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R. L. Graham has discussed various combinatorial aspects of the
behavior of magnetic domains or “bubbles”.’ Representing the initial
state of a configuration of n magnetic domains by the n-tuple of in-
determinates B = (X, --- , X,), he showed that subsequent configura-
tions of magnetic domains obtainable (within the constraints of the
problem) correspond exactly to subsequent n-tuples of Boolean ex-
pressions in the X,’s* obtainable from B through an application to B
of a product of transformations (‘“commands” in Ref. 1) of the form
T:;(1 =4 <j=n)whereif P = (P,, ---, P,) is an n-tuple of Boolean
expressions in the X,’s, then T.;(P) = (@, -+, @),

P, \JP; if k =i1
Q. =P, NP, if k=3¢, k=1,---,n.
LP,, otherwise J
Furthermore, he showed that

if 3is an (%)-fold product of such transformations @)
and if T is any other, then (T o 3)(B) = 3(B).

This provides a limitation on the number of distinet n-tuples of the
form w(B) = (P,, --- , P,) where U is a product of transformations,
and hence provides a limitation on the number of distinet P,’s thus
obtainable from various U’s. Graham showed that for n = 11, this
limitation implies that not all Boolean expressions in the X.'s are
realizable as a P,.

This led to an (as yet unsuccessful) attempt to characterize those ex-
pressions which are realizable. The purpose of this note is to observe a
fragmentary result in this direction: that if J is as above, then 3(B) =

* A Boolean expression in the X/'s is either a term of the form X; (1 £ 7 £ n), a
term of the form P \U @ or a term of the form P N @, where both P and @ are Boolean
expressions in the X,'s; expressions may be reduced as if the X,'s were sets,
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(S, --- , 8,) where 8; is the elementary symmetric polynomial in
X,, -+, X, of degree ¢ (here interpreting \J as 4+ and M as -). The
situation will be rephrased in terms of a semiring.

For a fixed n let B be the (Boolean) commutative semiring generated

by X,, --- , X, subject to the relations:
for i=1,---,n, (1)X;=X,,
2) X, +f=1f forall fER.
It follows that 2X, = X,(z = 1, --- , n) and hence, each f € Risa
Boolean polynomial in the indeterminates X,, --- , X,, (that is, the
X.’s behave like sets with respect to + and - interpreted as \JJ and M
respectively).

Throughout, if x & R" (the set of n-tuples of elements of R), then
for 1 = k = n, x; will denote the kth coordinate of z, that is, z =

(1, -+, &, +++ , x,). Let T (or T,) be the set of transpositions of
{1, ---,n}andfort € T—sayt = (i, j), 1 < j—definet: R"—>R" by
ff,-+f,- if k:v:l
W =1 it k=3 [ Let B=B,= (X, -, X) ek
L‘k otherwise {

and set @€, = \Ur, T*(B) wherem = (O)*and T* = {tify -+ -t | by, b0, -+,
i € T}. A point C € @, is said to be terminal if {(C) = C forallt & T.
It is not hard to see that (S, --- , 8,) is a terminal element of €, where
S:(1 £ ¢ £ n) is the elementary symmetric polynomial in X, --- , X,
of degree 7; in what follows it will be shown that this characterizes the
terminal elements of @,.

The elements of R may be partially ordered by f = g f + ¢ = ¢.

For D € R", 1 £ j £ n, define D' € R"by D! = Di(X,, -+, X;.,,
0, X;0y, -, X)), 1 =47 = n.
Lemma 1: C isterminal & C, = Cy, = --- = C,.

Proof: Obvious.

* By (1), € = U T*(B); on the other hand €, = Uneg THB) =7 = m:
using notation developed below, this can be proved by induction on n as follows.
If n = 1 it is clear; assuming it is true for a given n, identify €, with {D"* | D €
Cnp1} C Cnyi (see remark following Lemma 3). Using the theorem below and the

induction hypothesis, there is a § such that §(Bny1) = (8", Spnt, - | §nh),
Xn41), and g is a product of at least (7) transpositions. Let §" = (1 2)(2 3) ---
(n n + 1)g; then §'(Bay1) = (S, -+, Snq1), §' is a product of (3) +n = (";1)

transpositions and if for some U (UY)(Bny1) = §'(Bns1) then U must be a product
of at least n transpositions.
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Lemma 2: If f, g € R are such that X, divides no summand of either,
thenf + X.hy = g+ Xiho=f = g.

Proof: Writing f + Xk, as a sum of produets of X,,’s, both f and g
are precisely the sum of those products which are not divisible by X..

Lemma 3: If D € @,, then for each j = 1, --- , n there exists 7 such
that D} = 0.

Proof: Assume D € €, and 1 £ j = n. Find ¢,, --- , ¢, & T such that
tB = Dwheret =tt,, -+t .Ifr=1,sayt = (o, ), < B;if ] # a
then D} = 0 and if j = « then D} = 0. Now assume the assertion is
true whenever r < u, and D = ¢, --- ,B. Find 7 such that (.-, ---
t,B)! = 0 and let {, = (a, 8), @ < B. As above, if 7 # a then D} = 0
and if ¢ = « then D} = 0. Induction on 7 completes the proof.

Given D € €,, Lemma 3 provides the machinery for associating D’
in a natural way with an element D’ of @,_,: making the initial associa-
tion X; » X,_,in B,and i — 7 — 1in T, for ¢ > j, define D' = ¢/ - --
t!B,_, where if {,, = (@, 8),a < 8 then

oo Jtn G (e - 6B # 0 for i=a,ﬁ}
identity otherwise

for 1 = m = r. It is clear that D’ represents a collapsing of D at a
coordinate ¢ where D = 0 plus a permutation = of the other Di's:
D= D] -Df:.(zn ) € R™.

However, the extent of possible permuting is limited by the com-
pleteness of the order = on the D’s as is demonstrated in the next two
lemmas which apply for1 £ 4, 7, k = n.

Lemm4:D€en’Di §D5=>J§1'-

Proof: It suffices to note that an application of a transposition to a
member of @, preserves the order of the indices.

Lemma 5: D; < D, = D} < D].
Proof: Writing D, = D! + X;g and D, = D] 4+ X;h, obtain D} +

Xh = D, = D, + D, = DI 4+ D] + X,(g + h) which by Lemma 2
implies that Di = D 4+ Di, that is, D} = Dj.

It follows from Lemmas 1, 3, 4 and 5 that if C € @, is terminal, then

¢ = (Ci, ¢, ... ,Ci_,,0)and " is terminal in €,_, for1 < j < n.

Theorem: C & @, 1s terminal & C; = S;, (1 £ 17 = n).
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Proof: <. This direction is clear.

=. By induction on n—if n = 1 then € = {B} and B = (X)) so the
assertion holds. Now assume the assertion holds for n < k, and let
C € @, be terminal. Then each €7 is terminal in €,_, and hence by the

induetion hypothesis each C? = S8i(z =1, --- ,k—1;5=1,--- , k).
In particular then C; # X, X, --- X, for¢ =1, --- , k — 1. Further-
more, each C; can be expressed as C; = P, + --- + P, where each

P, is a product of some but not all of the X,’s. It follows for ¢ < k that

k k
Ci = Y P, andconsequently C; = > Cj = Z 8= 8.

XitPm i=1
It is left to the reader to show that C, = S, and thus complete the
induetion argument.
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