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In this paper we provide a rigorous proof that feedback cannol increase
the capacity of the channel with additive colored gaussian noise by more
than a factor of two. We also give a tighter bound showing that any increase
in capacity is less than the normalized correlation between the signal and
noise. It is further shown that gaussian signals and linear feedback process-
ing will achieve capacity.

The practical implications are that (7} feedback should be used to stmplify
encoding and decoding since there is little to be gained in the way of in-
creased capacity and (i) the various proposed schemes which use linear
feedback are doing the correct thing.

I. INTRODUCTION

When Shannon first showed that feedback could not increase the
capacity of a memoryless channel, he mentioned that the capacity
could be increased when the channel had memory.' One example of
such a channel is the additive colored gaussian noise channel with an
average power limitation on the transmitted signal. We prove here
that the capacity of this channel is never more than twice the capacity
without feedback and as the noise becomes white the capacity ap-
proaches the forward capacity. The limiting case has been attributed to
Shannon for years and has only recently been rigorously proven.”

We derive an exact expression for the mutual information between
the input and output of the channel. The application of different bounds
to this expression produces twice the forward capacity with the weakest
bound, or the forward capacity plus the normalized correlation of the
signal and noise with a slightly stronger bound. It is shown that a
gaussian signal maximizes the information, and consequently the opti-
mum feedback technique is linear.

Our results are based on the model shown in Fig. 1. The added noise
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Fig. 1—Channel with noiseless feedback.

spectrum is normalized to 1 at infinite frequency, is bounded, and has
an integrable logarithm. This allows us to represent the noise as in
Fig. 2. The noise now consists of a white component plus a filtered
version of the white noise. The imposed restrictions are for mathematical
purposes only and are of no practical significance.

Theorem 1: The muiual information between the input and output
of a channel with additive gaussian noise with spectral density N(w) and
arbitrary causal feedback processing, as shown in Fig. 1, is given by:

Im; ¥) = 3 f () + () | m, V] dt

_ %LTE"[S@) +2() | Y. ]dt (1)

where Y, i5 y(r), 0 £ + < t and the expectations are conditioned on Y,

or Y, and m. z(t) is a linear causal functional of while noise with the
properties that:

) = [ b — ) dw) + [ A+ 7 doe)
v ' @
|14+ H(@w) | = N).
The two functions w(t) and v(t) are independent Wiener processes. The
reason for iniroducing the second term is {o make n(t) = z(t) + w(f) a
stationary process.
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Fig. 2—Model of nonwhite noise,
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Proof: We first observe that w(f) 4 z(t) is equivalent to noise with
spectral density N(w). A causal filter, h(r), will exist whenever N(w)
represents the square magnitude of a causal filter

| G(w) " = N(w)
H(w) = Glo) — 1.
The logarithm of G(w) is
3 In N(w) + iB(w)

where B(w) is the phase characteristic of G(»). The conditions of cau-
sality, no lower half plane poles, will be met when B(w) is one half the
Hilbert transform of In N(w). The conditions on N(w) insure that
In N(w) has a Hilbert transform.

Now to prove formula (1) we use a theorem due to Kadota, Zaki
and Ziv®, which we state without proof:

Theorem A: The mutual information between the input parameter
m and the output processes Y 1 of a finite power system disturbed by addi-
tive while gaussian noise 18

T T
Im; ¥) = A8 [ &, m, V) di— 48 [ Bla(t, m, V/V.) dt
0 [i]

where ¢(t, m, Y,) is the causal modulaiing function.

This result is applied to the non-white noise problem by considering
z(f) to be part of the signal. The inclusion is only useful when one is
caleculating the mutual information; it is not to be included in the
caleulation of transmitter power. Theorem A cannot be applied directly
since the signal, ¢, which is taken as s(f) 4+ z(f) is not completely de-
termined by m and Y, , but is also a function of the process v(t). To
find I(m; Y1) we use the decomposition,

Im, V; V) = Ilm; Yy) + I(V; Y, | m), (3)
where V is the process v(7).

From Theorem A we have,

Iom, Vi ¥0) = 3 [ [s(0) + () di
Jo

"

— 3 [ B0 40 [ YId @



1708 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1970

and

V5 Ye | m) = 308 [ [s(0) + (0 d

—1E fTE”[s(t) +2(0) | Y., m]dt,

which together with equation (3) proves Theorem 1. s(f) + =z(¢) has
finite energy because s(f) must have finite energy and z(f) will have
finite energy whenever the channel has finite capacity without feed-
back, as we shall see when we evaluate E[z*(f)]. With this basic result
we can derive several interesting corollaries concerning the information.

Corollary 1: (Pinsker)* Under the conditions of Theorem 1,

_I(m; Y.
T

lIA

20

where C 1s the capactty at the channel without feedback.
First we observe by equation (3) that

I(m; Yy) = I(m, V; Yy)

which is given by equation (4). Furthermore the second term in equa-
tion (4) is negative and can be ignored, thus

T
Im; ¥y) < 38 [ (s + 27 dt. (5)
i}
I(m; Y,;) can be further bounded by
T T
I(m; YT)gEf fcu:+Ef 2 di (©)
0 0

since (s + 2)° < 25° + 27"
The next step is to calculate the variance of 2, since this enters di-
rectly into I(m; ¥ ,).

T
P f 20 di = TE@),
(1]

W 1" e 2
BE) = o [ | HE) Fdo= o [ 166 — 1 de

_Lf“
o=

* The factor of 2 has been mentioned earlier by Pinsker but no proof has yet
been published.
t Indicates the Hilbert transform.

dw

1 i ~o Tt
exp [5 In N(w) + §ln N(w)] -1
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=2 - VW) de

2r J_o
{--] & \/
_ Re f {exp [1, In Nw) + 5 In N(m)] - 1} do.
T J_w 2 2

This latter integral, as chance would have it, is almost identical in
strueture to an integral which arises in evaluating the spectral density
of a single sideband FM wave (at the carrier frequency) which is
modulated by a gaussian signal. The quantity 1/2 In N(w) here plays
the role of the autocorrelation function of the gaussian signal, and
although for our problem 1/2 In N{(w) is not in general an autocorre-
lation function, the integral may be discussed »ia the technique used
in the FM problem (see Mazo and Salz)”.
Define:

® - N
L nve +w N | = 10
then

d

d d d
1o 6 — 1] = Gl) g- F@) = [6) — 1] - Flw) + 5 F).

In the time domain this becomes
—ih(l) = —dtf(t) — i f At — 1) dr
0

because both h(r) and f(r) are zero for negative r. Both f(r) and h(r)
are finite for small 7 and thus

hr = 0) = {(r = 0).

The integral we are interested in is 2 Re h(r = 0) which is equal to
2Ref(r=0) = o [ In N do,
21 J_»
Thus far we have shown that

T T
]ffszdt+Ef 2 dl
J0 0

T x o0
- Lf &l — g}f [l — N@)] do — %f In N@) do.  (7)

One more trick is needed to prove the corollary. We have, up to this
point, considered only normalized channels which had N(=) = 1.
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This is valid because normalization cannot affect the ratio between
capacity without feedback to that with feedback. Some channels can-
not be normalized in this manner, i.e.,, N() = o« or N(«) = 0.
The latter case has infinite capacity and thus the corollary applies.
The former presents no problems due to the following lemma.

Lemma: Consider the channel without feedback. By the water pouring
argument® we know that the signal energy which achieves capacity obeys:

g _{K—N(w), Nw) = K;
Slw) =

0, otherwise.
If we define a new noise N°(w)
[N, N =K;
IK , Nw) > K.

This new channel has the same capaeity without feedback and a larger
capacity with feedback.

Proof: The expression for capacity without feedback is the same
for N(w) and N°(w). The capacity with feedback can only be increased
since N'(w) £ N(w) for all w. For if the capacity with N (w) were larger,
one could add a noise with spectrum N(w) — N°%w) at the receiver
and do just as well as if the noise were N (w).

We now normalize the noise, N°(w), in order to apply equation (6),
which makes K = 1. The capacity without feedback is:

L1
€= f_w In o) %

p = 21_71-,[“, (1 — N°%)] do.

With feedback from equations (6), (7) and (8)

N'(w) =

(8)

T
I(m; V) gEf & di — TP + 2TC
0

or
I(m; Yy)
T

A tighter bound can be obtained by returning to equation (5) and
writing:

I3 t t
Iom; ¥Vy) < X [Ff Sde+Ef zgdt] +Ef s dt,
2 0 0 (1]

IA

2C.
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which by the preceding argument is equal to
t
C+ E f sn’ dl.
0

The correlation Esz’ is equal to Esn’ because n’ and z° only differ by a
white component. Thus the capacity can be increased only by the
correlation of the signal with the noise. The noise n’ is not the original
noise, however the difference occurs only at frequencies not used for
signaling without feedback. As N(w) becomes white, the energy in 2
decreases and consequently Esz” must go to zero.

More insight into the problem is supplied by the following theorem.

Theorem 2: Capacity can be attained with a gaussian signal s(t).
Proof: First we observe that
E[s(t) + 2(t) | m, Y] = s(t, m, Y.) + E[2(t) | W.].

This is true because s(t) is known given m and Y, , and z(f) is dependent
on W, which can be calculated given Y, and s(f). E[z(t) | W] is a linear
funetional of 1 because 1 is gaussian.

El() | W] = [ K, ) de(r).

The first term in equation (1) depends only on the correlation prop-
erties of s(t, m, ¥,) and w(r) and therefore we can use a gaussian s of
the appropriate correlation. For the second term we use the property
that a least-squares linear estimate has no more energy than the more
general least square estimate.

Ex* = E&* + E(x — &) = E¥¥ + E(x — %)°

where # is the least-square linear estimate of x and £ is the least-square
estimate. Since

Ex — #)° £ E(x — &),
E# = E#.

Therefore, since E[s(t) + z(t) | Y,] is the least-squares estimate of
s(t) + z(t) given Y, we have

AN

" T

I(m; Y;) = -ila [ E'ls+z|m, Y,]dt — %Ef (s + 2)° dt
& Jo “ o

but for a gaussian signal this inequality is an equality. In addition the
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signal power is unchanged and the feedback processor need only be
linear. Therefore one need consider only gaussian input and linear
processing in calculating capacity.

II. GENERALITY OF THE MODEL

The restrictions on N(w) are in fact only needed for N°(w). If a
noise spectrum is such that the logarithmic integral of N°(w) is minus
infinity then the capacity of the channel is infinite without feedback.
Therefore the bound applies to any channel which has a finite capacity
without feedback.

The bounds are all valid for noisy feedback as well, however it is not
clear that gaussian signals are optimum in that case.
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