of the possible interactions between
magnelic domains.

I. INTRODUCTION

The subject of diserete magnetic domains in eertain orthoferrite
materials has been under active investigation during the past several
years, both from a theoretical physical viewpoint as well as that of the
device-oriented physicist (for example, see Refs. 1-6). Considerable
progress has resulted from these efforts, although needless to say, the
end is certainly not in sight. Particular attention has been directed
toward the problem of applying this new technology to the very im-
portant area of information processing devices, an area in which it
seems to have natural and significant applications."” It is our intention
in this paper to examine certain mathematical aspects of these applica-
tions for a simple model of magnetic domain interactions suggested by
W. Shockley.

II. DESCRIPTION OF THE MODEL

We shall begin by giving a very brief description of the physieal
situation and its translation into the mathematical model under con-
sideration. The reader whose interests motivate him to seek a more
technical explanation is referred to Refs. 6 or 8.

Roughly speaking, thin platelets of certain orthoferrite materials
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possess the property that under suitable (magnetic) conditions, small
(~ 3 mils) discrete cylindrical magnetic domains, hereafter called
“bubbles”, may be stably supported. Moreover, these bubbles may be
manipulated by the application of external magnetic fields as well as
by their own mutual interaction (which in general causes two bubbles
to repel one another). In a suitable physical environment, the location
of a bubble in a piece of orthoferrite can be restricted to a finite set of
possible positions within the material; these are ordinarily arranged in
a rectangular array. It is possible to apply a local magnetic field to
specific locations within the array with the following results:

(z) If a bubble already occupies the position at which the field was
applied, then nothing happens.

(%) If no bubble occupies the position at which the field was applied
and no bubble occupies any ‘nearby’”’ position as well, then
(still) nothing happens.

(#77) If no bubble occupies the position at which the field was applied
but at least one bubble occupies some ‘‘nearby’ position, then
some bubble at a nearby position will leave its original position
and now occupy the position selected by the field.

To eliminate the annoying indeterminancy in item (7%7) it is possible
to apply “holding” fields to all but one of the “nearby’’ sites which has
the effect that only a bubble at the unheld position can move.

The mathematical model which will correspond to the preceding
description will be phrased in the terminology of graph theory. The
discrete positions at which bubbles may lie correspond to the set V of
vertices of a graph G. Two sites which are “nearby” or ‘“‘adjacent” to
one another (this is assumed to be a symmetric relation) correspond to
two vertices of G which are joined by an edge of . Suppose bubbles are
located at (the sites corresponding to) the subset X of vertices V. We
define a command to be a directed edge e = (v, , v,) with v; and v, adjacent
vertices of . The command e transforms the locations of the bubbles
from X to X° where

j {X — U fed i neX, wiX;
X, otherwise.
In other words, if there is a bubble at »; but no bubble at v, and the

t Of course, “careless’’ application of a magnetic field to an orthoferrite with
bubbles can annihilate bubbles, create bubbles, split bubbles in two, deform bubbles
into strips, and so on; but these pathological (though certainly useful) operations
will not be considered in our model.
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command e = (v, v,) is applied to X, then the bubble at v, is moved
to v, . Otherwise, the command e has no effect on X. A program is
defined to be sequence P = (e,, €2, -+, &) of commands e;. In
general, a program P maps the set 2" of all subsets of V into itself
by X* = (---(X*)**)..-)". It is the purpose of this paper to inves-
tigate the mathematical properties of these maps.

III. SOME BASIC PROPERTIES OF PROGRAMS

We begin by making the assumption that G is the complete graph on
n vertices, that is, all pairs of vertices of G are joined by an edge.! As
mentioned in the previous section, a program P is a sequence of directed
edges (e, , ., - - , e,) and P acts on a subset X of the vertices V of G by

XP — (. . ((Xu,)zg)_ . .)Cr
where for e = (v, v'),

¥ = {X— WU ) if veX, v ¢X;
X, otherwise.

If X C V then |X| denotes the cardinality of X. We note

Fact 1: For all X C V, and all programs P, |[X*| = |X|.

This follows immediately from the definition of X”.

The first interesting result we state is due to W. Shockley who
called it the
Non-decreasing Overlap Theorem: (Shockley) For all X, Y © V and all
programs P,

I X*NY' |z |XNY]|.

Proof: Assume for some P = (¢, , -+ , e,) and subsets X, ¥ C V we
have | X" N Y"| < |XNY|.Since X' = (---((X™))-- ), there
must exist a least j such that

|XP1'+1 n I}Pﬁ-: | < |XI’,' n YP,' |
where P, denotes the program (e;, ---,e.). Thus, for X = X"
¥ =Y"ande = e;,, = (a, b) we have

1SN |<|XENTI.

t Nothing essential is lost by this simplifying assumption. The vertices and edges
of the present model should not be confused with any incidental physical vertices
or edges in a particular device. An edge of the model may be generated for example
by transferring bubbles from a storage zone to an interaction zone and then returning
the resultant to the storage zone.
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Ifc % a, ¢ # b thence X N ¥ implies ce X* N Pe. Ifeitherae £ N ¥
orbe X N ¥ but not both then be X* (" T*. If both ae X N ¥ and
beX N TthenaeX* N P and be X° N 7. Hence, in any case

1Nz XNT]

which is a contradiction. This proves the theorem.

Shockley noted that this result shows that there is no replicating
program P*. By a replicating program, we mean the following: Starting
with two fixed sets of vertices V' and V" with V/ N V" = &
and 1-to-1 map 0: V"' — V', we require that for each X C V,

XAV =XNV and sX"NVH=XNV".

In other words, P* does not disturb X () V' and in V", P* creates a
“copy’ of X N V.

To show this, suppose there were such a program P*. By choosing
two subsets X and X’ differing in a single element of V, their images
X?* and X’** must differ in fwo points, namely, one in V' and the
corresponding point (under 6) in V”. This, however, contradicts the
non-decreasing overlap (NDO) theorem and therefore P* cannot exist.

Another consequence of the NDO theorem is the nonexistence of a
program P* which performs binary addition in the following way.

Suppose V' denotes a set of m = 1 pairs of vertices of &, V" denotes
another set of m pairs of vertices disjoint from V', and V' denotes a
set of m -+ 1 pairs of vertices, disjoint from V' and V"', We can imagine
these sets arranged as shown in Fig, 1.

We can represent an integer 3/, 0 = M < 2", in the m pairs of V’
by letting the jth pair of ¥’ denote the jth binary digit in the binary
expansion of M. This can be done, for example, by assuming that

o U

for each pair o o either U, £ X, U, ¢ X, which will correspond to

a0,or Uy ¢ X, U, ¢ X, which will correspond to a 1. Thus, for m = 5
the configuration {V, , U, , Us, Vi, Vs} (Fig. 2) would denote the
integer 10011, = 19.

The addition program P* would operate by starting with V""" in some
fixed configuration (for example, all zeros) and with arbitrary integers
M', M" loaded into V', V", respectively, to form the initial state X;
after applying P* to X we should get the sum M’ + M" in V""",

The reason that P’ cannot exist as described is precisely that the
NDO theorem would be violated. For consider the two additions:
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Fig. 1—Symbolic arrangement of vertex locations for addition.

04+ (2" —1)=2"—1and 1+ (2" — 1) = 2", Theinitial configurations
differ in only fwo positions. The final configurations differ in at least

m m

m + 1 however, since 2" — 1 = 11 -+ 1, and 2" = 100 --- O, .
Thus, by the NDO theorem we get a contradiction and our assertion

is proved.

We give another example of a program which does not exist. If
e = (a, b) is a command and a, b ¢ X then X* = X. In the case that
a and b are both in X, we say that there is interference as e acts on X.
(We can think of the bubble at b as interfering with the attempted

movement of the bubble at a to vertex b.) Similarly, if P = (e;, -+, €,)
we say that there is interference as I’ acts on X if for some 7 there is
interference as e; acts on X" """ “*. We note
Fact 2: 1f P acts on X with no interference then
X' =U (z}".
reX

Proof: Tt is sufficient to establish this for the case P = e¢ = (a, b).
In this case

Uy Uz ® | Us Us Us
Vi Va O Vs Va Vs

Fig. 2—A typieal confignration representing an integer,
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(2} = {b, it 2= a:

x, otherwise.
Thus

U ()" =

zeX

{X —{a) U {b}, ifaeX;

X, otherwise.

But by the hypothesis of no interference, we cannot have both a and
be X. Thus

- {X —la) U (b}, if aeX _ ;o
X, otherwise weX

and the fact is established.
Fact8: For X = {a, b, ¢, z}, there does not exist a program P such that

{a, b}" = e, 2},
{b,c}” = {a,z2},
{c, a}” = {b,2}.

Proof: Suppose such a P exists. If P acts on these sets with no
interference then we would have by Fact 2,

e, 2} = {{a}”, (b}7},
{a, 2} = ((b}", (e}"},
(b2} = {{e}”, {a}"},

which is impossible since the union of the left-hand sides of the equations
cannot equal the union of the right-hand sides. Thus, if P = (e, -+, €.)
we may assume that there is a least 7, 1 < 7 = n, with P,_, = (e, -+ -,
e:_,) such that e; acts on at least one of the sets {a, b}"**, {b, ¢},
fe, a}*** with interference. To be specific, assume that it is the set
{a, b)7, that is, e; = ({a}”, {b}""™*) (the other two cases are
similar). By Fact 2 we have

{a, )77 = {{a}"*, (B}7 '},
(b,el™= = ((0}7=, fe}™),
le, @} = {{e}™, {a}7' ).
Therefore
{b, e} = {{b}7, {e} 7 = (b7 e} T
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and
fe, a™ = [{e}™ ™, la}" 1 = e} (017,
Hence,
ta,z} = {b,el” = le,al” = {b,2]

which is a contradiction. This proves the Fact 3.

Note that the nonexistence of the program of Fact 3 does not follow
directly from Fact 1 or the NDO theorem. A similar argument can be
given to show that for X = (a, b, ¢, d, A, B, C, D, 2) there is no program
P such that

la, e} = {4,2},

la, d}” = {B,z],
b, el” = {C, 2},
(b, d\" = (D, 2}

1V. THE 2-VALUED BOOLEAN FUNCTIONS

Our attention will now be focussed on the positive aspects of the
model. In particular we shall be concerned with the problem of repre-
senting the Boolean functions of m variables with appropriate programs.
The way in which a funetion is to be represented is as follows. Suppose
m = 2 and consider the function f: {0, 1} X {0, 1} — {0, 1} by

x Y f(z, y)
0 0 0
0 1 1
1 0 1
1 1 1

If the values 1 and O are interpreted as “true” and “false”, respectively,
then f is just the truth function of the familiar operation of alternation.
V will be the set of six vertices (2o, 1, %o, Y1 , fo , f1) Which we indicate
in Fig. 3. It is not difficult to show that no generality is lost by assuming
there are no additional vertices. In fact, by using the pair of positions
Zo , 7; In which to observe the result of the program, instead of providing
the separate positions f, , fi , it is true that if a Boolean function of
m = 2 variables can be represented by a program in this general way,
then it ean be represented using just 2m vertices. The program P(f)
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Fig. 3—Symbolic arrangement of vertex locations for computing Boolean functions
of two variables.

which represents f is required to have the property that

for {xa, 9o} ™", fig {2, 5ol ™7,
foe fzo, yud ™7, frgdzo, 0},
foe f, wal ™ frg e, w7,
fot {2 :Jl}Pmn Jre {a leiPm

The correspondence between the indices of the vertices of V" and the
values of the variables of f is immediate. In terms of bubbles, one may
think of the configurations shown in I'ig. 4 as representing a 0 and 1
respectively (compare Fig. 2); P(f) is required to map each of the four
possible initial states of the z;-pair and y.-pair into the correct value
in the f.-pair.

It is not difficult in this case to find an appropriate P(f), for example,
we can take

P(f) = (Tu ) yo)(l'a ; Jro}(&l’.l ) 3)'1)(?]1 , fl)

This is easily checked, as shown in Table I. We can write the preceding
result in the shorthand form

f P(f)
(Or 01 Ol 1) ("EU H yﬂ)(ﬂ:ﬂ ’ fﬂ)("vl ) yl)(yl ’ fl)'

Note that if fis defined by f(z, ) = 1 — f(z, ), that is, f is the com-
plement of f, then we ean take

P(f) = P()(xo , &) (o, y0) (o, Y2) (f1 5 20)(fo , 11) (20, fo)

I‘n‘ BL‘IEBLE““.I
0 1

Fig. 4—Configurations which represent 0 and 1.
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TasLe I—CumuraTive EFrFecT oF P(f)

(x, y) (wo, yo) (o, o) (21, 1) (y1, f1) Tz, )
(0, 0) < {xo, Yol {xo, yob  {foy o] [ oy Yo} {fo, 1o} © 0
(0, 1) < {xq, ¥} lwg wel fyn, wol Ly o) fuwml o 1
(1, 0) « {x1, Yo} (o, wol  {z, wol Ly ol 11, ol A 1
(1, 1) & {zi, m} lzy, ) {xy ol 2y lz, i} 1

as a program which represents f (we leave this to the reader to verify).
Table II, together with this remark about f, show that all of the
16 possible 2-valued Boolean funetions of two variables can be repre-
sented by programs.

A question whieh naturally arises at this point is whether all Boolean
functions of m variables can be represented by programs in this manner.
For m = 1, the answer is in the affirmative (the specific programs are
left to the reader to discover); for m = 2, we have given the required
16 programs; for m = 3, the answer is in the affirmative but the number
(2°° = 256) of programs prohibits their listing here; for m = 4, the
answer is once again in the affirmative but the caleulations necessary to
establish this are much too long to be exhibited (there are, after all,
2 = (5536 functions to consider). The cases m = 3 and m = 4 were
established by J. H. Spencer.”

One may note that since all Boolean functions of two variables can
be represented, then in particular the Sheffer stroke function given by

v Yy 1(x, v)
0 0 1
0 1 0
1 0 0
1 1 0

TapLeE II—PRrRoGRAMS FOR BooLEAN IF'UNCTIONS OF 2 VARIABLES

f P(r)

(0, 0, 0, 0) (xo, fo) (1, fn)

(0,0,0, 1) (x1, 1) (T, fl (0, fo) (ya, Jo)

0,0,1,0) (21, ¥o) (:Cn, f1) (=zo, fo) (y1, Jo)

(Us 0: 1:1) (Il: fl) Lo, f"'

0, 1,0,0) (o, 1) (o, [1) (21, Fo) (o, fo)

0, 1,0, 1) (0, fo) (w1, fl)

0,1,1,0) (o, Yo) (o, Fo) (x1, 1) (yy, yo) (21, fo) (s f1)
0,1,1,1) (0, ¥o) (2o, fo) (z1, f1) (w1, f)
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can also be represented. It is well known that any Boolean function
of m variables can be generated by expressions containing just the
variables and the stroke function.'® Hence, one is tempted to conclude
that any Boolean function is representable by a program. The flaw in
this line of reasoning is that in order to express a particular Boolean
funetion in terms of the stroke function, many occurrences of the stroke
function and the variables are usually required. This in turn requires
many “copies’”’ of the variables to be available to the program in order
to represent f. But we initially have only one pair of positions which
indicates the value of any particular variable and by the NDO theorem
we have seen that there cannot exist a ‘replication” program which
would form extra copies of the values of the variables. Hence, within
this model, we cannot use this technique to generate all the Boolean
functions. It is certainly true however that if the model were extended
to include bubble interactions which would allow replication of con-
figurations (and such are known to exist physically), then all Boolean
functions of m variables could be represented exactly in the manner
described.

These initial results create considerable optimism concerning the
possibility of representing all the Boolean functions of m variables.
Such hopes are shattered however by the result (which we later prove)
that there exisis a Boolean function of 11 variables which cannot be repre-
sented by any program of this type. In fact, even though the fraction of
the total number of Boolean functions of 11 variables which can be
represented by programs can be shown to be < 107'®, the author is
currently unable to exhibit any specific function which cannot be
represented. Clearly, our understanding of this is less than complete.
It is not unreasonable to hope that the representable functions could
eventually be effectively characterized.

We now restrict ourselves (without loss of generality) to representing
the Boolean functions of m variables in the following way. We shall
take V = {x,,z!,2,, 2, -+ T, x/} to be a set of 2m vertices which
we imagine to be arranged in pairs as illustrated in IFig. 5. As before, a
bubble in the x;(z!) location of the pair (z;, x!) will denote that the 7th
variable of the function f has the value 0(1). The way in which a program
P(f) represents f is as follows. Choose a distinguished vertex a e V. There
is an obvious 1-1 correspondence between {0, 1}™ and the class € of
all subsets X C V such that X intersects each {z;, z/} in exactly one
element given by

a={(a, - ,a,) = {y;eV iy, =z if a; =0,
1

y, =zt if a; =
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T, T, Tm

Fig. 5—Symbolic arrangement of vertex locations for computing Boolean functions
of m variables.

Let A, € {0,1}",7 = 0,1, be the set of all a e {0, 1}" such that f(a) = <,
and let C, be the corresponding subsets of C. Our object is to find a
program P(f) which distinguishes between the sets C, and C, . (Note
that Co U €, = C.) Specifically we shall say that P(f) represents f if

ae X7V forall XeC,,
ag XTP for all XeC,.

Let C denote the subset of all subsets * € V with | z | = m and
for  and y distinet elements of V, let C(z) be the set of elements of C
which contain z with C(y) defined similarly.! Consider the effect of
the command (z, y) on the members of C(z) and C(y). There are four
cases:

(7)) X eCx), X eCy).
Then X** = X and X" ¢ C(z), X" ¢ C(y).
(1) X e C(x), X ¢ Cy).
Then X = X — {2} U {y} and X** ¢ C(z), X ¢ C().
(73) X ¢ C(x), X e C(y).
Then X“* = X and X“* ¢ C(z), X“* e C(y).
() X ¢C(z), X ¢ C(y).
Then X“* = X and X* ¢ C(z), X ¢ C().

Hence, after the application of (z, %) to all the sets in C, the new sets
C'(z), C'(y) (which now consist of all the subsets in €' which contain x
and y respectively) are related to C'(z) and C(y) by

C'(z) = C(@) N Cl),
C'(y) = C(=) U C(y)-

Stated in these terms, the object of the program P(f) is finally to have
"' () N C = C, after it has been applied to all the sets in C.

We give an example which illustrates these concepts. Let f be the
Boolean function of three variables defined by:

t This approach was first suggested by J. H. Spencer.?
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1,y 2)
0

=
™

H = - SO, s

- OO MHOO
—_ OO O ~OD
— -0 OO =

V= t{a,,a , 2,2 , 2,24 and wetake a = 2] .
Co = {{ar, @, @}, (o, @l @), {2, 2d, ), (2], 20, 24},
Cr = ({2, ad}, {2l , @, &), {2l 2f, @), {2l , 28, 24},
A program P(f) which achieves the separation is
P{f) = (2 , 22)(2f , 25)(@d | 2a) (2, , 23) (2, , 7).

That is,

XeCo=a=ale X",
> A »
Xeg(y= a2 ¢ X",

If C'(x) denotes the initial subset of €' consisting of all the sets in €' which
contain z then we may conveniently record the sequential changes
which oceur in each current C(z) in terms of the original C(y)’s as
the successive commands of P(f) are applied as shown in Table III.
A little computation shows that the final set in the z{-row, the final
C(z!), when intersected with €' gives exactly

oy, ae, @l {2, 2, 2t {2, 28, al), {2l 20, 2a}

which equals C, as required.

In general the problem of representing Boolean functions reduces to
the following problem. We start with the 2m classes C” (y) = C(y) N C,
y & V. We are then allowed to replace two of the classes C*”(y) and
C’(y') by two (possibly) new eclasses C'”(y) N C (") and C”(y) U
C(y'). We can repeat this operation as many times as desired with
any pair of classes ewrrently in the list. Our objective is to eventually
generate a specified subset C* of C'.

We have already mentioned that for m = 1, 2, 3 and 4 it is possible
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Tapre III—CumuraTive EFrect orF P(f)

(x\', x2) (xy', x3)
Ty ('(.E[) ('(I-l) C‘(-rl)
z C(zy') Clzy) n Clza) C(zy') n C(z2) n C(zy)
Tot C(za Clz)) v Cz.) Clx,") v C(z2)
Ta C(Ig’) C(Iz’) C(rir)
T3 Cz;) Clxs) (C(z1') n Clxa)) v C(za)
Z3 Clzs') Czs) C(zs")

(zo', x3) (z1, x3)

Ty Clxy) Clz1) n (Clza") v (Clzy') nClxs)) v C(xy))
z': Cz') nClz2) n Clxs) Clz")nC(z2) nC(xs)

Tyt Clz))uC(x:) Clz)uC(z,)

z's Clxa) n ((Clx') nC(xa)) v () Clza') n((Clxy') A Clxs)) v Clx3))
T3l C(n’)u((,'(xégnC'(xg))uC(:cgJ C(I;)UC(IQ’)U(g((ml')}nc(xz))UC{IJ)
z3': 3') s

(z1, z1")

z1: Clx) A (Cx') u (Clx)) A Clry) v Clxy)) n Clxy) n Clxa) n Clxs)
1t (Clx1) n (Clay) v (C@') n Clz2))) v Clza)) v (Cz)') n Clze) n Cza))

Zal C(zy') v Oz2)

Ta' Clza') n ((Clzy') n Clzs)) v Clza))
Tyt Clzy) v Clzd') v (Clz) n Oz2)) v Clxy)
z4': Clxy')

to generate any subset of €' in this manner. We proceed to show that
for m = 11, there is a subset of (' which cannot be generated. We first
need several preliminary observations.

To begin with, for a,b ¢ V, let 4 and B denote the current sets C'*(a)
and C'"(b), respectively, after the ith command of the program P has
been executed. In other words, at this point in time €' (a) is the elass
of all the original subsets of C' which now contain a. For example, if
a = z} in the preceding example, then after the fifth (and final) com-
mand of P(f), €™ (x}) is € (x2) N (C" (x2) N C (x2) U OV (x5)). 1t is
immediate that if ¢ (a) € €' (b) then the application of the command
(a, b) as the (¢ + 1)-st command of the program changes nothing. Hence
we can assume that we only use commands (a, b) for which at the time of
their application €' (a) € C*'(b) & € (a) (we say that C”(a) and
C"(b) are incomparable).

Initially all the starting classes C(x), x € V, are mutually incom-
parable. In general suppose we have a family of classes D = {4, ;
1£i<t),A,; CC,with exactly » of the (%) pairs of A, being comparable
and assume A, and A, are incomparable. Consider the family D’ =
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D—{A} — {4 U {4, NA} U {4, U A.}. We wish to determine
how many pairs of the classes of D’ are comparable. By definition
D ={A NA:, A, U Ad,,A;,4,,---, A,}. Of course for 7, j = 3,
the comparability between the classes 4; and A; remains unchanged.
There are several cases:

(1) ;2D A, ,A:; D A..

Then A, D A, U A., 4,2 AN A,
(i) A, 2 A, ,A; D A,.

Then A; D A, N A .
(tir) A; DA, ,A, D A,.

Then A; 2 A, N 4. .
() 4, ©T A, 4: S 4,.

Then A; C A, N A4A,, 4, C A, U 4,.
(W) A, C4,,A; £ A,.

Then A; C A, J A,
() A; TA4,,4, C A,.

Then 4, € 4, J 4..

Finally, we have a most important new comparability in D’, namely
A, N A, € A; U A, . Thus, at least » 4+ 1 pairs of classes of D’ are
comparable. An immediate consequence of this observation is

Fact 4: We can assume that no program P(f) consists of more than ()
commands.

Proof: Since after 7 (nontrivial) commands of a program P(f) have
been applied, we must have (by induction) at least 7 pairs of the classes
C*"(x), z & V, being comparable and since there are just 2m classes and
therefore (%) pairs of classes, then P(f) must have < (") commands.

Theorem. There exists a Boolean funetion of 11 variables which cannot
be represented by a program.

Proof: Tt is sufficient to show that for m = 11, there is a subset C*
of € which cannot be generated by starting with the 2m classes C*” (),
x e V, and recursively applying the transformation 4, B — A N B,
A U B. Consider a typical program P = (e, , €, * -+ , €,) and the corre-
sponding expressions C‘”(t), presented in Table IV.

In choosing the 7th command e; of P there are at most (*7) — 7 + 1
possibilities for ¢, since after (e, , - - - , e;—;) has been applied, at least 7 —1
of the pairs C“ " (z), C“ " (y) are comparable and thus neither (z, y)
nor (y, 2) can be the next command e; . Therefore there are at most

(%} [(22"‘) — i+ 1] = [m@m — D]!

i=1
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TasLE IV—CumuraTive ErrEct oF P

P: ey [ e; e

e C0(z,)  CWO(z,) C®(z,) cee CU(gy) e e C(z,)

s CO(z,) CO(z,") C®(z,") AL T ) TN C ()
T C(‘”(:;:,..) C‘”(:;:m) C®(z,) B G T R CO(zm)
Tt CO(zm') CO(zm') C® (zm) O Tt N CO (g

choices for the sequence of e; , since t = (%) = m(2m — 1) by Fact 4.
Also, for 7 = 1, each column C'”(z), £ V, contains at most two new
classes which did not occur in the preceding column since only two
classes are changed at each step. Hence there are at most

(m(2m — 1)]! (2"2”} + 2m

classes which can be generated by these rules where the additional
term +2m comes from the 2m initial sets C*”(z), 2 ¢ V. On the other
hand, since €' contains 2™ sets X < V, then there are 2*" subsets of C
which we must try to generate. We are doomed to failure however since

{[’m(2m — O (32m) + 2m}/2““ -0

as m — . We list these expressions for several small values of m in
Table V. Thus, not only are we guaranteed a single Boolean function
of 11 variables which cannot be represented by a program, but in fact
we have at least 10™° of them. It seems quite likely that there exist
Boolean functions of five variables which cannot be represented.
However, at present, no specific example of a Boolean function is known
which cannot be represented by a program.

TaBLE V—Bounps oN THE NUMBER OF BOOLEAN FUNCTIONS WHICH
CaN BE GENERATED

m [m(2m —1)]!(2;”) +2m 20m
2 4324 16
3 19615115520006 256
10 >1035 <10%
11 <1053 >10m8
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V. SOME REMARKS

A number of partial results are known concerning the preceding
problems which we shall only mention briefly here.

The generation of Boolean functions as described has the following
very natural geometrical interpretation. For a fixed integer n, consider
the set of the 2" vertices of an n dimensional cube C"and let 4, , - - - , 4.,
represent the 2n sets of 2"7" vertices which each lie on one (n — 1)-
dimensional “face”. In other words, if the vertices of C" are labelled by
binary n-tuples in the usual way, then each A; corresponds to a set of
2*"' n-tuples in which some component is constant. As before, we are
allowed to replace any two sets 4 and B in the class of 2n setsof A M B
and A U B. We can repeat this transformation as often as desired. The
question is: which subsets X  C” can be generated in this manner. We
have shown that there exists a set X C €' which ecannot be so generated.

More generally, suppose we start with a class of n formal sets
X,, -+, X, and ask which formal expressions in the X; can be generated
using the transformation X, ¥ — X M Y, X | Y iteratively. It can be
shown'' for example, that all the elementary symmetric functions (using
M and UJ in place of the usual - and +4) ecan be generated. Let us call
a well-formed expression E in the X,’s symmetric in X,; and X; if the
substitution X; — X;, X; — X, , leaves I unchanged. Thus we can
write E in the form

E=X:NX;NMUX:UX)N W)U W,

where the W, are well-formed (possibly empty) expressions in the X,’s
not involving X; or X; . We say that we collapse X; and X; in I if we
apply the transformation X, N X; — X, , X; U X; — X, , to form

B = (X.-ﬂWl)U(X,-ﬂWa)UWa-

Certainly, if K can be generated using the transformations X,
Y—-XNY, XU Ystarting from X, , - - - , X,,, then there is a sequence
of collapses starting with £ and ending with some single variable X .
A basie theorem can be proved which asserts that if it is possible to
generate E, then no matter how we collapse symmetric variables
starting with the expression £ we must reach some single variable X; .
In other words in attempting to collapse F to a single variable, we can
never make a “bad” move. Once the structure of the expressions F
which can be generated is sufficiently well understood, perhaps the
representable subsets of C" can then be determined.

Another line of research suggested by this bubble model is in the
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following direction. For binary sequences z and y, define d(z, ¥), the
(Hamming) distance between x and y, to be the number of positions in
which the sequences z and y differ. The fact which prevented the
existence of a program which could add two integers expressed to the
base 2 was the fact that there are pairs of additions in which the binary
expansions of the corresponding summands are close together (in the
metrie d) but whose sums are not close, thus conflicting with the NDO
theorem. What we would like is a mapping m — r(m) of integers into
binary sequences for which we have

d(r(m), 7(n)) + d(z(m"), 7(n’)) = d(r(m + n), v(m’ 4+ n")).
With only this constraint there are trivial solutions, for example,

m— 111 --- 1.
el
With this mapping we are essentially expressing m to the base 1 (well-
known by many cultures to be inefficient for representing large numbers,
say, those exceeding 10). Hence, we might require in addition that the
number of binary sequences of length ¢ which are in the range of the
mapping 7 to be at least o' for some fixed & > 1. Is it possible to find
a suitable = for which an addition program s possible in this model of
bubble interactions?

Finally, we have just considered just one rather simple model in this
paper. Physically, many other bubble interactions are possible (although
some presently operate with significantly smaller margins than others)
and this of eourse would lead to other models. It would be very interest-
ing to understand the eorresponding questions in some of these other
models.
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