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In this paper il is established that for Lipschilz functional differential
systems, the eventual uniform asymptotic stabilily of the origin is preserved
under absolutely diminishing perturbations.

I. INTRODUCTION AND NOTATION

In two recent papers, A. Strauss and J. A. Yorke have investigated
“eventual” stability properties for systems of ordinary differential
equations.® In particular, they have shown that for Lipschitz systems,
diminishing perturbations preserve eventual uniform asymptotic sta-
bility." It is the purpose of this paper to extend a somewhat weaker
form of this result to functional differential systems. Namely, it will be
shown that for Lipschitz functional differential systems, the eventual
uniform asymptotic stability of the origin is preserved under absolutely
diminishing perturbations.

The following notation will be used in this paper: E” is the space of
n-vectors, and for z in E", | z | denotes any vector norm. IFor a given
number » > 0, ¢ denotes the linear space of continuous functions
mapping the interval [—r, 0] into E", and for¢ in C, || ¢ || = sup | ¢(6) |,
—7 < 6= 0.ForH > 0, Cy denotes the set of ¢ in C for which || ¢ || <H.
For any continuous function z(x) whose domainis —r =4 = a,a = 0,
and whose range is in E", and any fixed {, 0 = ¢ = a, the symbol z, will
denote the function x,(8) = z(t + 6), —r = 6 = 0; that is, z, isin C,
and is that segment of the function z(u) defined by letting u range in the
intervalt — 7 = u = .

Let F(, ¢) be a function defined on Dy = [0, =) X Cpinto E", and
let #(t) denote the right hand derivative of z(u) at v = f. Consider the
funetional differential system

&(t) = F(, z.). (1)
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Let (s, ¢) be in Djy. A function z(s, ¢)(f) is said to be a solution of
equation (1) with initial function ¢ at { = s if there exists a number
b > 0 such that

(7) forte[s, s + b), z.(s, ¢) is defined and in Cy;

(#7) z.(s, ¢) = ¢; and

(#31) z(s, ¢)(t) satisfies equation (1) for s = ¢ < s + b.

x(s, ¢)(f) is unique if every other solution with the same initial function
¢ at { = s agrees with z(s, ¢) (¢) in their common domain of definition.

If F is continuous on Dy, then for every (s, ¢) in Dy there is at least
one solution of equation (1) with initial function ¢ at ¢ = s.* If, more-
over, F is Lipschitzian in ¢, that is, there is a constant L such that for
every ¢, ¢. in Cy

| F(t,¢) — F(t,02) | = Ll — o2 || (2)

for ¢ = 0, then there is only one such solution. Generally, under such
assumptions, one can only expect solutions to exist over a finite interval.

II. PRELIMINARIES

We now define the stability concepts to be used herein. These defini-
tions are stated for equation (1) in which it is assumed that for some
H,0 < H £ o, F is continuous and Lipschitzian on D,.

Definition 1: The origin is eventually uniformly stable (EvUS) if for
every ¢ > 0, there exists a § = 8(¢) > 0 and @ = a(e) = 0 such that
[| (s, @) || < eforall||¢|| < dandt = s = a. It is uniformly stable
(US) if one can choose a(e) = 0.

Definition 2: The origin is eventually uniformly attracting (EvUA) if
there exists constants y > 0 and 8 = 0, and if for every ¢ > 0 there
exists a T = T(e) > O such that || z,(s,¢) || < efor||¢ || < n s = 8,
and ¢t = s + T. It is uniformly attracting (UA) if one can choose 8 = 0.

Definition 3: The origin is eventually uniform-asymptotically stable
(EvUAS) if it is both EvUS and EvUA. It is uniform-asymptotically
stable (UAS) if it is both US and UA.

The above definitions show that EvUS, EvUA, and EvUAS are
wealker stability concepts than their respective Lyapunov counterparts:
US, UA, and UAS. Also, it should be noted that in these definitions we
do not require that the zero function be a solution of equation (1).
When the origin is US, this implies that the zero function is a unique
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solution of equation (1) for any s = 0. Thus, we see that EvUS
(EvUAS) is a natural generalization of US (UAS) in which it is not
assumed that the zero funetion is a solution. Finally, it is important
to note that UA does not imply that the zero function is a solution
(Ref. 1, example 2.8).

Definition 4: Let V (i, ¢) be a function defined for (2, ¢) in Dy. The
(!erivative of V along solutions of equation (1) will be denoted by
Vi, (s, ¢)] and is defined to be

. . 1

Veolty (s, )] = limsup - (VI + by eals, 9] = VI 265, )]}

If F is continuous and Lipschitzian, and if the origin is EvUAS,
then the existence of a Lyapunov type comparison function can be
established. By following D. Wexler' and A. Halanay® one can prove
the following theorem.

Theorem 1: Let F be continuous and Lipschitzian on Dy, and let the
origin be EvUAS. Then there exisis a number K, 0 < K < H,and a
function V(t, ¢) with the properties: (i) there exists funclions a(r), b(r)
conttnuous, positive, and monotone increasing for r > 0, with a(0) =
b(0) = 0, such that for m in (0, K]

a([[¢]]) = VL, é) = b([l¢])

form = ||¢]|| £ K, t = d(m), where d(r) is a continuous, nonnegative,
and nonincreasing function for v > 0; (i) there exists a funclion c(r)
continuous, posttive, and monotone-increasing for v > 0, with ¢(0) = 0
such that

Vm[t: z.(s, ¢)] = —f‘[H (s, ¢) !H
for [|¢]] £ K, t = s = d(K); and (iii) for 0 < r = || ¢ || £ K,

t = d(K)
l V(tr ¢1) - T'r(t) ¢2) | é ]u-(j)ll (?51 - ¢2 HJ

where M (r) is continuous and monotone-decreasing on (0, K].

III, PERTURBED EQUATION

We now prove a theorem which shows that the EvUAS of the origin
of the nominal equation

) = Flt, y.) (N)
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is preserved for the perturbed equation
£(t) = F(t, =) + G, z.) P)

when F and @ satisfy certain conditions. In particular, G(t, ¢) is required
to be absolutely diminishing, that is, for every m in (0, H), there exists
a v. = 0 and a function g,(f) continuous on [y., «) such that for
m=|¢|| <H tZvn

t+1
|G(t, ¢)| < gnu() and I.(t) = f: gu(s)ds —0 as t— o,

Theorem 2: Suppose that F and G are continuous and Lipschifzian
on Dy, that G is absolutely diminishing, and that the origin is EvUAS for
equation (N). Then the origin is EvUAS also for equation (P).

Proof: Define J,,(t) = sup [[.(s):t — 1 £ s < «]fort = 1. Since
I.(t) = 0ast—> o, this implies J,,({) — 0 monotonically as ¢ — .

Let 0 < ¢ = K, choose ||¢]|| < 8(e) = b7'[a(e)/2], and pick
# = 8(e) = 0 and such that

2LM (8)J () < min [a(e), c(8)] 3)

for ¢ f, where L is the Lipschitz constant associated with F. Then
fort = s = ale) = max [1, 8(e), d(8)], || z.(s, ) || < e. Suppose not,
that is, for some t = s, || x.(s, ¢) || = e Let g be the first t-value greater
than s for which || z,(s, ¢) || = ¢ and let p be the last {-value less than
g for which || z,(s, ¢) || = &. Then

= |lzs, )| = p=t=gq )

=
=

For t in an interval on which z(s, ¢)(f) exists, we evaluate

Vimlt, 2.(s, )] = Vinlt, 2.(s, ¢)]

n nmsup% Vit + h, zoall, 205, 6)])

h—0

- V{t + h, yt-l-h[i’ JU;(S, ¢)]})
= —c[lle.ds, @[]

IA

. M
+ lim sup =— {||xcalt, z:(s, ¢)]
h—0 t+ h

—_ yu,h[t, 55((-5', QS)]”}

where the function V is as deseribed in Theorem 1. By assuming—with
no loss of generality—that L > 1, we obtain’ from the above inequality

V(P){t; z.(s, ¢)] £ —l ||$|{3: ¢) H] + LM l Glt, x.(s, )] t
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Employing the absolute diminishing character of G and equation (4),
we obtain by integrating the above from p to ¢

a9 S b) — (¢ = pe®) + LM [ gu(0 at. (5)
Using the easily shown fact that
f p@dss [ L@ds, tzuzl,
u u—1

and equations (3) and (5), we see that
a(e) < b(8) — (g — p)e(8) + LM(g — p + DJs(p)
< b(8) + ale)/2 = ale).

Hence, we arrive at a contradiction which shows that the origin is
EvUS.

Let n = 8(K), 8 = a(K), and
T(e) = ale) + 2[LMJ(1) + b(K)]/c(d). (6)
Consider s = 8 and || ¢ || < 7. Thus, z(s, ¢)(t) exists for all £ = s.

Moreover, since the origin is EvUS, to prove EvUA it is sufficient to
show the existence of au, s + @ < u < s + T, such that || z.(s, ¢) || <
8(¢). Assume the contrary, that is,

i<z =K s+as=t=s+ T

Employing the same procedure as above, we arrive at the estimate
a(8) < b(K) — (T — a)e(8) + ML(T — a + 1)Js(s + a).

Using the monotonicity of J; and equations (3) and (6), we compute
a(s) < b(K) — CL;Q (T — &) + MLJ1) = 0.
This contradiction then completes the proof of this theorem.
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