B.S.T.J. BRIEF ## All Terminal Bubbles Programs Yield the Elementary Symmetric Polynomials ## By R. P. KURSHAN (Manuscript received May 18, 1970) R. L. Graham has discussed various combinatorial aspects of the behavior of magnetic domains or "bubbles". Representing the initial state of a configuration of n magnetic domains by the n-tuple of indeterminates $B = (X_1, \dots, X_n)$, he showed that subsequent configurations of magnetic domains obtainable (within the constraints of the problem) correspond exactly to subsequent n-tuples of Boolean expressions in the X_i 's* obtainable from B through an application to B of a product of transformations ("commands" in Ref. 1) of the form $T_{ij}(1 \le i < j \le n)$ where if $P = (P_1, \dots, P_n)$ is an n-tuple of Boolean expressions in the X_i 's, then $T_{ij}(P) = (Q_1, \dots, Q_n)$, $$Q_k = egin{cases} P_i & igcup P_i & ext{if} & k=i \ P_i & igcap P_i & ext{if} & k=j \ P_k & ext{otherwise} \end{cases}, \qquad k=1, \cdots, n.$$ Furthermore, he showed that if 3 is an $$\binom{n}{2}$$ -fold product of such transformations and if T is any other, then $(T \circ 3)(B) = 3(B)$. This provides a limitation on the number of distinct n-tuples of the form $\mathfrak{U}(B) = (P_1, \dots, P_n)$ where \mathfrak{U} is a product of transformations, and hence provides a limitation on the number of distinct P_i 's thus obtainable from various \mathfrak{U} 's. Graham showed that for n = 11, this limitation implies that not all Boolean expressions in the X_i 's are realizable as a P_i . This led to an (as yet unsuccessful) attempt to characterize those expressions which are realizable. The purpose of this note is to observe a fragmentary result in this direction: that if 3 is as above, then $\mathfrak{I}(B) =$ ^{*} A Boolean expression in the X_i 's is either a term of the form X_i ($1 \le i \le n$), a term of the form $P \cup Q$ or a term of the form $P \cap Q$, where both P and Q are Boolean expressions in the X_i 's; expressions may be reduced as if the X_i 's were sets. (S_1, \dots, S_n) where S_i is the elementary symmetric polynomial in X_1, \dots, X_n of degree i (here interpreting \cup as + and \cap as \cdot). The situation will be rephrased in terms of a semiring. For a fixed n let R be the (Boolean) commutative semiring generated by X_1, \dots, X_n subject to the relations: for $$i=1, \dots, n$$, (1) $X_i^2 = X_i$, $$(2) fX_i + f = f \text{ for all } f \in R.$$ It follows that $2X_i = X_i (i = 1, \dots, n)$ and hence, each $f \in R$ is a Boolean polynomial in the indeterminates X_1, \dots, X_n , (that is, the X_i 's behave like sets with respect to + and \cdot interpreted as \cup and \cap respectively). Throughout, if $x \in R^n$ (the set of *n*-tuples of elements of R), then for $1 \le k \le n$, x_k will denote the kth coordinate of x, that is, $x = (x_1, \dots, x_k, \dots, x_n)$. Let T (or T_n) be the set of transpositions of $\{1, \dots, n\}$ and for $t \in T$ —say t = (i, j), i < j—define $t : R^n \to R^n$ by $$(tf)_k = \begin{cases} f_i + f_i & \text{if} \quad k = i \\ f_i \cdot f_i & \text{if} \quad k = j \\ f_k & \text{otherwise} \end{cases} . \quad \text{Let } B = B_n = (X_1, \dots, X_n) \in \mathbb{R}^n$$ and set $\mathfrak{C}_n = \bigcup_{k=0}^m T^k(B)$ where $m = \binom{n}{2}^*$ and $T^k = \{t_1 t_2 \cdots t_k \mid t_1, t_2, \cdots, t_k \in T\}$. A point $C \in \mathfrak{C}_n$ is said to be terminal if t(C) = C for all $t \in T$. It is not hard to see that (S_1, \dots, S_n) is a terminal element of \mathfrak{C}_n where $S_i(1 \leq i \leq n)$ is the elementary symmetric polynomial in X_1, \dots, X_n of degree i; in what follows it will be shown that this characterizes the terminal elements of \mathfrak{C}_n . The elements of R may be partially ordered by $f \leq g \Leftrightarrow f + g = g$. For $D \in R^n$, $1 \leq j \leq n$, define $D^i \in R^n$ by $D^i_i = D_i(X_1, \dots, X_{i-1}, 0, X_{i+1}, \dots, X_n)$, $1 \leq i \leq n$. Lemma 1: C is terminal $\Leftrightarrow C_1 \geq C_2 \geq \cdots \geq C_n$. Proof: Obvious. ^{*} By (†), $\mathfrak{C}_n = \bigcup_{k=0}^{\infty} T^k(B)$; on the other hand $\mathfrak{C}_n = \bigcup_{r=0}^{r} T^k(B) \Rightarrow r \geq m$: using notation developed below, this can be proved by induction on n as follows. If n=1 it is clear; assuming it is true for a given n, identify \mathfrak{C}_n with $\{D^{n+1} \mid D \in \mathfrak{C}_{n+1}\} \subset \mathfrak{C}_{n+1}$ (see remark following Lemma 3). Using the theorem below and the induction hypothesis, there is a \mathfrak{J} such that $\mathfrak{J}(B_{n+1}) = (S_1^{n+1}, S_2^{n+1}, \cdots, S_n^{n+1}, X_{n+1})$, and \mathfrak{J} is a product of at least $\binom{n}{2}$ transpositions. Let $\mathfrak{J}' = (1 \ 2)(2 \ 3) \cdots (n \ n+1)\mathfrak{J}$; then $\mathfrak{J}'(B_{n+1}) = (S_1, \cdots, S_{n+1})$, \mathfrak{J}' is a product of $\binom{n}{2} + n = \binom{n+1}{2}$ transpositions and if for some \mathfrak{U} ($\mathfrak{U}\mathfrak{J})(B_{n+1}) = \mathfrak{J}'(B_{n+1})$ then \mathfrak{U} must be a product of at least n transpositions. Lemma 2: If $f, g \in R$ are such that X_i divides no summand of either, then $f + X_i h_1 = g + X_i h_2 \Rightarrow f = g$. *Proof:* Writing $f + X_i h_1$ as a sum of products of X_m 's, both f and g are precisely the sum of those products which are not divisible by X_i . Lemma 3: If $D \in \mathfrak{C}_n$, then for each $j = 1, \dots, n$ there exists i such that $D_i^i = 0$. Proof: Assume $D \in \mathfrak{C}_n$ and $1 \leq j \leq n$. Find $t_1, \dots, t_r \in T$ such that tB = D where $t = t_r t_{r-1} \cdots t_1$. If r = 1, say $t = (\alpha, \beta)$, $\alpha < \beta$; if $j \neq \alpha$ then $D_i^i = 0$ and if $j = \alpha$ then $D_\beta^i = 0$. Now assume the assertion is true whenever r < u, and $D = t_u \cdots t_1 B$. Find i such that $(t_{u-1} \cdots t_1 B)_i^i = 0$ and let $t_u = (\alpha, \beta)$, $\alpha < \beta$. As above, if $i \neq \alpha$ then $D_i^i = 0$ and if $i = \alpha$ then $D_\beta^i = 0$. Induction on r completes the proof. Given $D \in \mathfrak{C}_n$, Lemma 3 provides the machinery for associating D^i in a natural way with an element \tilde{D}^i of \mathfrak{C}_{n-1} : making the initial association $X_i \to X_{i-1}$ in B_n and $i \to i-1$ in T_n for i > j, define $\tilde{D}^i = t'_r \cdots t'_i B_{n-1}$ where if $t_m = (\alpha, \beta), \alpha < \beta$ then $$t'_{m} = \begin{cases} t_{m} & \text{if } (t_{m-1} \cdots t_{1}B_{n})_{i}^{i} \neq 0 & \text{for } i = \alpha, \beta \\ identity & \text{otherwise} \end{cases}$$ for $1 \leq m \leq r$. It is clear that \tilde{D}^i represents a collapsing of D at a coordinate i where $D_i^i = 0$ plus a permutation π of the other D_i^i 's: $\tilde{D}^i = (D_{\pi(1)}^i, D_{\pi(2)}^i, \cdots) \in \mathbb{R}^{n-1}$. However, the extent of possible permuting is limited by the completeness of the order \leq on the D_i^n 's as is demonstrated in the next two lemmas which apply for $1 \leq i, j, k \leq n$. Lemma 4: $$D \in \mathfrak{C}_n, D_i \leq D_j \Rightarrow j \leq i$$. *Proof:* It suffices to note that an application of a transposition to a member of \mathcal{C}_n preserves the order of the indices. Lemma 5: $D_i \leq D_k \Rightarrow D_i^i \leq D_k^i$. Proof: Writing $D_i = D_i^i + X_i g$ and $D_k = D_k^i + X_i h$, obtain $D_k^i + X_i h = D_k = D_i + D_k = D_i^i + D_k^i + X_i (g + h)$ which by Lemma 2 implies that $D_k^i = D_i^i + D_k^i$, that is, $D_i^i \leq D_k^i$. It follows from Lemmas 1, 3, 4 and 5 that if $C \in \mathcal{C}_n$ is terminal, then $C^i = (\tilde{C}_1^i, \tilde{C}_2^i, \cdots, \tilde{C}_{n-1}^i, 0)$ and \tilde{C}^i is terminal in \mathcal{C}_{n-1} for $1 \leq j \leq n$. Theorem: $C \in \mathfrak{C}_n$ is terminal $\Leftrightarrow C_i = S_i$, $(1 \leq i \leq n)$. $Proof: \leftarrow$. This direction is clear. \Rightarrow . By induction on n—if n=1 then $\mathfrak{C}=\{B\}$ and $B=(X_1)$ so the assertion holds. Now assume the assertion holds for n< k, and let $C \in \mathfrak{C}_k$ be terminal. Then each \tilde{C}^i is terminal in \mathfrak{C}_{k-1} and hence by the induction hypothesis each $C^i_i = S^i_i (i=1,\cdots,k-1;j=1,\cdots,k)$. In particular then $C_i \neq X_1 X_2 \cdots X_k$ for $i = 1, \dots, k-1$. Furthermore, each C_i can be expressed as $C_i = P_1 + \cdots + P_r$, where each P_m is a product of some but not all of the X_i 's. It follows for i < k that $$C_i^i = \sum_{X_i \notin P_m} P_m$$, and consequently $C_i = \sum_{j=1}^k C_i^j = \sum_{j=1}^k S_i^j = S_i$. It is left to the reader to show that $C_k = S_k$ and thus complete the induction argument. ## REFERENCE Graham, R. L., "A Mathematical Study of a Model of Magnetic Domain Interactions," B.S.T.J., this issue, pp. 1627-1644.