Dielectric Guide with Curved Axis
and Truncated Parabolic Index

By E. A. J. MARCATILI
(Manuseript received May 5, 1970)

We find the field configurations and the propagation constants of the
guided modes in a dielectric waveguide with curved axis and rectangular
cross-section. Qulside the guide, the refractive index is uniform. Inside,
the index profile in the radial direction (intersection of the meridional plane
and the plane of curvature) follows a parabolic law with the maximum at
the center of the guide; in the direction perpendicular to the plane of curva-
ture the index s either uniform or parabolic, again with the marimum at
the center of the guide. The guide with mized profiles has been proposed as
an easy-lo-support, low-loss, ribbon-like guide for millimeter and optical
waves while the other, with parabolic profile in both directions, is similar to
the “SELFOC®” or “GRIN” image transmitting guides.

The azial field components are small compared to the transverse com-
ponents and consequently the modes are almost of the TEM kind. Within
the guide the field distribution along a quadratic profile is a parabolic
cylinder function of order close to an integer, and is sinusoidal along the
uniform profile. The field components outside of the guide decay almost
with exponential law.

Inside the SELFOC-like guide, the field distribution of the funda-
mental mode s gaussian and except for the attenualion the characteristics
of the beam are similar to those obtained for a guide in which the parabolic
ndex profile is not truncated.

The attenuation constant a of any mode s very sensitive to the radius of
curvature RB. Doubling R reduces a by several orders of magnitude.

Fizing R and the difference of refractive index between the center of the
guide and the edge of it, the attenuation constant o passes through a mini-
mum for a guide width measured in the plane of curvature which is only a
few beam-widths.

Radiation loss for the fundamental gaussian mode is negligibly small if
the distance between the center of the beam and the edge of the guide is two
or more half beam-widths.

Guides with rectangular index profile in the plane of curvature have less
radiation loss than similar guides with truncated parabolic profile.
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I. INTRODUCTION

A dielectric guide in which the refractive index decreases with para-
bolic law away from its axis acts as a lens-like medium.”* The trans-
mission through it is known even if the axis is not straight® and if the
parabolic decrease is different in two orthogonal directions® (astigmatic
guide).

Though extremely useful in many respects the parabolic medium is
not realizable since it has ever-decreasing refractive index away from
the axis and this in turn produces an untenable physical result. Thus
though we know that in any realizable dielectric guide with curved
axis, radiation losses are inevitable,” the modes in the parabolic medium
with curved axis can have no radiation loss since the refractive index
tending towards infinity far away from the axis prevents it.

A more realistic model is achieved by truncating the parabolic index
distribution. We begin, in Section II, studying the two dimensional
guide, Fig. 1a, in which the index profile, Fig. 1b, varies as a truncated
parabolic function along the x axis and is independent of y while out-
side of the guide the index is uniform.

Later, this guide is modified in such a way that along y, the index
profile is either rectangular, Fig. 2a, or another truncated parabolic
funetion, Fig. 2b.

The first of these guides has the index distribution of the dielectric
thin-film guide proposed in Ref. 6 as a low-loss, easy-to-support ribbon-
like guide for millimeter and optical waves. It has also the configuration
of a possible guide for integrated opties.” This guide, with curved axis
has been analyzed in Ref. 8 ignoring radiation due to curvature. In
Section II, both the phase and attenuation coefficients of the guided
modes are evaluated and compared to those in a similar guide with
rectangular index profiles along both z and y.

The results obtained for the guide with truncated parabolic profiles
along = and y, Fig. 2b, are applicable, at least in order of magnitude,
to “SELFOC”® or “GRIN”' fibers, and tubular gas lenses'' with
curved axes.

Finally conclusions are drawn in Section III, while all the mathe-
matics are given in the Appendix.

II. MODES IN THE CURVED GUIDE

Consider the two-dimensional curved guide in Fig. 1a. The parabolic
refractive index within the guide is independent of y and equal to

n; = n[l _ A(l + —Qf)] , 1)
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Fig. 1—(a) Two-dimensional truncated parabolic guide; (b) Refractive index
profile; (c¢) Electric field distribution of the fundamental mode.

where a is the width of the guide, n, the refractive index in the center
of it and n(1 — A), the refractive index at the edges. Outside the guide,
the index is

n, =n(l — A — A). (2)
We make the following assumptions:
Akl
(3)
A <1
and
A a
ava 1T 1R @
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Fig. 2—(a) Inhomogeneous dielectric thin film guide; (b) “SELFOC®” or
“GRIN” guides with rectangular cross-section.

where \ is the free-space wavelength and R the radius of curvature
of the guide. The physical significance of inequality (3) is that the
guided modes will have phase velocities quite comparable to that of a
plane wave in a uniform medium of refractive index n. The inequality
(4) insures that the amplitude of the field components at the edge of the
guide are small compared to their maxima within the guide. In other
words, most of the electromagnetic field is well confined within the
guide, Fig. le, and consequently the loss per wavelength is small com-
pared to unity. Considering only guided modes with field configura-
tions independent of y, we can group them in two families: TE and
TM. The field components of any mode of the first family are E, ,
H, and H, while those of the second are H, , E, and E, . In each family
the transverse components are far larger than the axial components
and consequently both families are essentially of the TEM kind.
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The transverse components E, , H, , H, and E, of both families
have the same functional dependence within and without the guide.
Therefore we will talk from now on of the E field meaning either one of
those four components.

Within the guide, and subject to the conditions (3) and (4), the E
field distribution for the pth mode is essentially

2
a
z+5—p
E = exp[— }He” ').—2—f

in which the first two factors describe the field distribution along z,
and the last gives the propagating wave dependence along the curvi-
linear z axis. Similarly to the field distribution in the lens-like medium
(@ = =), the first factor is a gaussian with its maximum located at a
distance

a
rhyTe exp [itkz — wl)]  (5)

w w

2

a
P = 3AR (6)
from the center of the guide. The normalizing 1/e half-width is
ah
w = Ld 7)
‘\/rn V 8A (
The second factor in equation (5) is a Hermite polynomial of order p
which is also centered at z = — (a/2) + p and the argument is normal-

ized to w/2. Strictly speaking the expression (5) should have, instead
of the Hermite polynomial, a Hermite function of order close to p.
Interested readers can find the details in the Appendix.

Tor the fundamental mode p = 0 the Hermite polynomial is unity
and the transverse field distribution is the well-known gaussian.

The propagation constant k, = 8 + ia in equation (5) is complex
and the phase and attenuation constants calculated in equations (36)
and (37) are

a’ 2 1-M
= 5“[1 T 16K ~ win K(1 + M)] ®)
and

I:t—ab (- d)]z»n

o= el o g - 6]

— gt (1 = d)z} ®
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in which 7
f' 2\ 1
_ 2 _ 1 (_a)
¢ = a ®\w/’ (1
® = 4%” 2A)R, (12)

and the values of M/ and K can be found in equations (38) and (39).
Let us discuss the physical meaning of some of these formulas.

The phase constant 8 given in equation (8) is the product of the
phase constant ,,(10) of the lens-like medium with straight axis (R =
a = »), multiplied by a bracket essentially equal to one; the two small
terms contained therein take into account the curvature of the axis
and the truncation of the parabolic profile.

More interesting is the attenuation constant (9). The value V/2A Ra
which is the normalized attenuation per radian has been plotted in
Fig. 3 for the fundamental mode p = 0 and A, = 0. The abseissa is
the square of the guide width @ normalized to the beam-width 2w or
its equivalent (zna/\) v/A/2 which is the guide width normalized to
the free wavelength. The parameter used for the solid curves is the
normalized radius of curvature ®(12). For a given radius of curvature
the loss per radian is highly sensitive to the width of the guide and
passes through a minimum at width

- _ ()

2w \8/°
For a wide range of values of ®, say 10 to 1000, that minimum loss
oceurs when the guide width is only a few beam-widths.

The dotted lines are curves of constant d, that is constant ratio
2p/a between the beam displacement from the guide axis p and the
guide half-width a/2. It is easy to understand the downward trend of
these curves for large abscissas. Consider a guide with fixed geometry
and decrease the wavelength A of operation. The beam remains at the
same distance p from the guide axis but it becomes narrower and conse-
quently the field at the edge of the guide and the radiation loss de-
crease. It is surprising that the minimum radiation loss of the solid
curves oceurs when the beam displacement is a small part of the gidue
width (d of the order of 0.1).

Why do the solid lines have a minimum? For very narrow guides
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Fig. 3—Radiation loss in curved guides with truncated parabolic index profile

an 2p
w = = —
™

. . - &
’ d = a’ P = RAR-
(a/2w < 1), most of the electromagnetic field travels outside of the
guide and any curvature of the axis introduces substantial radiation
losses to this loosely guided beam. On the other hand, for very wide
guides (a/2w >> 1), any curvature of the axis displaces the beam close

to one edge of the guide (d close to unity) and onece again substantial
losses occur. There must be a minimum in between.

SA

It is interesting to compare the losses in these guides of truncated
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parabolic index profile with guides of identical width but with rectangu-
lar index profile of height nA. In Fig. 4, the solid curves are a repetition

of some of those in Fig. 3, while the dotted ones have been reproduced
from Ref. 12. The abscissa is again (a/2w)” which is identical to (r/4)a/A
in which
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is a dimension such that for a < A, the guide with rectangular index
profile supports a single mode and for @ > A, the guide is multimode.

For the same radius of curvature, guide width, and same A on axis,
the guide with truncated parabolic profile has more loss than the guide
with rectangular profile. The difference is very marked for large abseissas,
but this result should not be surprising because in the case of curved
guides with truneated parabolic profile the beam travels close to one
edge of the guide where there is little difference of refractive index
between the inside and outside, while in the case of rectangular profile,
though most of the power travels also close to one edge of the guide the
full difference of refractive index nA is there to help in the guidance.

In Fig. 5 we have plotted again the attenuation per radian as a
funetion of (a/2w)?* but this time we use as parameter, the value of

which is the number of beam half-widths between the center of the
beam and the external edge of the guide. The curves have asymptotes
(dashed lines) parallel to both coordinates.

For h = 2, A = 0.01, the attenuation per radian «R turns out to be
smaller than 0.003, which is very small for most purposes.

If the truncated parabolic profile is on a pedestal (A, # 0), the
losses are even smaller than those depicted in Fig. 4. The influence of
A, in the attenuation constant (9), appears in the bracket of the ex-
ponent. The other two terms are in general small compared to unity.
Therefore even a modest value of A, , say A, = A, is enough to reduce
the losses depicted in Figs. 3 and 5 by several orders of magnitude.

What happens when p # 0. From equation (9) we find as expected
that for a given guide the radiation loss increases fast with the order p
of the mode. The highest order mode that travels only slightly in-
fluenced by the guide width is characterized by

2
a

2

w

Pmax = _%=h2_%
Naturally pu.. is independent of A, , and when the beam center is close
to a beam half-width from the edge, pu.. = 0.

It is shown in the Appendix that if the refractive index profile along y,
Fig. 1a, is not uniform but has either rectangular or truncated para-
bolic shape, Figs. 2a and 2b, the guides have different phase constants
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than equation (8) but practically the same attenuation constant €))
provided that most of the electromagnetic field travels within the
guide. Therefore everything said about attenuation in this section
applies to the three guides.

For the following examples we will only use Figs. 3, 4 and 5 since all
the important results and formulas are there.
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2.1 Fxample A
For a guide such that

n = 1.5,
A = 0.01,
A =0,

a = 0.1 mm,
A= 1y,

what is the radius of curvature R for which the loss per radian is of
the order of 1077
We calculate the abscissa and ordinate of Fig. 5 to be

a\ ma [A
(@) :T\g=33

V2AaR = 1.4-107"

and

The parameter 1 obtained from Fig. 5 is approximately 2 and we derive

a?
R=-—"——=39 .
8Ap mm

A very small radius indeed.

2.2 Example B

Tor integrated optics a guide with truncated-parabolic profile may
have the following characteristics

n = 1.5,

A = 0.01,

A =0,

a = 10g,

N = 0.5,

R = 0.6 mm.

What is the loss per radian?
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From Fig. 3 or 4 we get the abscissa and parameter

_ 4mnR
N

® (24)* =~ 60.

Consequently the loss per radian results
aR = 0.018.

If instead of parabolic the index had been rectangular, from Fig. 4
we deduce that the loss per radian would have been 0.00018, two
orders of magnitude smaller.

III. CONCLUSIONS

For losses small enough, the field configurations and phase constants
of the modes in dielectric guides, Figs. 2a and 2b, with curved axis
and parabolic index profile on a pedestal, are quite comparable to
those in a similar guide in which the parabolic profile is extended to
infinity.

The attenuation constant of a mode is very sensitive (exponential
dependence) to the radius of curvature, size of the pedestal and order
of the mode. The higher the order of the mode and the smaller the size
of the pedestal the larger the loss.

Quantitative results about the attenuation constant for the funda-
mental gaussian mode in a guide without pedestal are given in Figs. 3,
4 and 5 and in typical examples at the end at the preceding section.
We find in these figures the loss per radian «R as a function of the guide
width @, using as parameter the radius of curvature R, or the ratio
between beam displacement p and guide width or the ratio between
the beam distance from the edge of the guide, a/2 — p and the beam
width w. The main conclusions are:

(#) Doubling R reduces the attenuation constant e several orders
of magnitude.

(#7) For any R, there is a guide width that minimizes the loss per
radian. That dimension is only a few beam-widths.

(#4) For comparable characteristics, guides with rectangular pro-
files have lower attenuation than those with truncated-para-
bolic profile. Therefore if the transmission of images is not
important, such as in the case of the ribbon-like guide of Ref. 6
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and guides for integrated optics, rectangular index profiles are
more attractive than parabolic profiles.

(v) The attenuation per 90° bend is smaller than 107° in a guide
such that the distance between beam center and the external
edge of the guide is larger than a couple of half beam-widths,
that is, if

APPENDIX

Modes in Curved Guides
With Truncated-Parabolic Index Profile

We start studying the two-dimensional curved guide depicted in
Fig. la in cylindrical coordinates. Later we will introduce a variation
of the index profile along y.

The parabolic refractive index distribution within the guide is

" = n[l - A(l +20= Rﬂ (13)

where a is the width of the guide, n the refractive index in the center
and n(l — A) the refractive index at the edges. The refractive index
outside the guide is

n, =n(l — A — A)). (14)

Assuming that the electromagnetic field does not vary along y and
that the only component along that direction is H, , all the field com-
ponents either inside or outside the guide are™

H, =H |
E, = H
WO exp (108 — wb)] (15)
_ i oH
a weang ar

where w is the angular frequency, ¢, the refractive index of free space,

and the indices 7 and o refer to the inside and outside of the guide.
The resulting wave equation for both media is

d°H | 1dH (k’n? 2

i Sy ?)H =0 (16)
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in which & = 2x/A and A is the free space wavelength. Within the
guide n; is given by equation (13) and the wave equation can be re-
duced to

d’H
prai iU B G £)’JH =0 (17)
by making the following substitutions
2(r — R
£ = —h-(’”w ),
(18)
EO = f_t)(l - d),
v = k.R, (19)
Eny — k, o *d { 1
=By (i) -3, (20
in which
laA \/ a\
= 3 = — 21
v \’ T ™mV'8 @n
_4d _a _ 2%
d_wzmﬁﬁl _ay (22)
& = 1 o)k, ©3)
and
QS (24)
nV/8A

Furthermore, equation (17) has been derived making the following
simplifying assumptions

A K 1,
A K1, (25)
O
m/z <= qr

The physical significance of w, d, A and the inequalities are given in
the text.
The solution of equation (17) is™

H; = D, + &) = exp [‘"(E -g Eo) ]Hen(E + &) (26)
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where D,(¢ + &) is the parabolic cylinder function of order 7 and
He, (¢ + &) is the Hermite function of order 5. Only if @ — «, 2
becomes an integer, the Hermite function is reduced to a polynomial
and H; becomes the well-known solution of the parabolic lens-like
medium extending to infinity.’

Outside of the guide, that is for » > R, the refractive index n, is
uniform, equation (14), and the solution of the wave equation (16) is"?
the Hankel function of order » and argument %n,r. That is

H, = H"(kn,r). (27)

To mateh fields at the boundary r = R, the radial admittance
H,/E, inside and outside the guide must be identical. With the help
of equations (15), (26) and (27), we obtain the characteristic equation

wnD, (&) _ H"(kn.R)
2 Di(t,)  HV'(knoR)

k (28)
in which the derivatives are taken with respect to the arguments of the
funetions.

We should have another boundary equation for the other side of the
guide, r = R — a, but we are interested in guides with radius of curva-
ture B small enough to push the field away from the center of the
guide, and consequently the field at the interfacer = R — ais negligibly
small.

To solve explicitly the boundary or characteristic equation (28) for
k, , we need asymptotic expansions of the functions involved. From the
inequalities in equation (25), it can be deduced that

| &> 1 and L501>>|'-'?|- (29)
The asymptotic expansion for D, (&) is then'*

5 o
Dy = et ew (5 —im) + 377

where T'(—7) is the gaussian function of argument (—x).
The asymptotic expansion for the Hankel function results from
observing that as a consequence of equation (25)

kn > 1,
k.R> 1, (31)

£ exp (‘%“) (30)

kng ~1

k. =
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and
K — kﬂni)*%» 1.

Therefore we can replace the Hankel function by Watson’s approxi-
mation.’* This approximation involves Bessel functions of order one-
third and large arguments. Keeping the first term of their asymptotic
expansions, the Hankel function results

2 - R 2 2
H:l)(knnR) = ‘\’TI'RG(F _ k?ﬂﬂ)} {_‘2’ exp [31{;2 (kz - knﬁ)i]
R 2 2
+ % exp [—?’kz (k: — kni)*]}- (32)

Substituting equations (30) and (32) in equation (28) we obtain a
simplified version of the characteristic equation

\(/—) £ (°+ww)

\(/277) £ ( > + 'wrn)

1+ 7 exp Ii—g% (k2 — k%i)g]
=& 0 — ) '

1-—

(33)

To solve this equation for &, we rewrite it as
T(—n) = F(n) (34)

and notice that F(x) is a large quantity. Therefore the gamma func-
tion is also large and hence » must be near a pole, which makes » close
to an integer p. Then we can replace the gamma function by the first
term of the Laurent series (—1)”/p (p — 7), and equation (34) becomes
_ (=17

TP TR
Substituting » by the value given in equation (20) we derive the ex-
plicit value of &, . This propagation constant is complex, k, = 8 -+ o,
and the real and imaginary parts are the phase and attenuation eon-
stants of the pth mode:

(35)

8 = Rek, (36)

2 1 1 2 1—-—M
= k”'{l = (wkn)? [p Tyt (1 )+K(1 T M)]
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35y ]
P73\ 14 2M — M*

RV O () D
where
A, 1\ 4 |}
A (P + 5) a&]
M = [1 + T=a (38)
e Y-
K = V2 p! (39)

[V&d (1 — d)]*
In equation (37), M affects the value of @ mostly via the exponential
and not via the fraction
1+2M — M*
T
1+ M)

which for all practical purposes can be replaced by 1. Consequently
the normalized loss per radian 4/2ARa results

o[ -5 (5]

dK

L = V2ARa = (40)
Now we turn to guides in which the refractive index is a function
of y, Figs. 2a and 2b.
Let us start with the ribbon-like structure of Fig. 2a and assume as
in Ref. 6 that

A, > A (41)

Provided that most of the electromagnetic field travels within the
ribbon, the attenuation per radian is still given by equation (40), but
the phase constant is a slight modification of equation (36). From Ref. 12
is deduced

(1 +2(1 - A,)”Al)'2 for field
kn [x(g + 1) | b polarized along y,
B =8- N

( 1+ 2 é)'z for field
T b polarized along z,

(42)

where ¢ + 1 indicates the number of maxima of electric field within



1662 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1970

the guide along y and

(43)

A =
nvV 8A,

Consider another guide, Fig. 2b, with rectangular cross-section and
truncated parabolic index profile along both the z and y directions

n; = n[l - A(l +2 "—_al“‘-)z — A(ZTJ”)Z]- (44)

Provided that most of the electromagnetic field is within the guide
cross-section, the loss per radian is still given by equation (40), but
the phase constant becomes*
_ _A_n)‘*
1 (145

vara () [ (4 8]

where ¢ + 1 is the number of maxima of the electric field along ¥ and

2
ﬁz_ﬁ_w:kﬂ

0+ +2 (45)

Ir
p=gqg=0
and
a=2>

the guide has square cross-section and equations (40) and (45) yield
a first approximation of the phase and attenuation constants in a
curved SELFOC’® guide.
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