New Theorems on the Equations of
Nonlinear DC Transistor Networks
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It has long been recognized thal equations describing de transistor nel-
works do not necessarily have unique solutions. The Eccles-Jordan ( flip-
flop) circuit is an excellent example of one for which the dec equations may
have more than one solution.

Only recently, however, has a comprehensive theory concerning mallers
such as the existence and uniqueness of solutions of the dc equations of
general transistor networks begun to take shape. This paper represents
another contribution to the evolution of that theory.

A key concept in the development of the recent theory is the concept of a
“p, matriz.” We give a generalization of that concept, showing that one
can specify properties possessed by certain pairs of square matrices, analo-
gous to the properties possessed by a single P, matriz. Pairs of matrices
possessing these properties are called W, pairs. Use is made of this W, pair
concepl to prove results which are more general than some of the existing
ones. We provide an extension of much of the existing theory in such a
manner that @ broader class of de transistor networks may be considered.
In particular, the new resulls provide one with the ability lo answer certain
questions concerning the exisltence, uniqueness, boundedness, and so on,
of solutions of the equations for any network which is comprised of tran-
sistors, diodes, resistors, and independent sources.

I. INTRODUCTION

Suppose a network is constructed by connecting in an arbitrary
manner any number of transistors, diodes, resistors, and independent
voltage and current sources. Without loss of generality, we may consider
the network to have the canonical form shown in Fig. 1; that is, we may
consider the network to be a multiport containing resistors and inde-
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Fig. 1—Canonical form of a transistor network.

pendent sources, with transistors and diodes connected to the ports.*

There are some fundamental questions that one should then, hopefully,
be able to answer. For example: Do the equations that deseribe this de
network have a unique solution? With the exeeption of certain uniqueness
results for a special (but none the less important) class of transistor
networks, all of the previous explicit results in Refs. 1, 2, and 3, which
have shown methods for obtaining answers to such questions, have
been concerned only with the class of transistor networks for which,
after setting the value of each independent source to zero, there exists a
short-circuit admittanee matrix (a G matrix) to characterize the linear

* Tt will become apparent that the theory can also accommodate many other struc-
tures which are of the Fig. 1 type except that the multiport contains additional

linear elements (such as controlled sources). We do not stress this point though,
since in the present context such elements seem somewhat unnatural.
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multiport of Fig. 1. It is the primary purpose of this paper to show how
that restriction can be removed. We shall show in fact that almost all
of the previous results are but special cases of results that follow from
a more general theory in which the assumption of the existence of a G
matrix for the linear multiport is unnecessary.*

Section II concerns methods for characterizing a general multiport
containing resistors and independent sources. In Section III, we consider
the model for a transistor. An equation for de transistor networks is
then developed in Section IV and, after explaining some notation in
Section V, we develop the W, pair concept in Section VI. Sections VII,
VIII and IX show how the W, pair coneept provides a generalization
of the existing results concerning de transistor networks. Finally, we
consider an example network in Section X.

1I. LINEAR MULTIPORT CHARACTERIZATION

A multiport having n ports (an n-port) is characterized by determining
every combination of the 2rn port voltages and currents that the network
admits (see Ref. 4). We discuss here two methods of characterizing
multiports that contain resistors and independent sources. The first
method makes use of the familiar concept of a hybrid matrix. The second
method uses a pair of matrices in a manner that was apparently first

suggested—for multiports containing no independent sources—by
V. Beleviteh.’

2.1 The Hybrid Formalism

When the value of each independent source is set to zero, for a multi-
port eontaining only resistors and independent sources, the multiport
becomes, of course, a reststive multiport. H. C. So has proved (as a special
case of a theorem in Ref. 6) that any resistive multiport has a hybrid
matriz description. That is, for any resistive n-port, it is always possible
to label the port voltage and current variables in such a way that there

* Pragmatists might argue that in any “physical” network, there will always be
enough “'stray’’ resistance present which, if taken into account, will guarantes the
existence of, say, a @ matrix. It seems to this writer, however, that by taking such a
point of view, one does not obtain an entirely satisfactory understanding of matters
(even practical matters). To know that fundamental results do not depend (if, in
fact, they don’t) upon such fortunate occurrences as these (and for many transistor
networks this is the case) seems to be the more satisfactory situation. Furthermore,
it should be noted that in the analysis of a physical network, to obtain a tractable
problem, it often behooves one to neglect the presence of unimportant elements.
Thus, it is not necessarily true that such stray resistors will always be present in the
model of the network which the analyst desires to consider.
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exists an integer m, 0 < m = n, a pair of n-vectors*
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and a real n X n matrix H, the hybrid matrix, such that the network
admits the port variables v, , 7, as the voltage and current, respectively,
at the kth port, fork = 1, - - - , », if and only if the vectors x and y satisfy

y = He. (1)

Thus, a resistive multiport may always be characterized by a hybrid
matrix.

When independent sources whose values are nonzero are present
in an otherwise resistive multiport, a hybrid matrix will not generally
suffice to characterize the multiport. Clearly the vectors @ = y =
(0,0, - - -, 0)" which satisfy equation (1) for any matrix H do not always
specify an admissible combination of port variables when independent
sources are present., One might hope, however, that a characterization
of the type

y = Hx + ¢, (2)

where ¢ is some constant vector (whose elements are real numbers),
might always be possible. Indeed, we are about to show that this is the
case. There is one problem, however, that was not present in the con-
sideration of resistive n-ports that must first be dealt with: there are ways
to interconnect independent sources and resistors such that the resulting
structure doesn’t make sense. That is, the independent sources might
impose self-contradictory constraints on the network. We rule out such
possibilities by agreeing that, when we refer to “‘a multiport containing
resistors and independent sources,” we always assume that the multiport
possesses the following property:

Assumption: The linear graph that is formed by associating an edge
with each resistor, each independent source, and each port, has no
cut-sets containing only current source edges for which the values of
the current sources cause a violation of Kirchhoff’s current law. Similarly,
no circuits of voltage source edges for which the values of the voltage
sources cause a violation of Kirchhoff’s voltage law are present.

This assumption in no way restricts the generality of our work. We

* We use the superseript 7' to denote the transpose of a vector or a matrix. Thus,
the vectors z and y above are both column vectors.
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are simply ruling out multiports, like the 2-port of Fig. 2, for which the
set of admissible port voltage and current combinations is empty.

We have worded the Assumption so that the presence of, say, a series
connection of two l-ampere current sources in an otherwise resistive
multiport does not cause the multiport to be inadmissible. We have
done this because no violation of Kirchhoff’s laws results from such
interconnections of resistors and sources; the network is perfectly legiti-
mate. One should be aware, however, that if “superfluous” sources are
present in a network, it will follow that one cannot uniquely determine
the value of each branch voltage and current in the network. That is,
even though one might be able to uniquely determine the value of the
voltage across the pair of 1-ampere sources, there is no way to determine
the value of the voltage across each individual source. Aside from such
ambiguities, it follows (see below and the proof of Theorem 1 in Ref. 6)
that the value of all branch voltages and currents can be uniquely deter-
mined for a multiport satisfying the Assumption, whenever the values
of the “independent” port variables are known.

Theorem: Any multiport conlaining resistors and independenl sources
can be characterized by equation (2), where H is a hybrid malrix charac-
terization of the corresponding resistive multiport that is obtained by setling
all independent source values to zero, and ¢ is a vector of real numbers.

A proof of this theorem can be constructed by incorporating a few
simple observations and minor modifications into the arguments used
by So in Ref. 6. We therefore simply sketch the main ideas: First, if the
linear graph mentioned in the Assumption contains any current source
cut-sets, then it must be the case (because of that Assumption) that
these sources have values such that Kirchhoff’s current law is satisfied.
That being the case, the port behavior of the multiport will clearly be
unaltered if a sufficient number of current sources are removed (by
coaleseing appropriate nodes) to eliminate such cut-sets. A similar
observation applies to voltage source circuits. Therefore without any
loss of generality, we may consider the linear graph to have no current
source cut-sets and no voltage source circuits. Next, by Lemmas 1 and
2 of Ref. 6, it then follows that there exists a tree* for the linear graph
for which all voltage source edges are branches and all current source
edges are links. At each port, one of the two port variables is then desig-
nated as “independent,” the choice depending upon whether the edge
corresponding to that port is a branch or a link. The existence of the

* In case the linear graph is not connected each reference to the word tree should,
of course, be changed to forest.
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Fig. 2—An inadmissible n-port.

hybrid matrix H and the vector ¢ for the characterization (2) then follows
in the same manner as the existence of a hybrid matrix for a resistive
multiport follows from So’s arguments.

2.2 Belevitch’s Formalism

For some multiports, it might be that (after setting all independent
source values to zero) a hybrid matrix exists such that the vectors z
and ¥ in equation (1) satisfyz = v = (v, -+ ,v,) andy = 4= (4,, -+ -,
7,)". In this case the hybrid matrix is given the special name, admittance
matriz. Similarly, if it happens that H exists such that z = fand y = v,
then H is called the impedance mairiz. For many resistive multiports,
neither an impedance matrix nor an admittance matrix exists. It is still
possible, however, to characterize any n-port for which a hybrid matrix
exists in terms of the vectors v and z. Obviously, x and y satisfy equation
(1) if and only if » and < satisfy

[IJE —H,]U = {HI ; _If]?:) (3)

where the n X m matrix H, and the n X (n — m) matrix H, are defined
by H = [H, | H,), and similarly [I, | I,] is the n X n identity matrix.

The characterization (3), being equivalent to equation (1), is perfectly
adequate for any resistive n-port. It is, however, but a special case of a
more general characterization due to Beleviteh, namely:

Py = @i, “4)

where P and @ are n X n real matrices. Beleviteh’s characterization
can be used for quite a broad class of networks, including some rather
pathological ones which require dependent sources, or gyrators and
negative resistors to realize, and for which no hybrid characterization
exists. For example, the one-port called a norator, for which the set of
admissible port voltage and current combinations is the set of all pairs of
real numbers, may be characterized by [0]v = [0]s. We should note,
however, that if one allows the aforementioned elements to be present
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in an n-port, then even equation (4) cannot always provide a charac-
terization. The nullator, for example, a one-port whose only admissible
combination of port voltage and current variables is the pair (0, 0), is
such an n-port.

When an n-port contains independent sources it can often be charac-
terized by the equation

Pv=Qi+c (5)

where P and Q are real n X n matrices, and ¢ is a constant vector. Clearly,
any n-port containing only resistors and independent sources has such a
characterization. It is this class of n-ports which is our primary concern
in the study of transistor networks. We note, however, that equation
(5) is adequate for characterizing a much broader class of n-ports.

III. NONLINEAR TRANSISTOR CHARACTERIZATION

In Fig. 3, a commonly used large signal de transistor model is dis-
played. It is easily verified that the voltage and current variables defined
in that figure obey the following relationships:
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Fig. 3—Large signal de transistor model.
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Each of the parameters a, and @, may assume any value in the open
interval (0, 1). The parameters r, , r. , and r, , which account for lead
resistances, are sometimes omitted by device modelers (their presence
is sometimes accounted for by including appropriate additional resistors
in the network to which the transistor model is connected). To accom-
modate these various points of view we speeify only, therefore, that the
values of the parameters 7, , . , and r, be nonnegative. Thus any or all
of them may be zero.

Depending upon whether the transistor being modeled is a pnp or
an npn, the graph of each of the functions f, and f, has one of the general
shapes shown in Fig. 4 (at least for values of |v| that are “not too large”).
Often these functions are deseribed by an equation of the form

fk(v) = Tnk[exp(nkﬂ) - 1]) (k = 1) 2)1 (8)

where m, and n, are appropriately chosen constants, both being positive
for a pnp transistor, and both negative for an npn. On the other hand,
for example, a piecewise-linear representation is sometimes specified
for f, and f, .

The nature of the functions f, and f, for large values of |v| depends
upon which assumptions the modeler is willing to make, and which
effects he is interested in considering. For large negative (in the pnp
case) values of v, for example, the graph of f, approaches—according
to equation (8)—the horizontal asymptote ¢ = —m, . Thus, if the
modeler chooses to use equation (8) to describe f, for all values of v,
the range of f, will not be the entire real line. If, on the other hand, the
effect of ohmic surface leakage across the p-n junction is included in
the model, the graph of the function f, will approach asymptotically
a straight line having a small, but positive, slope. The range of such
a function is, obviously, the whole real line. One might also wish to
include the effect of avalanche breakdown in the reverse-biased region.
If this is done, the graph of f, will have a shape reminiscent of that of
a Zener diode in the v < 0 part of its domain.

In the forward-biased region there are also effects, particularly apparent
for large values of », which the modeler may or may not wish to recognize.
For example, there is the so-called high-level injection phenomenon
which tends to decrease the value of the forward eurrent and which,
using equation (8), is usually accounted for by a decrease in the magni-
tude of n, for large values of ». In addition, there is the effect of the ohmic
resistance of the erystal which tends to reduce the value of forward
current for large values of v.

From the point of view of the device modeler, the question of whether
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or not to include some of the effects mentioned above is often a minor
issue. For many networks the behavior will be essentially the same
whether or not, say, surface leakage is accounted for in the transistor
model. From the point of view of the network analyst, however, the
situation is somewhat different. For example, the matter of whether
or not the functions f, map the real line onfo the real line can, in some
~ cases, make the difference between whether or not there exists a solution
of the network’s equations. Similarly, other results that have been
obtained recently (presented later, beginning in Seetion VII) also seem
to depend upon the graphs of the functions f; having certain special
properties.

Tt seems safe to say that no matter which “special effects’ are included
(or omitted) in the description of the transistor, the functions f, may
at least be considered to be strictly monotone increasing mappings of
the real line into itself. For the purpose of formulating the equations
for transistor networks, this is the only hypothesis that we shall malke.
When additional hypotheses regarding the nature of these functions
are needed (to obtain certain results concerning properties of these
equations) those hypotheses will be mentioned explicitly. In each case
it will be clear that the additional hypotheses are, in some appropriate
sense, rather weak.

Similar remarks ean be made for the diodes that are shown in Fig. 1,
which might also be present in transistor networks. Thus, we assume
that each diode is described by an equation of the type ¢ = f(v) where,
at this point, we only assume that the function f is a strietly monotone
increasing mapping of the real line into itself.

1V. EQUATIONS FOR TRANSISTOR NETWORES

Suppose we are given a de network consisting of transistors, diodes,
resistors, and independent voltage and current sources, connected to-
gether in an arbitrary manner. Let there be n transistors and d diodes.
Clearly, there is no loss of generality if we consider the network to be of
the type shown in Fig. 1. Using the results of Section I1I, we may describe
the nonlinear devices in the network by the equations

y = TF(x), =& — Ry, (9)

where T = diag[T, , T.], with 7', a block diagonal matrix with n2 X 2
diagonal blocks of the form

1 —at®
’ J, for k=1, ,m, (10)

L__a}k) 1
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Fig, 4—General shape of the funetions f; and fz; (a) pnp transistor, (b) npn transistor.

and T, the d X d identity matrix. Also, B = diag [R, , R.], with &, a
block diagonal matrix with n 2 X 2 diagonal blocks of the form

(k) (k) (k)
|:'1", tn o :P’ k=1, ,n, (11)

k (k) k
WY P P

and R, the d X d matrix whose elements are all zeros. The function F
has the form F(z) = [f.(z1), -+ , fansa(T2nsa)]”, Where each of the f, is a
strictly monotone increasing mapping of the real line into itself.

Using the results of Section II, the effect of the linear multiport in
Fig. 1 is to constrain the vectors of port variables, & and y, to obey the
relationship

Pz = '_'Qy + <, (12)

where P and @ are (2n 4+ d) X (2n 4+ d) real matrices and ¢ is a real
(2n + d)-vector. The minus sign appears in equation (12) as a consequence
of having chosen the reference direction for the port currents (the elements
of the vector y) to be opposite to that which is usually assumed.

By using equations (9), we may easily eliminate the variables £ and
y from equation (12), resulting in the equation

(PR + Q)TF(z) + Pz = c. (13)

The central problem in determining the values of all branch voltages
and currents in a de transistor network is the determination of a solution
of equation (13). The rest is relatively straightforward, forif zis a (unique)
solution of equation (13), then the (unique) vectors & and ¥, such that
equations (9) and (12) are satisfied, may immediately be computed
from equations (9).

Since the matrix 7' is nonsingular, it follows that whenever either
(PR + @) or P is nonsingular, equation (13) can be transformed into,
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respectively, one of the equations
F(z) + Ax
AF(x) + =

b, (14)
b. (15)

The first of these equations has been studied rather extensively (see
Refs. 1-3 and 7) and for most of the results obtained there, it can be
shown that parallel results are possible for equation (15). Both of these
equations, however, are but special cases of the equation

AF(z) + Bz = ¢, (16)

which accommodates equation (13) directly. It is, therefore, this equation
to which we shall now direet our attention. It will be shown that most
of the results which have been obtained to date for equation (14) have
rather natural (though not obvious) extensions to equation (16). It is
important that such extensions be possible because one is often forced
to deal with equations like (16) in the analysis of transistor networks.
Clearly, this is the case whenever both of the matrices (PR + @) and
P of equation (13) are singular—and this can easily happen (for example,
if the matrix R contains all zeros, then it will happen whenever there
exists no admittance matrix nor impedance matrix for the linear multi-
port of Fig. 1).

[

V. NOTATION

The following notation shall be used throughout the remainder of
the paper: For each positive integer n we denote by E” the n-dimensional
Euclidean space, the elements of which are ordered n-tuples of real
numbers, which we consider to be column vectors. The origin in E" is
denoted by 6. If z = (z,, --+,z) andy = (s, -+, y.)" are elements
of " we denote their inner product by {(z, ¥) = 2 i, 2y . The norm of
each z € E" is denoted by |[z]| = (z, z)*.

If A is an n X n matrix, then fork = 1, -+ , n, A, denotes the kth
column of A. A principal submatrix of a square matrix 4 is any square
submatrix of A whose main diagonal is contained in the main diagonal
of A. A principal minor of A is the determinant of any prinecipal sub-
matrix of A. If D is a diagonal matrix, then D > 0 means that each
element of the main diagonal is a positive number; similarly, D = 0
denotes that each element of the main diagonal is nonnegative. We
denote the n X n identity matrix by either I, or, when the dimension
is unimportant or is clear from the context, simply by I. The direct
sum of two matrices 4, B is denoted by A @ B. A square matrix of real
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numbers A is said to be strongly row-sum dominant if its elements
a,; satisfy @i > D |a;| for7 =1, ---, n.

If fis a real valued funetion defined on E' then f is said to be monotone
increasing if for all z < y it follows that f(z) = f(y). We say that f is
strictly monotone increasing if f(x) < f(y) for all x < y. For each positive
integer n, we denote by & that collection of mappings of E" onto itself

defined by: F € §" if and only if there exist, for ¢ = 1, - - - , n, strictly
monotone increasing functions f; mapping £' onto E' such that for
ea'Ch T = (-1:1 y T xn)T e Enr F(r) = [fl(xl)s T fn(xn)]T'

VI. PAIRS OF MATRICES OF TYPE W,

Many of the recent results referred to above, concerning equation
(14), have relied heavily upon certain properties that a matrix is known
to possess whenever it is a member of a class of matrices that has been
given the name P, . In a similar way the results that follow rely upon
useful properties that are possessed by certain pairs of mairices. We
shall define a class, the elements of which are these pairs of matrices,
and give it the nameW, .

The class of matrices called P, was defined by M. Fiedler and V.
Pték.® They proved that the following properties of a square matrix of
real numbers, 4, are equivalent:

(z) All principal minors of A are nonnegative.
(#7) For each vector x # 0 there exists an index & such that z, # 0
and z,(Ax), = 0.
(#77) For each vector z # # there exists a diagonal matrix D, = 0
such that (x, D,x) > 0 and {Az, D.x) = 0.
(7v) Every real eigenvalue of 4, as well as of each principal submatrix
of A, is nonnegative.
Sandberg and Willson proved that another property can be added to
this list of equivalent properties,®** namely:
(v) det (D + A) # 0 for every diagonal matrix D > 0.

The class of all matrices possessing one (and hence all) of the above
properties is called P, .

We shall now state a theorem which provides a useful generalization
of the concept of the class of P, matrices.

Definition: For each pair of n X n matrices (4, B) we shall denote by
e(A, B) the collection of all the n X n matrices that can be construeted
by juxtaposing columns taken from either A or B while maintaining
the original relative ordering of the columns. Thus, M € e(4, B) if
and only if foreach k = 1, --- , n, either M, = A, or M, = B,.
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Obviously €(A, B) contains 2" matrices (for certain pairs (4, B)—
namely for those having A, = B, for one or more values of k—it can
happen that two or more matrices in €(4, B) are identical).

Definition: The pair of n X n matrices (3, N) is said to be a comple-
mentary pair taken from (4, B) if and only if both M and N are members
of @(4, B) and for each &k = 1, - - , n, either M, = A, and Ny, = By,
orelse M, = B,and N, = A,

It is obvious that (4, B) is a complementary pair taken from €(4, B).
Tt is also clear that €(4, B) = @(B, A) and, moreover, that if (M, N) is
any complementary pair taken from €(4, B), then @(M, N) = €(4, B).
Furthermore, for each M € €(4, B) there exists N € €(4, B) such that
(M, N) is a complementary pair.

Theorem 1: The following properties of a pair of n X n matrices of real
numbers (A, B) are equivalent:

(i) det (AD + B) # 0 for every diagonal matriz D > 0.

(#7) There exists a malriz M & C(A, B) such that det M 0 and such
that det M-det N = 0 for all N € €(4, B).

(i75) For eachvector x # 0 there exists an index k such that either (A "), #
0 or (B"z), # 0, and such that (A"z).(B"z), = 0.

(@) For each vector x # 8 there exists a diagonal matriz D, = 0 such
that either (A"z, D,A"z) > 0 or (B"x, D.B"z) > 0 (that 1s,
such that (ATz, D,A"x) + (B"z, D.B"z) > 0), and such that
(A"z, D.B"z) = 0.

(v) For each complementary pair of mairices (M, N) laken from
@(A, B), each real value of \ that satisfies det(M — AN) = 0 s
nonnegative.

(vi) There exists a complementary pair of matrices (M, N) taken from
C(A, B) such that M\7'N € P,.

(vii) There exists a mairiz M € €(A, B) such that det M 7 0; and,
for any complementary pair of matrices (M, N) taken from €(A, B)
with det M # 0, M7'N € P, .

In this paper, we do not make use of properties (¢77), (1), or (v) of
Theorem 1. The proof that the remaining four properties are equivalent
is given in the Appendix. A complete proof of Theorem 1 is given else-
where.”

Definition: The class of all pairs of matrices which possess one (and
hence all) of the properties listed in Theorem 1 is called W, .
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To see that properties () and (7Z) of Theorem 1 are in fact generaliza-
tions of the previously mentioned properties (v) and (%), respectively,
that define P, is a simple matter. It happens that for any n X n matrix
B the pair (I, , B) €W, if and only if B &€ P, . (This follows from pro-
perty (vi7) of Theorem 1.) With our attention restricted to pairs of
matrices of the type (I, , B), it is clear that property (i) of Theorem 1
is equivalent to property (v) which determines those matrices B that
that are in P, . Concerning property (i7) of Theorem 1, an arbitrary
matrix N € ©(/,, B) is either the matrix [, or else, a matrix formed from
B by replacing some of the columns of B by the corresponding columns
of I, . Consequently, det N = det By where By is the principal sub-
matrix of B that is formed by removing from B the columns that are
not present in N and then removing the corresponding rows. Hence,
since det I, # 0, we may take I, to be the matrix M in property (iz) of
Theorem 1, and observe that this property then becomes: det By = 0
for all N € e(l,, B). It is now clear that this property is equivalent
to the property (¢) that defines the elass of P, matrices. (Note that there
are exactly 2° — 1 prinecipal minors for each n X n matrix, and that
the set €(I, , B)\[I.} contains exactly 2" — 1 members.)

VII. THEOREMS ON EXISTENCE AND UNIQUENESS

7.1 First Existence and Uniqueness Theorem

The following theorem, which is proved in Ref. 2, provides a necessary
and sufficient condition for the existence of a unique solution of equation
(14) for all F that are strictly monotone increasing ‘‘diagonal’” mappings
of E" onto E" and for all b &€ E".

Theorem 2: If A is an n X n matriz of real numbers, then there exists a
unique solution of equation (14) for each F' & F" and for each b € E" if
and only if A € P, .

Using this theorem along with the results of Section VI we can prove
the following (more general) theorem.

Theorem 3: If A and B are n X n matrices of real numbers, then there
exists a unique solution of equation (16) for each F € §" and each ¢ € K"
if and only if (4, B) € W, .

Proof: (if) Let (A, B) € W, . Then, by Theorem 1, there exists a com-
plementary pair (M, N) taken from e(4, B) such that M 'N € P, .
Foreach F = [f,(-), - -+ , fa()]" €E §"let ¢ = [9,(-), - - - , gu(-)]” denote
the mapping (also in §") defined by
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g:(+) = {jk() A for k=1, ,n.
1) i M, # A,

Clearly, the vectors x and y satisfy
AF(z) + Bz = MG(y) + Ny
if they satisfy the relation

yk={mk A A for k=1, ,m, (17)
]tk(xk) if Mk;"—:Ak,

and since this relation defines a homeomorphism of E" onto itself, it
follows that there exists a unique solution of equation (16) for each
¢ € E"if there exists a unique solution of the equation

MG(y) + Ny =¢ (18)

for each ¢ € E". But, that this is so follows immediately from Theorem
2 and from the fact that M~'N & P, .

(only if) Suppose (A, B) € W, . Then, by Theorem 1, there exists a
diagonal matrix D > 0such that det(4D + B) = 0. Choosing F(z) = Dz,
we have F € ", while equation (16) does not have, with this choice of
F, a unique solution for all ¢ € E". O

There are corollaries to Theorem 2, given in Ref. 2, that also may be
generalized in a similar manner. For example, the following result is a
generalization of an important special case of Corollary 1 of Ref. 2;
it shows that the condition (4, B) € W, is still sufficient to insure the
uniqueness of a solution of equation (16) (if a solution exists) even
when the mapping F is not onto.

Theorem 4: If F(z) = [fi(x), -+, f.(@)]", where each f. is a strictly
monotone increasing mapping of E' into E', and if (A, B) € W, , then
there exists at most one solution of equalion (16) for each ¢ © E".

Proof: Suppose that, for some ¢ € E*, 2" and z° are solutions of equation
(16) with z* — 2* # 6. Then, A[F(z') — F(2%)] + B(z' — 2*) = 6. But
then, since F is a strictly monotone increasing “diagonal” mapping,
there exists a diagonal matrix D > 0 such that F(z') — F(z) =
D(z' — %), and hence (AD + B)(z' — 2°) = 6. Since ' — 2* # 6 it
follows that det(AD + B) = 0, which implies that (4, B) W, . O

7.2 A Nonuniqueness Theorem

From the proof of the “only if”” part of Theorem 2 (given in Ref. 2)
it follows that whenever A & P, , there exists a mapping F € " and a
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vector b & E” such that equation (14) has more than one solution. On
the other hand, even if A & P, , if the mapping F € F" is “fixed,” then
it is easy to see that the nonuniqueness of solutions of equation (14)
need not necessarily follow for any b & £"[take F(z) = xand Az = —2z,
for example]. I. W. Sandberg has shown,'” however, that if one assumes
that the “fixed” mapping F has another speecial property, rather than
assuming that ' & §", then the nonuniqueness of solutions of equation
(14) follows, for some b & E", whenever 4 & P, . Moreover, he has
shown that under these hypotheses and for any 6 > 0, there exists some
b & E" such that equation (14) has two solutions, z and y, which satisfy
||z — y|| = 8. The special property that F is assumed to have is given in
the following definition (in words, the property is: that it be possible
to draw a straight line having any given positive slope, and any given
length, between some pair of points on the graph of each of the functions

fi)-

Definition: For each positive integer n we denote by &" that collection
of mappings of £" into itself defined by: F & &" if and only if there exist,
fork =1, - - -, n, continuous functions f, mapping &' into E' such that
foreachz € E", F(z) = [fi(x1), - - - , fu(x.)]", with each of the f, satisfying,
forall 3 > 0,

inf {file + B) — file): =0 <a < =} =0,
sup [fk(a_i_ﬂ) _fk(ﬂf): —w < a < oo] = oo,
By using Theorem 1 it is possible to prove the following generalization
of Sandberg’s result:

Theorem 5: Let F & &", let (A, B) & W, be a pair of real n X n mairices,
and let & be a positive constant. Then, for some ¢ & E" there exist solutions
of equation (16), x and vy, satisfying ||z — y|| = &.

Proof: Since (A, B) & W, there exists a diagonal matrix D =
diag(d, , --- , d,) > 0, such that det(4D + B) = 0. Therefore, there
exists 2* € E", with |[2*|| = 8, such that (AD + B)z* = 0. Since F € &"
there exists x € E" such that
ful@y) — fula, — %) = atd,, for k=1, n.
Let ¢ = AF(z) + Bx,and let y = x — x* Then
A[F(x) — F(y)] + Blx — y) = A[F(x) — F(x — a*)] + Ba*
= (AD + B* = 6. [

TFor a mapping F to be a member of &", it is not necessary that F € .
It follows from the above definition of &" that F/ € &" implies that each
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of the functions f, is & monotone increasing function from E' onto some
interval in ' whose length is infinite; the f, need not, however, be
strictly monotone increasing, nor onto E'. For those F' € &" for which
each of the functions f, is strictly monotone increasing, we have the
following corollary to the two preceding theorems.

Corollary: Let F(z) = [f,(x)), - - -, f.(x.)]" € &" and let each of the functions
f. be strictly monotone increasing. Then there exists al most one solution
of equation (16) for each ¢ € E" if and only if (A, B) €W,

VIII. RESULTS ON CONTINUITY AND BOUNDEDNESS

For many systems whose behavior is described by an equation having
the form (16), the vector ¢ may be regarded as the system’s input and
the vector z may be regarded as the system’s response or output. Those
properties that one might expect well-behaved systems to possess are
likely to include continuity and boundedness. Thus, one might expect (7)
“small” changes to result in the value of the system’s output when
“small” changes are made in the value of the system’s input, and (i7) a
bounded sequence of input vectors to yield a bounded sequence of
outputs. We now show that such properties are indeed possessed by
the type of system that is the main concern of this paper.

8.1 Continuity

When the 7 X n matrix 4 is a member of the class P, and the mapping
F € ", it follows that the solution x of equation (14) is a continuous
function of the (input) vector b.* Using this fact, it is easy to prove the
following theorem.

Theorem 6: For each F & F" and each pair of n X n malrices (A, B) €W,
the solution x of equation (16) is a continuous function of the vector c.

Proof: Proceeding as in the “if”’ part of the proof of Theorem 3, we see
that the theorem follows immediately from the facts that equation
(17) is a homeomorphism and that the aforementioned result guarantees
that y, the solution of equation (18), is a continuous function of c. |

8.2 Boundedness

In Ref. 2 a theorem (Theorem 5) is proved which shows that, when
F €35 and A € P, , bounds can be obtained for the solution of equation
(14) whenever bounds for b € E" are given. The proof of a more general
theorem concerning equation (16) ean be constructed quite easily by
using that theorem, and by using the same technique that was used in
the proof of the preceding theorem, along with the trivial observations:
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() For any nonsingular n X n matrix of real numbers, M, and any
real numbers o; = 3, ,7 = 1, --- , n, there exist real numbers,
al £ 81,7 =1, ---,n, such that when each of the components
c; of the vector c¢ satisfies @; < ¢; = B8; , it follows that
ol £ (M%), =8 ,fori=1,--,n.

(77) For any given real numbers v, < 6, ,7 = 1, --- | n, there exist
for the homeomorphism (17), real numbersy! < 8/,7 =1, --- ,n,
such that whenever z, y satisfy equation (17) withy, < y; < 8, ,
fori =1, .-, n,it follows thaty, £ 2, < 8/ ,fori =1, -+ , n.

The more general theorem, whose quite obvious proof is omitted,
is the following:

Theorem 7. Let F € §", let (A, B) €W, be a pair of n X n matrices, and,

fori =1, - ,n,let a; £ B; be given. There exist, fori = 1, --- , n, real
numbersy, £ §; such that foranyc = (c1, +++,¢)" € Frwitha; £ ¢; £ B;
fort =1, --- | n, if x satisfies equation (16), then v; < z; = §, for 1 =
1’ cee M.

According to Theorem 7, (4, B) & W, is a sufficient condition for a
bounded sequence of vectors ¢ to yield a bounded sequence of solution
vectors of equation (16), for all FF & §". The following theorem shows
that (A, B) €W, is also a necessary condition.

Theorem 8: If (A, B) is a pair of real n X n matrices, then (A, B) EW, if
and only if for each F © " and each unbounded sequence of pointsz*, 2% a°, - - -
in E", the corresponding sequence c', ¢*, ¢*, --- [¢* = AF(z*) + Bz",
=1,2 3, --]1is unbounded.

This theorem, which is a generalization of Theorem 4 of Ref. 2, can be
proved in a manner which is a quite obvious generalization of the proof,
given there, of that theorem. Thus, an appeal to Theorem 7 proves the
“only if”” part, and the ““if”’ part is proved by assuming that (4, B) ¢ W,
and then choosing the same kind of mapping F' € " as was chosen in
Ref. 2, for which an unbounded sequence of vectors z* yields a bounded
sequence of vectors c”.

IX. COMPUTATION OF THE SOLUTION

A. Gersho has shown that whenever F & §* M C" (that is, whenever
each of the funetions f; is a continuously differentiable strictly monotone
increasing mapping of the real line onto itself), it is possible to compute
the solution of equation (14), for any A & P, and any b € E”, by making
use of a gradient descent algorithm due to A. A. Goldstein."" The following
theorem extends this result to the class of equations of the type (16).
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Theorem 9: Let M be an arbitrary positive definite symmeiric matrix,
and let Q : E* — E" be defined by
Q(z) = [AF(z) + Bx — c]"M[AF(z) + Bz — ¢,

where F €E5" N C', (A, B) EW, ,and ¢ € E". For each x € E" and each
v = 0let

Qx) — Qlz — ¥yVQ(z)]
gz, y) = v || V@) |I* '

1, v =0;

vy > 0;

where VQ(x) denotes the gradient of Q at the point x. Then, if 6 is any real
number satisfying 0 < & < 3}, and if 2° 4s an arbitrary point in E", the
sequence {x*: k& = 0,1, 2, ---} converges to the solution of equation (16),
where (fork = 0,1, 2, - - -) the a* satisfy

$k+1 — mk . ’YkVQ(.’Bk),

each v* being any real number that satisfies 5 < g(z*, v*) = 1 — & 1f
gz, 1) < 6, 0rv" = 1ifg(a*, 1) = a.

Proof: This proof uses generalizations of some of the ideas in Ref. 7 and
relies ultimately upon the Goldstein algorithm.'*

We first remark that the sequence {z*} is well-defined: It is easy to
show (see the first part of the proof of Theorem 1, p. 31, Ref. 11) that
for each z € E", g(z, +) is a continuous function on [0, ). This being
the case, it is clear that if g(z", 1) < &, then for each £ in the interval
[8, 1)—and, in particular, for each ¢ in the interval [§, 1 — §]—there is
some v* in the interval (0, 1) such that g(z*, v*) = &

Let 8 = {z € E": Q(z) < Q(z")}. Using the fact that M is a positive
definite symmetric matrix, and using the fact that ' € 5", (4, B) €W,
implies that || AF(z) + Ba || — « if and only if || & || — « (Theorem 8)
we have that the set § C E" is bounded. By continuity of @, S is closed.
Thus, S is compact and, therefore, the gradient V@ (which is continuous
on ", since F' & (") is uniformly continuous on §, and V@ is bounded
on S. Also, @ is bounded below on S. [Indeed, we have @ = 0 on E" and
by the existence and uniqueness theorem, Theorem 3, there exists
exactly one point z* (z* € 8) at which @(z*) = 0.]

It is easily verified that, for each © € E7,

VQ(z) = 2(AD, + B)"M[AF(z) + Bz — c],

where, fork = 1, - - - , n, the kth diagonal element of the diagonal matrix
D, > 0 has the value of the derivative of the function f, , evaluated at
the point z, . Since (4, B) & W, implies that det (AD. 4+ B) # 0, and
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since det M # 0, it follows that VQ(z) = @ if and only if x is the solution
of equation (16).

In view of the above, it follows directly from Goldstein’s theorem that
the sequence {z*} converges to the solution of equation (16). O

Other methods of computing the solution of equation (16), in certain
cases, also exist. If one performs a transformation of the type (17) on
the independent variable z (in theory this can always be done) then the
solution of equation (16) can easily be computed by first computing the
solution of an equation of the type G(y) + M 'Ny = M 'c, where
G €5 and M7'N € P, . Methods of computing the solution of certain
equations of this type may be found in Refs. 1-3.

X. EXAMPLE

With the aid of the modern computing facilities that are commonly
available today, it is clearly a rather routine matter to obtain an equation
of the type (16) for any given transistor network. Moreover, it is not
unfeasible, even for networks of moderately large size (say, up to 4 or
5 transistors), to consider the straightforward evaluation of the 2"
determinants specified in property (2) of Theorem 1, and thereby resolve
the issue of whether or not the matrices involved in the equation are
a W, pair. Due regard would of course have to be paid to the matter of
performing sufficiently aceurate computations.

On the other hand, even without the aid of a computer, it should often
be possible to use a little ingenuity and a few devices* to reduce the
computations involved in the application of the above theory to many
specific problems to a point where they will just about fit onto the back
of an envelope. Consider, for example, the following analysis of a three-
transistor network:

For the network of Fig. 5, the voltage and current variables defined
there must satisfy the following equations:

i) 1)

I 102

T e .
W b T e

(2 fs(e) )

* According to R. Bellman: “a device is a trick that works at least twice.” 12
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Fig. 5—Example of a three transistor network.
E

—_ . N
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vy 0 R, 0 11 0 || —i E
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—1, -1 -1 0 i 0 0 0 U 0

—i, 0 -1 0 f 0 o G|l v 0
—is) L 0 0 —1.0 Gy Gl v) 0)

where (we are using the transistor model of Fig. 3, with», = r, = r, = 0)
each of the 2 X 2 matrices T, k = 1, 2, 3, is of the form (10). A hybrid
characterization has been used for the linear part of the network. As
indicated in equation (3), this hybrid characterization can easily be
converted into a characterization of the Belevitch type. Thus, denoting
the 3 X 3 blocks of the hybrid matrix in equation (20) by H,, , Hia, Ha ,
H,, , in the usual manner, one obtains

F “Hial,_ _[fa 0 } +e, (21)
0 —HJ LH, —

wherev = (v,, 05, %, V2, V4, 05) " and 7 is similarly defined. We could now
simply reorder the eolumns of each matrix in equation (21) in such a way
that the resulting equation would have the same form, except that the
subseripts on the components of the vectors » and ¢ would occur in the
natural order (1, 2, 3, 4, 5, 6) and then use that equation, along with
equation (19), to produce an equation of the type (16) for our network.
In this example, though, it’s probably easier to reorder the rows and
columns of the matrix 7' (recall, T = T @ T @ T*) to obtain
from equation (19) an equation that is compatible with equation (21).
Thus,

i - [ I =Plpy, (22)
QI
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where
F(v) = [fl(”l)a f:i(va); fﬁ(’vs), fz(‘Tl'z); f4(7f4)- fﬁ(vﬁ)]T,

and
. (1) (2) (3) . (1) (2) (3)7
P = diag [, &, a)"'], Q = diag [a;", a; ", @, ].

Eliminating ¢ from equations (21) and (22), we obtain

Hy 0 ]'f I —PJF@) n {1 —HWJP . 23)

\Hy —I1—-Q I 0 —Hy,

Note that since det H,, = det H,, = 0, it isimpossible to put this equation

into either of the forms (14) or (15). Clearly this would be the same situa-

tion no matter which ordering of subseripts was chosen for the components

of v. The cause of the difficulty is simply the fact that neither an impedance

matrix nor an admittance matrix exists for the linear part of our network.
Let us determine whether or not the pair of matrices

21 T "‘Q I 0 "‘Haz
is a W, pair. We shall try to verify property (1) of Theorem 1. Let 8, , - - -, &
denote arbitrary positive real numbers, and let A, = diag (5, , 8., 83),
A = diag (84, 65, 8). We wish to show that
7 -1
det f[H“ o e L L _H“} # 0.
1 Hzl —IJL"‘Q

I JL 0 AH’J LO _Hgg

By multiplying the above matrix on the left by the (nonsingular) matrix
diag (I, , —I;) and then multiplying on the right by diag (4, , I;), we
obtain the equivalent statement:

’7 Hu + AI E _le - ‘HnP AII :l

_H21 - Q :sz + (I + HnP) An

The 3 X 3 submatrix in the upper left corner is nonsingular and diagonal.
The 3 X 3 submatrix in the lower left corner can be diagonalized by
performing a single elementary row operation on the matrix; namely, by
subtracting 1/(8; + R,) times the second row from the fourth row.
Having done this, our problem reduces to one of showing that
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5 0 0 | —1 0 0
0 &+ R, 0 -1 —(1 + "R, &) 0
det| .0 L o ]! 0 TatalRad |
_m i _ 1 1-— d:" 8, b5
1 a, 0 0 5(1 a,)ﬁ.+5+Rl TR, 0
0 1—a® 0 . 0 G4+ (1 — o) 3, G,
0 0 1—a®i 0 G, G+ (1 — af) 6,

It is easy to verify that whenever det 4,, # 0, then
[Au An

det # 0

I

[ 1'121 Agz_i
if and only if det (4,, — A, A714,,) # 0. In our case both A,;, and A4,,
are diagonal and hence we can immediately reduce our problem to:

a0 o
e e S 1z hb 0

LR, 4, 3.+R,
L m o
det %’—_ﬁi Gyt (1—a™) 8+ 15:_“_’;?‘(1+u:”k,a,) G, 0.
3y l_u:.’ )
0 (7 Gt (1—a;")é:+ 5,+R,(l+al R,8,)

It is obvious that the above determinant is always positive. First, note
that every term in the matrix is nonnegative except, possibly, the
(1, 2) term, which may be either positive or negative (or zero). In the
event that the (1, 2) term is positive (or zero), we have 1/(6; + R\) =
(1 — a'6,8,)/(82 + R)), and hence we observe that the matrix is
strongly row-sum dominant. This implies that its determinant is positive.

In the event that the (1, 2) term is negative, we do not necessarily
have dominance; however, considering an expansion of the determinant
along its first row we see that, because of the assumption that the (1, 2)
term is negative, the value of the determinant is computed as the sum of
two posilive terms.

We have thus shown that, no matter which (positive) values are
assigned to B, , R, , R, , or which values the transistor’s current gains
assume [0 < ! < 1,0 < & < 1], the pair of 6 X 6 matrices that appear
in equation (23) is a W, pair. Thus, all of the results concerning a solu-
tion’s existence, uniqueness, continuity, boundedness, and so on, hold
for this equation.
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APPENDIX

Proof of Part of Theorem 1

In this appendix we prove the equivalence of properties (2), (i2), (i),
and (v77) of Theorem 1, which define the class of pairs of matrices W, .
We omit the proof of the equivalence of the three remaining properties,
since those properties are not referred to in this paper. A complete proof
of Theorem 1 is given elsewhere.” We begin by proving a useful lemma:

Lemma 1: For each positive integer n the polynomial
(Co)dydy - dy+ (e)dydy -+ duey + -+ + (c.) dy - -+ dn
+ ) didy - dyp + - + (Canenre) ds »- - dy + -+ + (€an-1)

in the n variables d, , ds , --- , d, is nonzero for all positive values of the
variables if and only if at least one of the coefficients ¢, , - -+ , €2a- 18 NONZETO,
and all nonzero coefficients have the same sign.

Proof: (By induction) For n = 1 the statement is obviously true.
Let N be a positive integer. Then any polynomial of the above type in
N + 1 variables, (¢))d; --- dys1 + -+ + (cav+.-y), can be written as
P(d,, -+, dy) dyss + Q(dy, - , dy) where P and @ are both poly-
nomials of the above type in N variables. Then, assuming that the state-
ment is true forn = N, P + @ # 0 and P-Q = 0 for all positive values of
the variables d, , - -- , dy if and only if at least one of the coefficients
Co, "+, Caw+:_, 18 NONzero and all nonzero coefficients have the same sign.
But, we know that P-dy., + @ # 0 for all dy,, > 0if and only if P +
Q#0and P-Q =0. O

A.1 Property (i) is Equivalent lo (74)

Let D = diag (d, , --- , d.). By expanding det (4D + B) along the
first column we have

det (AD + B) = d,-det P + det @,

where the first columns of P and @ satisfy P, = 4, , Q, = B, , and for
k=2 - ,n P, =Q., = (4D + B). . Both P and @ are independent
of d, . We now expand det P and det @ along their second columns,
resulting in

det P = d,-det R + det S,
det @ = d,-det U + det V,

and hence,
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det (AD + B) = dyd,-det R + d,-det S + do-det U + det V,

where
R =4, R, = A,
S, =4, S, = B, ,
U, =8B,, U, = 4,,
V, =B, V. =B,
and fork =3, -+, n,

Rk=S;¢= U;LZ-VA;:(AD"I“B)L

Proceeding in this manner until all columns of (AD + B) have been
encountered, we obtain an expansion of det (A1) + B) as a polynomial
in the variables {d, ,d,, - - -, d,} whose coefficients are the determinants
of the matrices in @(4, B). By using Lemma 1 it thus follows that (2)
and (4#7) are equivalent.

A.2 Property (vi) Follows from (7) and (4i)

According to (#z) there exists a complementary pair of matrices (M, N)
taken from @(A, B) such that det M = 0. Let D = diag (d,, -+ ,d.) >
0, then det (M ~'N + D) 5= 0 if and only if det (M D + N) # 0. But,
using property (i), det (MD + N) = det (AD + B)- det D # 0, where
the matrices D = diag (d,, - -+ ,d,) > Oand D = diag (d,, -+, d,) > 0
are defined by d, = dyand d; = 1if M, = A, ,and d, = 1/d, , d; = d,
otherwise (fork = 1, --- , n). Thus, M'N & P, .

A.3 Property (i) Follows from (vi)

Using the notation above, it is clear that for each diagonal matrix
D > 0,det (AD + B) = det (MD + N)-det D. Thus, if M™'N &€ P, it
follows that det (AD + B) # 0.

A4 Property (vit) is Equivalent to (vi)

Clearly property (v¢) follows from property (viz). Thus, we need
only prove that (¢7) implies (»i7). Let (1/, N) and (£, @) both be comple-
mentary pairs taken from €(4, B) with M'N € P, and det P # 0.

For any D = diag (d,, -+ ,d,) > 0, det (P"'Q + D) # 0if and only if
det (PD + Q) 0. But det (PD + Q) =det, (M D+ N)-det D >0, where
the matrices D = diag (d, , --- , d,) > 0and D = diag (d,, ---, d,) > 0

are defined by d, = d, and d, = 1if P, = M, ,and d, = 1/d,,d, = d,
otherwise (for k = 1, -+, n). Thus, P 'Q € P,. O
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