Information Theory and Approximation of
Bandlimited Functions

By DAVID JAGERMAN
(Manuseript received April 15, 1970)

For bandlimited functions, simultaneous approzimation of a function
and several of its derivalives is considered. Concomitant entropy estimates
are obtained. A feasible algorithm for the transmission of information is
discussed. This algorithm has been applied to the design of a class of PCM
systems.

I. INTRODUCTION

It is the purpose of this paper to discuss both the best approximation
of sets of bandlimited functions under Sobolev norms and the con-
comitant information-theoretic estimates. The Sobolev norms are
useful when it is desired to approximate simultaneously the function
and some of its derivatives. This requires an amount of information
beyond that for approximating only the function. Section II gives the
necessary background definitions of width, entropy, and capacity;
theorems providing representations of bandlimited functions, as well as
a form of Mitjagin’s inequality relating approximability to entropy,
are proved. The distinction between capacity and entropy is comparable
to that between communication and storage, since capacity refers to
the number of distinguishable functions transmitted from a signal
source while entropy measures a bit requirement for the reproduction
of a function to within a specified accuracy. A constructive approach
to communieation requirements implies an explicit means of representing
any funetion of the signal source by numbers with a uniformly bounded
number of digits. The procedure or algorithm used is usually obtained
from an infinite series representation with subsequent truncation and
quantization. Pulse code modulation systems provide examples of this
procedure. Section II gives a precise definition, while Section III presents
an explicit construction of a feasible algorithm. This algorithm has been
applied to the design of a class of PCM systems.'
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Sections ITIT and IV contain the theorems and proofs which provide
upper bounds on widths and entropies. Section IIT discusses signal
sources with finite instantaneous power. Section IV considers signal
sources in which the total energy is finite.

II. PRELIMINARIES

Let A be a subset of a Banach space X; it is desired to approximate 4,
that is, uniformly all elements of A by means of n-dimensional sub-
spaces X, of X. The deviation Ex,(4) of A from X, is defined by

Ex,(4) =sup inf || — g |[. (1)
fed peXn
The deviation provides information on how well 4 may be uniformly
approximated by elements of the given space X, ; however, another
choice of X, might provide a smaller deviation. Accordingly the nth
width, d%(4), of A relative to the space X is defined by”

dy(A) = inf Ey,(A). 2

If the infimum is attained, then a eorresponding X, is called an extremal
subspace. The following properties are immediate.

0 < dY.,(4) = di(A), n = 0, (3)
dy(A) = sup [z [, (4)
B C A=d%(B) = dy(4). (5)

If X has finite dimension m, then d%(4) = 0 for n = m.

A set of sets whose diameters do not exceed 2e(e > 0) and whose
union contains A is called an e-covering of A. A finite set S C X such
that for fe A thereisa ge Swith ||/ — ¢ || = eis called an enet of A.
Clearly d¥(A) < efor a set A possessing an enet of n elements. If 4 is
totally bounded then lim,_., d%(4) = 0. To see this, choose a covering
of A consisting of n eballs, then their centers constitute an e-net of A.

Let N,(4) (presumed finite) be the number of sets in a minimal
e-covering of A; then the absolute e-entropy, H.(A), of A is defined by

H.(A) = log N.(4) (6)

in which the logarithm is taken to base two.”™*

Let N¥(A) be the number of elements in a minimal e-net S C X of 4;
then the relative e-entropy, H*(A), is defined by

HY(4) = log N7(4) ™
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in which the logarithm is taken to base two.’™ For A totally bounded,
let 2, , --- , x, be the elements of an enet, and let B;(1 < j < n) be a
ball of radius e about z; ; then the sets U; = B; M\ A constitute an
e-covering of A; hence

H.(4) = HI(4). ®)

The minimum number of binary digits, d, of an integer expressed in
radix two needed to identify uniquely every element in a minimal
e-covering of A satisfies

[H(A)] =d = [H(4)] +1 9)

in which [z] designates the integral part of x, that is, the unique integer
satisfying ¢ — 1 < [z] £ z. Thus H,(4) may serve as an absolute
measure of efficiency for processes designed for the storage and trans-
mission of information.

Let a set w of n real numbers be chosen, and also a mapping from A
onto @, = w X -+ X w (p times); that is,

zed —sa=(a;, - ,a,)eQ, a1, ,0 e

Let the algorithm T define a one-to-one and onto mapping of @, to an
enet S of A in which I'(a) £ S approximates z e A to within ¢; then the
volume V(I') is defined by

V(T) = p log n. (10)
In view of expression (8), one has
V(T) =z H\(4) = H.(4). (11)

Thus the greater V(I') is, the less efficient is the algorithm I' compared
to the absolute standard H,(A4).
If D C A has the property that

f#g9 fgeD=|[f—gl >¢ (12)

then D is called e-distinguishable. Let A/,(4) be the number of elements
(presumed finite) in a maximal e-distinguishable subset of A, then the
e-capacity, C,(A) is defined by

C.(4) = log M. (4), (13)

the logarithm being again taken to base two.’ For a transmission
system, C,(4) measures the number of distinguishable signals of the
source or of the processed signal at the output of the receiver depending
on the identification of A. The following inequalities hold between
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e-capacity and e-entropy:
C‘EE(A) é H:(A) é C‘!(A)‘ (14)

To show this, consider the inequality on the right. Let D be a maximal
e-distinguishable subset of A; then eballs about each element of D
constitute an ecovering of A for, otherwise, there would be an z e 4
not covered and hence more than e away from every element of D. This
would contradict the maximality of D. For the inequality on the left,
let D be a 2edistinguishable subset of A, then the number of elements
of D cannot exceed the number of covering sets of diameter 2¢ or less
in an e-covering of A for, otherwise, there would be at least two elements
of D in the same covering set. This would contradict the 2e-distinguish-
ability of D.

It is possible to bound H*(4) above and below in terms of d’(4)
(refer to Ref. 2 where Mitjagin’s inequalities are given). An improved
form of Mitjagin’s upper bound is proved below.

Theorem 1: Let A be a totally bounded subset of a real, normed, vector
space X. Let the nth widths relative to X be d’5(A), and let

N = max [n :di.(4) = (1 — a)e

n

with @ an arbitrary number satisfying 0 < « < 1; then

X
H¥(4) < N log (ﬁ + 2~_—E)
Qe o
Proof: Let Ey be an N-dimensional subspace of X for which Eg,(4) <
(1 — a)e, then Vze AJyeEy D ||z — y|| < (1 — a)e. Let Ay be the
set of all such y for every z e A. An ae net of Ay is an enet of 4; hence
HX(A) < HX (Ay) = C..(Ay). Lety,, - - - , yu be an ae-distinguishable
subset of A , and let B, C Ey be balls with centers y, and radius jae,
then they are disjoint and are all contained in the ball B with center
the origin and radius df + (1 — }e)e. Let Ay be the volume element
in By ; then AyM (3ae)” < \[d¥ + (1 — 3a)¢l”. The inequality of the
theorem follows on taking logorithms.

The eclass of functions to be studied consists of the space B, defined
by the conditions that f(t) ¢ B, be analytically continuable into the
complex plane as an entire function of exponential order one and type o,
and that it be bounded on the whole real axis — « < t < . The follow-
ing inequality is valid for B, :°

sup | f(t) | <o sup [f(0) . (15)

—o<I<w

Important subspaces of the space B, are the space C, defined by
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feC,= A(n) = o(e’") (16)
in which
‘Ll(ﬂ) = ~ SUEP | )‘(E + “7) |a E: n rea.l, (17)
and the space W, defined by
ngVF:fng(—noo, uo) (18)

Several representations for B, exist;® however, the following repre-
sentations are needed for the present investigation. Let

o(t, o) = T2, (19)
ot
¢;(l, o) = ¢(t — jh, o), h=r7/0, (20)
then one has the following:
Theorem 2:

(e Coe= (1) = i f(ih);(t, o)

j=-m

for all complex t. The series converges uniformly in every closed, bownded
reglon.
Proof: Consider the integral

h_ L 1)

¥ omi Lo T pemep o F=EEa e

taken over a square Cy with corners at (N + }) (&1 =)k, and N so
large that ¢ is in the interior of the region bounded by Cy . The theorem
is elearly true when ¢ = kh (k integral); it will hence be assumed ¢ # kh
for any integral k. The index N = 0 is an integer. Evaluation of Iy by
use of residues yields

ft) = :Z_:\ f(Gh)¢;(t, o) + Iy sin ot; (22)

thus, to prove the implication to the right, it is sufficient to show I, — 0,
N — . Let I be the integral (21) extended over that part of Cy given
by £ = (N + 3)h; then

1

[ 1| = o
(N+h)h A("I)
l)
fmmHN+w+w—th&w+a+mH”(ﬁ
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Since
|(N + Ph+in—t| 2 (N+Hh—[t],
| sin (w(N + %) + don) | = cosh on = Lol
one has
1 Vb
| I m](vw N AG) dn. (25)
Writing equation (25) in the form
(N+Dh
19152 Gy P TR  BTE N D g AP 9
(26)
using equation (16) and the following lemma’
=0, lnl—==lm | f@an=0 @)

shows that 7{ — 0 uniformly in ¢ The same conclusion applies to the

integral extended over ¢ = —(N + $)h.
Let T2 be the integral (21) extended over n = (N + $)h; then

I | < o
fi f& + 4N + Hh) i (28)
(N+Dh |E+ (N + Hh— 1 | ]“’m (ot + ir(N + z)) l
Since
lE+iN +Hh—t]| 2 N+ Dh—|t] (29)
|sin (ot + ir(V + }) | 2 S5 e,
one has
11& | = —2 @N + Dh oo g (N + D). (30)

a1l —e) N +Dh—2]|¢|

In view of equation (16), I® — 0 uniformly in . The same conclusion
applies to the integral extended over 4 = — (N + §)h. For the implica-
tion to the left, one may observe that ¢,({, o) ¢ C, , and that the series
converges uniformly.

The series of Theorem 2, which is clearly interpolatory, is called the
cardinal series.®
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For f(t) ¢ L°(— », »), the Fourier transform relations are given by

1 T i
F) = o [ H0 dt (31)

T
10 = G f_ ™) du. (32)

The Fourier transform of ¢;(¢, o) is
1 (=\
wwa = (5 ul<o (33)
=0, \u | > 0.

The Parseval relation now shows that the sequence ¢;(, o), — o <j < @
is orthogonal over (— «, «) with respect to unit weight; thus,

j:m d’i(tr U)st(t: ‘7) dt = 01 j = kr (34)
=h, j=Fk.

The following theorem may now be stated for fe W
Theorem 8: fe W

= [Tl Fac=n T 1w P,
() = ler) [ ﬂ, ¢ F ) du,

Flu) = > G, ul <o

(2m )*, =M
Proof: The Paley-Wiener theorem® shows that f ¢ W, has the repre-
sentation given in Theorem 3; hence, by the Cauchy—Schwartz inequality

e+ i |5 00 [y P = o™, @)

2wy

Equation (35) shows that W, C C, ; thus, by Theorem 2, { is in the
closure of the system ¢;(t, ¢), —« < § < . The Parseval relation now
follows from equation (34). To establish the formula for F(u), it is
only necessary to show

o N
[ e 3 fhet du—0, M, N, M,N——w, (36

i=M

because each term is the Fourier transform of the corresponding ¢; term
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of the cardinal series. One has

a N 2 L4
l f e™ D e ™" du | = 20 f
- i=M -0

v N
}f Eiut E ]((jh)e—iuih du

i=M

2 du, (37)

> f(hye ™

i=M

N

< 4d® X |fGh) P —0.  (38)

i=M

The limit zero is obtained as a consequence of the Parseval relation of

Theorem 3.
To obtain a representation for the class B, ,'° let

o) = ¢(t’ a —ﬁa.s)m) "(" = a) (39)
m > 0 integral, 0<6<l,

0.0 = ot — ), h=7(1—9); (40)

then one has
Theorem 4: feB,

S = X R,

j=—oo

The series converges absolutely and uniformly in every closed, bounded
region.
Proof: The function

. 8o Al

1— &m

belongs to W, _s, for each positive integer m and arbitrary s, hence the
cardinal series applied to this function yields the expansion

J'sin T _’S“a)m (s — z)lm

o —1=
A—om®— Y [

. Jsin T f”a)m s — jh)lm i
- ¥ jan—& a(tsy) @
< @—m[

(1 — 8)m J
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Let s = t; then the required representation is obtained. The absolute
convergence follows from the boundedness of | f(j&) | and

[6;0) | = OCli ™™™, (43)
Approximation will be studied in the uniform norm and the following
Sobolev norm

T/2 3
Hf.={ﬁWJU®F+uJﬂDV+~-+M|WWH3ﬁ} (44)

in which g, , + -+ , g, are positive numbers. For the space B, , the symbol
B!, will be used for the corresponding normed space. The symbol
BT (M) will be used for the subset defined by | () | £ M, — = <t < .
Ifor the space W, , the corresponding normed space will be denoted by
WZr,,and W7 ,(B) for the subset in which

{filﬁnﬁd§%23. (45)

11I. THEORETICAL INVESTIGATION OF B,

Let B” designate the vector space B, normed by

[1f1l=max [{()], (46)
-T/2=t=sT7/2
and let BY(M) be the subset of B satisfying
[fi) | = M, —w <t < o, (47)

The completion of BY is the space C* of functions continuous over
[—T/2, T/2] and normed by equation (46).
Let
ol

2c\}
c=75, 6n—1—(m), n>;, (48)

mz[&i"‘(nélﬂ m=1;
2e ! =’
then the following theorem provides a bound on the nth width,

d°"(BT(M)), of BT(M) relative to the space C”.

Theorem 5: dS"(B™(M) £ (2M /wm)e™".
Proof: The series representation of Theorem 4 will be used. The fune-
tion

) = 2 1Gh6;1) (49)
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establishes an approximation to f(f) whose error is given by

1) — 90 = 2, (6. (50)
From equations (39) and (40), one has
1{m\" 1 . T T
|0,-(t)|§;(ﬁ) _(—_T)T lil>5;, Itl=5 6D
il =55
Define the function p(x) by

= p(r + 1) forall =z,

then the Sonin (Euler-Maclaurin) summation formula' is

> W) = [ We) s + p(w)mx)l — [ soW @z (53

a<jsb

in which @ < b are arbitrary numbers. Use of equation (53) with

_1(myt 1 ;
T P ST A
)
a=N+ %: b= o
yields
2 m "
> el == (55)
1iT>N TMm 5(N + 1 _T_)
i 2 2h
Let
_ |78 1_ _T) :
m_[e (N+2 2h:|;1’ (56)
then
> 160 ]S 2 (57)
Ry T mm
Thus, from equation (50), one obtains
2M _
_ < 2 -m 5
Il f gt|u=7rme ’ (58)
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and hence
T 2M
(15,\4,(31(‘11)) < 2 (59)
Tm
For n odd, one has
o {5 (- 5)]}
T 20M 2
d (B,,T(M)) < 2 = LEN (60)
]
2% \" h
while if 7 is even, one has d°” < d°”, ; hence, in all cases
{26127
r_ 2] 2e
&7 < M e h 61)

The fractional guardband & is now chosen as in equation (48) from which
the inequality of the theorem follows.

When = is large, a more accurate estimate of df " may be obtained by
using a polynomial approximation to BY . Let

10 = (L 2) = g0, (62)

and let L(z) be the Lagrange interpolation polynomial established for
g(z) on the zeros of T',(z), the nth Tchebysheff polynomial of first kind,
over [—1, 1]; then the standard error formula for Lagrange interpola-
tion'" yields

max | g™ (x) |. (63)

—1=2r=1

max | g(x) — L() | <

L
Cisss1 n!2"!

Bernstein’s inequality (15) and equation (62) now yield

Lo -uG) | <2 )

lu

hence one has

Theorem 6:

dc ’(B:(M)) < 2M (5) . n=0.

n! \2

Let H” be the space of functions f({) possessing derivatives up to
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order s satisfying f, f, --- , ' ¢ L*(—=T/2, T/2) and normed by equa-
tion (44); then Theorem 7 provides an estimate of the nth width of

BT (M) relative to HY .
Theorem 7: Let

_ o 2 U
r= {ZU P —r—DF@s—2r—De—n 1% “'}'
in which uo = 1 and the sum s considered zero when s = 0, then

MT T}(2c)™*"
nt (2)2n + 1

Proof: TFor the funetion g(z) of equation (62), the identity

u).! 1

0@ = P + [ EU 00w i, (©3)

df: (BY (M) =

(in which P(z) is a polynomial of degree not exceeding s — 1), will be
used to obtain a polynomial approximation to g(z) in the Sobolev norm
(44). Let L(z) be the Lagrange interpolation polynomial for g (z)
formed with » nodal points on [—1, 1] and w(z) the corresponding
fundamental poynomial; then one has

7@ = La) + 3 g™ @u@),  Eel-1,1.  (66)
The polynomial I(z) defined by
1) = Pa + [ & =9 L) du (67)

will be used to approximate g(z) in the Sobolev norm; its degree does
not exceed n + s — 1. Let

lgP@ | =M, |z|=L (68)
then, from equation (66), one has
l g(r)(.r) _ I(r)(ﬂ;) I

S ).lw(wldu, 0=r<s (69

109@) — 1@ | £ 22 u() | (70)
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The norm (44) for the interval [—1, 1] may be written

1 [
lo=1lE=[ Zvnl¢”@-17@ Fdz, @
=1 r=0
in which »,, -+, », = 0; the », and g, are related through the change
of variable ¢t = (T'/2)x. Using equations (69) and (70), one has

M.,
g — I} s 22

-f—l: {é y'( : % | () | du)2 + v,w(:c)z} dx. (72)

Define the function %(u, v) by

1

h(u, v) = f @ — W' — o) dxs (73)
max (u,v)
then equation (72) may be written:

2 M121+a = Vr
Hg'_'Illaé E(s—?‘—l)!2

2
n! =0

- f_ 1 f 11 T, v) | w@o®) | dudv + v, f 11 (@)’ d»f} (74)

The Cauchy—Schwartz inequality shows that

1 —w i -yt .
2s — 2r — 1 !

k(u,v) = (75)

hence,

v

ML = .
g — Il {Z(s—rkl)!2(23ﬁ2r—1)

) w(r)* d.?:} . (76)

1 2
( [ @ —w= ot | au) + o,
-1
Further application of the Cauchy—Schwartz inequality yields

2
g — 1=

-1 22.-2r N .
{22(.9—?— DE@2s — 2r — 1)(8_?,) }f_lw(:r) dr. (77)

A good choice for w(z) is
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2’!
&)
n
where P,(z) is the nth Legendre polynomial. The coefficient of P,(x)

in equation (78) makes w(x) monie. Since

P.(), (78)

w(z) =

1 . B 2
- Pn(x) dI - n + 1 H (79)
one obtains
. 2°M ., ( 2 )*
Hg—11l.= T

2n

()
- p, 2202 }!

'{,.202(3—1-— DF(2s — 2r — 1)(s—r)+"' - (80)

The Bernstein inequality (15) shows that

Mn%l é Mc’l“"; (81)
hence
M2%"** ( 2 )*

()

—1 Drzza—zr 3
.{22(‘9“—1'— DFQ@s — 2r — (s —7) +”'} - (82)

r=0

Finally the change of variable ¢ = (7'/2)z and the replacement of », by
the original u, yield the result of the theorem.

The results of Theorems 5, 6, and 7, may be translated into estimates
of entropy by use of the Mitjagin inequality of Theorem 1. The estimates
so obtained will apply only to the subset of B,(M) for which f(¢) is real.
Doubling the bounds will provide estimates for complex valued f(?).

Theorem 8: Let0 < a < 1, (1 — a)e < (2M/me), f(Z) real,

oM

oM LI — e _

70 — a)e oM oM |
1+ 1n (1l +n 1]111-(1 — a)e

— a)e

m=|In

then
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¢ N2 0 _

mwron = {2+ [2(0+ Eon+0)) prog (2 4 252).
™ ¢ ae o

Proof: According to Theorems 1 and 5, one must solve the inequality

2M .,
— e

o = (1 — a)e (83)
for the largest integer m; thus
me" = 1%)_6 . (84)
Consider the function
Flz)y =6 —z—Inz, &>1. (85)
One has
F'(z) = —1 — i ; (86)

hence, by the mean value theorem,

[f‘(é—h)=—ln§+h(1+1), §—h <E<A. (87)

£
Let
F(s — h) = 0; (88)
then, since h is positive,
0< —Insé + h(l + 5“;1—}1) , (89)
0< —&8Ins+ h(l + 56+ In3s) — (90)
thus
dIné
"t st me o
and
6—h<51+6+1n¢5 (92)

The inequality
r+Inx =36 (93)



1926 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1970

is thus satisfied by

. 1+
'I‘<51+6+1n6’ (94)
hence, setting
2M
6=1In m (95)
and taking cognizance of the integral character of m, one has
[ 2M |
i ey 1+ In ———~ :
m<|m—2M . =1 — a)e (96)
| 7wl — a)e 141 2M + Inln 2M |
L Il1r(1 — e m(l — a)e]
provided
1 — e < ﬂ (97)
e
For the computation of d,_, , one has from equation (48)
m = [216 a_oln — 2)]- (98)
Hence
o bialn — 2) < m + 1, (99)
2e
2c e 2e
{1 — (m)}(’n—?) <?(m+ 1). (100)
Let
2
n=24+=L (101)
™
then
v(l — %) <%m+1); (102)
v c
accordingly

< {1 + (% (m + 1))%}2- (103)
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2 + [2;” {1 + (E (m + 1)):}2] ; (104)

the theorem now follows from equations (96), (97), (104), and Theorem 1.
When e is small, a more accurate estimate of entropy may be obtained
by use of Theorem 6 in place of Theorem 5. Accordingly one has

Thus n satisfies

n

1A

Theorem 9: Let0 < a < 1,9 = 2M/(1 — a)e(wec))‘),

7 = max (l , e”g) , () real;

({8
then
H (B (M))

[~

2
—%ln(;clnn) ]

-
<31+ Llog(_zﬂl_i_?__g.
1 ln(%ln)-i—l-i— 1 J e @
_ ec " 21n g

Proof: According to Theorem 6, one may consider

2M (e\"
—J (5) = (1 — a)e. (105)
Stirling’s formula provides the inequality
n! > n'e™(2rn)}, (106)
and hence one may consider
2M  fec \"
(2‘11%)% (%') = (1 — a)e. (107)
Let
ec oM
TTEH T (1= aemeo) (108)
then equation (107) becomes
;Ll:+1.«‘ec g 772/”- (109)

Consider the function

Flz) =6 — (z + a) In z; (110)
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then, by the mean value theorem

F(a'—h):a—(a+a)ina+h(1na+1+‘—;)—%(%—g),

s—h<t<d.  (111)

Let
r=48—h=a, F( — h) = 0 (112)
then
Oga—(ﬁ—l—a)lné—l—hln(ﬁ—l-l—{—%)- (113)
Let
8= 1/e; (114)
then
hé(b‘%—a)lnb'faé, (115)
Iné +1+ F
and hence
$§26+a—ah;6_ (116)
111 6 + 1 + E
Thus, in terms of n and 7, one has
anﬂ‘l'%_%hle&hlﬂ)
n < (117)

1(%1 ) 14
necnn—i_ +211171

The lower bound on 7 in the theorem assures the satisfaction of the
conditions on z and § in equations (112) and (114). Use of Theorem 1
now provides the inequality of the theorem.

Theorem 10 provides an entropy estimate deduced from the width
result of Theorem 7.

Theorem 10: 0 < a < 1,7 = (MT(2¢)"/(1 — a)e(es)?)

(1 + #10_2 'Ji' T + “.Uh)i’ j(t) T'BH,I;

1 [
néID&X(F—C,fﬂ ) Y

then
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H (B; (M)
2
2 +3i-13 ( =
2lng9+ 3 —4n \(’c]n ?J) 1

=3+ 1+ 2 1 og
l In(—lnn)-i-—l-}— J

ec 21Inqy

+

ae 44

(QMTT% 2 — oe)_

Proof: The investigation parallels that of Theorem 9. A difference
oceurs in the estimation of d, . The Bernstein inequality of (15) shows
that

do < M~T%; (118)

hence the estimate of the theorem.

The case m = 1 of the representation given in Theorem 4 may be used
to obtain an explicit e-net for B,(M), and hence to provide a constructive
algorithm for the transmission of information from such a source. The
representation for f(t) e B,(M) takes the form

; sin —2% (1 — jh) sin —T— (¢t — jh)
. 1 — 48 1—36

a
1—34

i=—wm

(t—in) T = i)

oh =x(1 — 8. (119)

In order to proceed, it is necessary to estimate the quantity A(8)
given by

. Mm—‘s"—(z— jh) sin —Z— (t — jh)
) \ 1 — 36 1 — 34
A = sup D, ! (120)
—w<t<m jamto oo (t — ih) a (t — ih)
1— s ! 1 — 3 J
Theorem 11: A(8) < 1/8' for0 < § < 1.
Proof: The Cauchy—Schwartz inequality yields
2
® s;inl B_JS(t—jh)
A = sup D
—mLt<w j=—m bo (! - h)
1—3s "
P 2
= |sin = (t — jh)
sup 2. - (121)

—gL < [=—m a o
17— a(t ih)
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From the Parseval relation of Theorem 3, one has

2 2
a u
w |SInT— (t— k) - |sin (t—s)
> 1-0 =1f ——~——1 8 ds =1, (122)
el gy | M S
1— 24 1—6
2 ba
= [SiD] a(t—]h) 1= |50 a(t—s) 1
1m0 T oo | ————| ds=7- (123)
S~ b bt _50’ ‘) %
1 —é 1 —396
The theorem is established.
Let
§ = _suwp i [; (124)
then a corollary to Theorem 11 is
Corollary:
sup | f(8) | = 8/
Proof: From equations (119) and (120), one has
sup [ f(t) | = SA(9). (125)
—mn<t<m

The result follows from Theorem 11.
The function

o = X fih) = — (20
; [

constitutes an approximation to f(f). The error may be assessed by
application of equation (51) for m = 1, and Sonin’s formula (53); thus

1]] T -1 Y =1
[|f—9 . £ ((N + 5 :Zh) + (N + =+ ‘—J-h-) ) (127)
For0 < a < 1, let

N = [(TTL[)Tra 1+ {1 + (%E%Mﬂ)}*) — 3]+ 1o

then direct verification establishes

[[f =gl <= ae (129)
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It may be observed that for large c, one has

~ _c _ T
N=la—% " m’ (130)
that is, N is approximately the number of nodal points jhin (—T'/2, T'/2).
Let
5. = AL ] (131)
and
B() = B-x(f), ---, Bx()); (132)

then the set Uj is defined to consist of all (£) generating the same vector
B = B(f). It will now be shown that the diameter of U does not exceed
2e. Let f.(t), f2(¢) e Ug ; then

1) — G | £ s (133)
One has
i) = [0 = ‘_Z_m (fi(Gh) = [.(j))
. do oy T
sin o (¢ — jh) sin -——— (¢ — jh)
) 1 & o 1 8 ; (134)

oo o a .
1_6(1—Jh) 175((%311)

and hence, by equation (129),
[0 = L0 [ = 2 THGE — £ |
jlsN

do
1— 6

oo . T .
Sl — i I )

. . . a .
sin (&t — jh) sin 775 (t — jh)

+ 2(1 — a)e (135)

in which N is chosen as in equation (128). From equation (133), one has

2ae
[ 1) = () | = A(5)
. oo . . g .
sin -——— (& — jh) sin -—— (¢ — jh)
X |- 160 6 lg 8 +2(1 — a)e. (136)

1SN — o
=t~ 50— h
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Use of equation (120) shows that
[[fr = f2lle  2e (137)

The sets U, are centerable with respect to themselves; that is, there
exists an element g(¢) ¢ U whose distance from any other element of Uy
does not exceed e. Consider the function g(t) defined by

. oo . T .
. sin ~—— (¢ — jh) sin —— (t — jh)
o) = S T B+ D L= -
= 11— rS(i—jh) 11— 5('5—33’1)
(138)
One has
| fGh) — gGl) | = 575, 13l SN, (139)
A(8)
and
1@ — g(d)
do . o
sin —— (¢ — jh) sin ——— (t — jh)
= (0 — o) gy
T 5 ¢~ T ¢— M
. oo oy . g .
sin —— (t — jh) sin ——— (¢ — jh)
+ 221Gk 150 : 10 2 ; (140)
=y Tt —ih T (t — h)

hence, by equations (120), (129), and (139)
If—gll £ e (141)

The required constructive algorithm, T, is thus given by the mapping
f — ¢ in equations (131) and (138).

Theorem 12: V(I') = (2N + 1) log {[A(8)M /2ae] — [—A(8)M /2a¢] + 1},
in which N is given in equation (128).

Proof: It is necessary to enumerate the number of distinct g(¢) which
are generated by T'(B,(J])). Since

A | fGh) | - AM (142)

2ee Qa6 '
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the number of distinet values of 3;(f) is

A@M | _A(é)M
|: 2ae ] [ 2ae :|+l’

and hence the number of distinct vectors g(f) is

{[%] - [ T

The theorem follows from equation (144).

Corollary 1: V(T) £ N + 1) log ((M/2aes'] — [—M/2aes'] +

Proof: Theorem 11.

Corollary 2. V(I) £ (2N + 1) log (M/ae(5)* + 2).
Proof: Corollary 1 and the inequalities

[ M } - M
2ae(8) ] = Qae(ﬁ)% !

“[“2:::%&)4 < et T

IV. THEORETICAL INVESTIGATION OF W,

Using Theorem 3 for f, g ¢ W, , the Sobolev inner product
T/2 L
(f: g)a = f (fg + ,u,lfg + PP + 'u.f(”g(l)) di
-T/2
takes the form

Go.=[ [ szu(il,)

(1 4+ paw + -+ pu?)FGQE) du do,

1933

(143)

(144)

1).

(145)

(146)

(147)

in which F(u), (/(u) are the Fourier transforms of f, ¢ respectively. The

corresponding positive definite quadratic form ¢} is

, :.11‘1
f f ru — v)
(1 4+ puw + -+ pu)F)FE) du do,

and an operator K generating @ is given by

(148)
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. sin-g- (w —v)
KF = f_, wu — v)

(14 pw + -+ + puV)F@) dv,  |u| =o;  (149)
thus

Q= f_ " FKF du. (150)

The equation defining the eigenvalues and eigenfunctions of K is
K@k = 7\),@,\, y k 2 0, (151)

in which the ordering Ao = A, = X\, = --- is used. It follows from the

Hilbert-Schmidt theory'® that the eigenvalues are denumerable and of

finite multiplicity and the eigenfunctions form an orthonormal set

which, from the positive definite character of K, is complete in L*(—a, o).
Let

o) = Gy || e i) du; (152

then the Parseval relation for Fourier transforms shows that the
sequence ¢o(t), ¢1(t), ¢2(t), - -+ is orthonormal over (— =, «); further,
from equations (147), (150), and (151), one has

(d}i :¢k)- = f (T’LJK-@, d’bt- = >\,' f Cp;'i’k du 0 _7 P k‘

=N j=k (153

Thus the sequence {¢.(f)}% forms an orthogonal system with respect to
the Sobolev inner product (146). The system {¢:(t)}7 is also complete
in W7, as a consequence of the completeness of the system {®.(u)}7 in
L*(—a, o).

Define the n-dimensional subspace X, C W, by

Xﬂ = Xn(¢0 y T l¢n—1) (154)
then Theorem 13 provides the nth width of W7 ,(B), relative to H7 ,
in terms of the eigenvalues of K.
Theorem 13: d2*"(WZ ,(B)) = B\

Proof: Let {(t) e W, . (B); then

ity = 2 agu(D). (155)

k=0
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Let

n—1

gt) = X @b e X, ; (156)

k=0

then the orthogonality of the ¢.(f), (153), yields

||f_g||f=§laklz)\k- (157)
Thus
inf [[f—glll= XlalN. (158)
From the monotonicity of the ). , one has
inf [[f—g|f=N X lal; (159)
however, the orthonormality of the ¢:(f) over (— e, ) shows that
[lora= Y arss, (160)
—c0 k=0
and hence from equation (159)
Ex,(W;.(B) = sup inf|[f— gl =B\ (161)
feWa,a(B) geXn
Thus
d(W7.(B) < B\ (162)

Consider the ball U,,, defined by
g(t) = ’é ai(t), lgll. = B?\ni; (163)
then, by a theorem on balls in a finite dimensional subspace of a Banach
space,’
dn(Un+l) = B}\n!- (164)

Thus the theorem will be established if it is shown that the ball U,,,
defined in equation (163) is contained in W, .(B). It is only necessary
to verify that

[Clewra= 2= B (165)
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One has from

n

glli= 2 la |\ S B\, (166)
k=0
that
n n A
2lal = 2 la =B, (167)

and hence the theorem is proved.

Use of the series representation of Theorem 4 permits one to estimate
d?"(W? ,(B)). The quantities m and 4, are as in equation (48); addition-
ally, the corresponding interval h, is defined by k, = =(1 — 8,)/a.

Theorem 14:

B s 205 o
" ((2m + 1)(n -1- h.._l))
Proof: Let
foy = X fGo:), (168)
and
9 = 2 f0;(0); (169)
then
O = o0 = X 1160 |00 |. (170)
Since, by Parseval’s relation of Theorem 3
[l Fa=n % o <8, amy
Schwartz’s inequality applied to equation (170) yields
10 - o0 P s T a0 a72)

One has, from equation (51)

5 2 ()" 1 T
H [ — g HU = 2k \ré :‘§' - T amis ? N > 2h- (173)
! 2n
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One may use Sonin’s formula, equation (53), to effect the summation
in equation (173); thus

B ) m
1f=gllos2 7 Y —
(h(Em + 1)(N + g~ ﬁ)) wB(N + B ﬁ)
(174)
The choiee
m = [ (N + 1 ;)] (175)
leads to
B o .
=gl == Ve R (176)
(h(Qm + 1)(N +5 - ﬁ))

Thus equation (176) shows that

d 2\ e "
v <2 (2 L
(m+ (v +5-5))
and, hence, for n odd
a2 2 N (178)
(e of-T)
h
For n even, one has
W B) < 28 a (179)

25 .
™ ((Qm + 1)(n - %))

thus equation (179) applies in all cases. The fractional guardband is
now chosen as in equation (48), and the inequality of the theorem
follows.

Theorem 13 permits an immediate corollary to be obtained from
Theorem 14.

Corollary: For s = 0, one has

4 e-2m

B 2m + 1)(n -1 - T )

lh’rl—l

1
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As was done in Theorem 7, polynomial approximation will be used

to estimate d”"* (W7 (B)). The estimate is given in Theorem 15.

Theorem 186:
(2c n+s

2£ E
s, @) = Br(%) o )

2")(2n + D@ + 25 + 1)

Prooj: The estimate will be obtained from equation (80). In order to

estimate M., , consider
1 “ iut
i) = @Ef_ e Fu) du,
from which one has
1 i iu x
g(x) = (27)%]; e™ TR (y) du.

Aeccordingly

' ™ 1 T (TID ere

¢ (x) = (E) @;);ji e Py F(w) du.

By use of the Schwartz inequality, one obtains

197 (@) |” = g)i f_ 'u, du f i | Fw) |* du.

The Parseval relation for Fourier transforms
[0 ra= [ 1FwPas B

and equation (184) now yields

(r) 2 0
g7 @ "= B 9T+1

Thus

3 Cu-i-n
Maee = B( ) @n + 2s + 1Y

The remainder of the analysis is the same as in Theorem 7.

(180)

(181)

(182)

(183)

(184)

(185)

(186)

Theorem 13 again permits an immediate corollary to be obtained

from Theorem 15.
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Corollary:
26 (20)2n+2a

}\n+e = — I‘2 9 -
T s (20
n! (n) @Cn+1D2n+2s+1)

Theorems 14 and 15 lead to corresponding estimates of entropy
through use of Theorem 1.

Theorem 16: Let

n;2+(1+(%c)i), 0<a<l, f(t) real,

and

then
H.(W; (B))

s (200 Gonen) (224 224)

Proof:  TFrom Theorem 14, one has

. 2 1\ e
4V EB) < 2 B(; a8
" ((2171 + l)(n -2 — ; ))
n—2
I'rom equation (48), one has
9 H
om+1=3 L — (“—“ n — 2)) : (188)
ho_s T
hence
2 2e\¢
do (W7 (B) <~ B('—C) e ! i (189)
1]'\/3— ™ L 26 7\7
(n—2) — —
Since
N2
SR fm‘né?—l—(l—l—(?)), (190)

oo )
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d._.(WT ,(B)) obeys the inequality

dans(WEB)) =

According to Theorem 1, one may consider

B(gq)}e'"'. (191)

.

2 p(Z) ez a - (192)
and hence
) —

The remaining analysis is the same as that of Theorem 8. The inequality
of the theorem now follows.

Theorem 17: Lel0 < a < 1,7 = TB(2¢)'/(1 — a)ee(me)?,
i c/2)
vz max (), Q) real,

then
H.(W;..(B))
}f (2mn+1—1n(f—cmn)l
=38+ 1+ N ]
ln(;;jlnn)-kl-l—-ﬂ—n- J
Proof: The proof parallels that of Theorem 9.
It may be useful to observe

2B} —
2+ 252)

N = (194)
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