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We derive the limating efficiencies of dc-constrained codes. Given bounds
on the running digital sum (RDS), the best possible coding efficiency 1,
for @ K-ary transmission alphabet, is 1 = loga Anu/logs K, where \pux
is the largest eigenvalue of a malriz which represents the transitions of
the allowable states of RDS. Numerical results are presented for the three
special cases of binary, ternary and quaternary alphabets.

I, INTRODUCTION

In digital transmission systems, the transmission channel often does
not pass de. This causes the well-known problem of baseline wander.
One way to overcome this difficulty is to restrict the de content in the
signal stream using suitably devised codes.*~® As a result many codes
having a de-constrained property have been studied.*® The coding re-
quirement is represented by the constraint put upon the running digital
sum (RDS) of the coded signal stream. We expect that the efficiency
of a de-constrained code is related to the limits of RDS in some defi-
nite way. This is the subject to which we address ourselves in this
paper. More specifically, we intend to answer the question: What is
the best possible efficiency of any de-constrained code satisfying a
given limit on RDS?

Let {a, , @, , -+ -} be the sequence of the transmitted symbols, the
RDS of the signal stream at instant k is defined to be the sum i,
a; . Taking the RDS at any instant as the state of the signal stream
at that point, the limits on RDS define a set of allowable states, and
each additional signal symbol may be considered as a transition from
one state to another. This transition can be represented by a matrix-
called naturally the transition matrix. For a K-ary signal alphabet,
the best possible efficiency 7 of dec-constrained codes is found to be

— k)gE Rmmt
n= 10g2 K (1)

where Ay is the largest eigenvalue of the transition matrix.
2267
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The efficiency of a code is defined to be the ratio of the average bits
per symbol of the coded signal stream to that of the random (uncoded)
signal stream.

MeCullough* has derived the same result (1) for the special cases of
K = 2 and 3. His approach is quite different from what will be pre-
sented in the sequel.

We first describe in detail the construction of a mathematical model
for the ease of a binary alphabet. Then we generalize the result of the
binary case to include any alphabet set. Methods of effecting numeri-
cal calculation are discussed as well as approximation formulas. The
numerical results for three important cases are presented and known
codes are compared with the theoretical limits.

I1. LIMITING EFFICIENCY OF THE BINARY CODES

In this section we confine our discussion to binary signals and direet
our attenion to the intuitive reasoning which leads to the construction
of a simple mathematical model and its interpretation.

Let M, a positive integer, be the desired bound on the RDS of the
coded binary signal stream. This defines a subset S, («) of the set
S(w) of all infinite binary sequences in the following way: An infinite
sequence is in the subset Sy () if the RDS of the sequence is nowhere
larger than M or less than — M, i.e., >k a;| < Mfork=1,2---.
A sequence in Sy () is called an allowable sequence. Denoting by
Nu(») and N(=) the number of infinite sequences in Sy () and S()
respectively, the average information per symbol for the sequences
in S;() is given by

_ 1ng NM(""")
77 logy N(w)

assuming the ratio exists. If we interpret the set S(=) as source data
and Sy (=) as the transmitted signal, then » defined in equation (2)
is the efficiency of a de-constrained code which maps one-to-one from
S(») onto Sy (=).*

Clearly for any code which satisfies the requirement that RDS be
bounded by M, the coded signal stream must be a member of Sy ().
Therefore, the set of allowable infinite sequences defined by any code
satisfying the desired constraint on RDS must be a subset of Sy ().

2

* The puzzle of mapping a large set to a small set can be cleared mathematically
by ohserving that the cardinality of both S(e0) and Sw(eo) are that of a
continuum, and physically by demanding that the transmitter has a higher baud
than the source.
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Thus we conclude that the formal expression in (2) indeed gives the
best possible efficiency for a given bound M. Our next step is to find
a way to count the number of allowable sequences in Sy ().

Let us start by counting the allowable sequences of finite length L.
Define an occupancy vector of the allowable states u;, , ’ denoting the
transpose of a veetor (or matrix),

up = [u_s oo U Uen], (3)

where u, , k = —M, -+ , M, is the number of allowable sequences
of length L with their RDS at end equal to £, ie., >k, a; = k. The
total number of allowable sequences of length L, N (L) is simply

M
Nu(L) = 2 . (4)
k=—-M

As L — o, Ny(L) — Ny(=) and the total number of sequences
of length L, N(L) = 2 — N(«). Hence we can rewrite (2) as

n = l]m ]0g2 iM(L) . (5)
L—o
Now our job is to find a formula for the number of allowable sequences
of finite length.

Suppose we know the oceupancy vector u, and we want to calculate
the occupancy vector u;,, . Clearly for any allowable sequence of
length L + 1, its first L elements must be one of the allowable sequences
of length L. We generate, therefore, the allowable sequences of length
L + 1 from that of length L by adding one more binary symbol (41
or —1). Therefore, the sequences of length L + 1 in the —Mth state
are generated by adding —1 to the sequences of length L in the — 2 -+
1st state; the sequences of length L + 1 in the —A/ + 1st state are
generated by adding +1 to the sequences of length L in the —A/th
state and by adding — 1 to the sequences of length L in the — A/ 4 2nd
state; ete. It is not difficult to see that the new state occupancy veector is

r -
U—pr+1

U_pr + U—arsn

Uper = [ Ueyrsr -+ Uapr+s |* (6)

Upr—a + Uar

L Uar—1 J
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Equivalently, u.,, can be written as

Urys = Aanrelig (7)
where
- -
01 0
1 0 1
|
A2M+1 = (8)
1
| 0 1 0]

is a square matrix of size 2M + 1 with ones in the superdiagonal and
the subdiagonal and zeros elsewhere. Asy. is the transition matrix of
the allowable states. By the same reasoning, we have,

u, = Aoyl

Upoy = Aaarallzg )

and
U = Asyailly

where u, is the occupancy vector of the sequence of zero length. It is
defined naturally with one at the zeroth state and zeros elsewhere,

0

u, = | 1] (10)

Lo
From equation (9), we obtain, by successive substitution,

u, = A;M+lu0 . (11)
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The total number of allowable sequences, from equation (4), is

NM(L) = I’A;MHHU (12)
where
1
1= (13)
1

The class of matrices 4, defined in equation (8) has many interest-
ing properties. Their investigation is relegated to the Appendix.

Using the result derived in the Appendix, and adapting the following
ordering or eigenvalues of Aap.a:

X_‘[ < R—Mq.] < e < ?\M'—l < AM'!

we can rewrite equation (12),

Ny(L) = 1"PD %P, (14)
where
Ao 0
D, = : ) (15)
0o )
do(A=a) /d(N-ne) -+ bo(Nar) /(Nar)
P dr(N-a)/d(N-nr) - - ¢:(M:)/.¢O\M) (16)

Boar(Noar) /D (A=) d2ar(Nar) /(N ar)
from Lemma 7 of the Appendix and ¢(A) and ¢:(A) are defined in
equation (54) and (70). By straightforward multiplication, we can
write, from equation (14),

NM(L) = Z )\f:“ﬁMHO‘:‘) ;‘i’i(}i); (17)

i=—M
where the normalization constants ¢(A;) are omitted for simplicity.
Denote by Amax the largest absolute value of the eigenvalues of 4,, and
from Lemmas 3 and 6 of the Appendix we know that

Mewe = Aar = —A_ar - (18)
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Then from equation (17) and Lemma 2,

A}Il,!‘{¢.cl.l'+](‘AJIJ) Z::U‘bj(}\ﬂf) + (_1)L¢.M+!.(A-4’Il) Z{:}¢f(?\—.ﬂf)}

NM(L) =
+ .E_Zﬂ; l?\?qﬁun(?\i) Z;‘ﬁio\i)

2M

Nasars1(Aar) E [+ (=D " e, (Nar)

M-1 . 2M
+ 2 Ngwa®) Do), (19)
Since ¢;(Ay) > 0 for all j (see the proof of Lemma 4), the coefficient
of the A term in equation (19),

2M

Garer(Aa) Z 14+ (=D Mg.(N\a) >0 (20)

independent of L.
Substituting equation (19) in (5) and using (18), we have

1 M-1 x~ L
lim = {log2 PN |iz,m + > ( : ) 2.]}
L= L i=—M+1 xmn.‘:

1 M-1 A . L
logZ )\mnx + lim —L'_ 10g2 |:zmux + Z: (?\ * ) zi] (21)
L—w mnx

i==M+1

=
I

Il

where z,.,, and z, are the coefficients of Ay and X, ¢ # =4 M in equation
(19). The second term in equation (21) approaches zero as a limit
since 2, > 0. Thus we have the desired result for the binary case

n = log? Amlu . (22)

Actually, we have proved a result more general than (22). Observe
that, in passing to the limit, the crucial point is that zm.. in (21) be
nonzero. From equation (20) and the fact that ¢;(\y) # 0 for ¢ = 2M,
we conclude that the particular u, we use, though natural, is immate-
rial, and any vector with non-negative coordinates will serve the pur-
pose. Observe also the actual values of the allowable RDS state no-
where enter into our discussion, hence, it is immaterial whether the
bound on RDS be symmetric or not. We can consolidate our discussion
by stating the following theorem.

Theorem 1: For a binary alphabet, if the RDS of a coded signal
stream is required to be within some bound M* and M, where M* and
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M~ are integers, then the best possible coding efficiency is given by
n = IOgB Amax
where Apgy 18 the largest positive eigenvalue of the transition matrix A,
of sizen = M* — M~ + 1 as defined i equation (8).
TII. GENERALIZATION TO K-ary CODES

We now wish to extend the result derived in the previous section to

an arbitrary K-ary alphabet set, {a;, **, ax}. We shall restriet
ourselves to symmetric alphabets. Namely, if K is even, «; takes on the
values —(K — 1), —(K — 3), ---, =1, +1, --- | (K —1); if K

is odd, o; takes on the values —(K — 1)/2, — (K — 2)/2, --+, —1, 0,
1, =+, (K — 1)/2. The transition matrix of allowable states is then
given by

A, = 2 HIY+ 2 F,™ (23)

aizl ai<0
where the size of the matrices is
n=M —M +1, (24)
and M* and M~ are the desired upper and lower bound on RDS. If

a; = 0 is a member of the alphabet, we follow the usual convention
that H? = 1, . The matrices

- }
0 0
0 1
H, — . (25)
0 C1
L 0]
and
0 0
poo 10 26)
-
K 1 0]

are known as superdiagonal and subdiagonal matrices respectively. To
see that A, given in equation (23) is indeed the transition matrix, we
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observe that each symbol a; will generate a sequence in any allowable
state to a state o unit away. Each term in (23) represents the
transition of states due to a particular alphabet. As an example, tak-
ing the quaternary alphabet set {—3, —1, +1, +3}, the transition
matrix is

010 0
10101
010
=11 01 1|
1 0
1
0 1 0 1 0]

With these preliminaries out of the way, we now state a general re-
sult on the limiting efficiency of de-constrained codes:

Theorem 2: If the RDS of the coded K-ary signal stream is required
to be within some bound M® and M-, then the best possible coding

efficiency s given by

logs Muax
1= e (27)
where Amax 18 the largest eigenvalue of the transition malriz A, de-
fined by equations (23) and (24).
Before we embark on the proof of Theorem 2, we need to establish

an important auxiliary result.
Let N, (L) denote again the number of allowable K-ary sequences,

then the limiting efficiency 7, corresponding to equation (5), is

_ 1o Joge Nu(L)
= }.].].:3 L log, K

In the set of allowable sequences Sy(L), we can define a subset
Si1«:(L) by restricting the first symbol to be «; . Similarly we define

(28)

a subset Sy . , — a,(L) by restricting the first two symbols to be
a; and —a; . Clearly
S(L) D SM(L) D SMlLi(L) D SMIa.-.—ui(L) ] (29)

and it follows that

12 Nai = Nai—as (30)
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where 7., and 7., -., are the limiting efficiencies given by equation
(28) with the additional restriction on the leading elements.

Considering now all the sequences in Sy ., -oi(L + 2), it is not
difficult to see that the number of sequences in Sy . —..(L + 2) is
equal to that in S, (L). Hence the efficiency,

im log, N (L)

@i, aq = 11 ¥
1 1-s log, K***
Y log, N (L)
"ML+ log K B
= 1.
Coupled with equation (30), we have shown that
1= Nay = Nas—a: - (32)

A little reflection should convince us that any finite pattern at the
beginning of the sequences does not affect the limiting efficiency 1.
In other words, the limiting efficiency is independent of starting point
—a fact we observed in the previous section after the detailed study
of the transition matrix. This fact enables us to prove Theorem 2
without going through a tedious mathematical analysis.

Proof of Theorem 2: The matrix A, defined in equation (23) is
real and symmetric. It ecan be diagonalized by an orthogonal trans-
formation, i.e.,

A, = PD,P,PP =1 (33)
where D, is a diagonal matrix of real elements A;, -+, Ap.

Using any u, , a constant vector with non-negative elements, we
can generate a sequence of vectors u, ,

u, = A%u,,for L. =1,2, ---. (34)

Sinee A, is a matrix with non-negative elements, it is easy to see that
all u;’s are vectors with non-negative elements. Write

P = [plpz e pn] (35)

where p; is a column vector. I'rom equation (34) we have, using u,
with only a 1 in jth position,

u; = PDjP’ua

i )\fpiip-‘ (36)

i=1

where p;; is the jth element in p; .
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Let M\... denote the absolute value of the largest eigenvalue of 4,
and assume that, in general,*

AI = A? = = hr = hmnx! (37)
R:—-t—l = ?\r+2 = - = )\r-l-a = _xmnx-

We can rewrite (36)

T r+a n R,’ L
u, = ?\ius{; PP + (_1)L E D;iP: + E ()\ ) ?inl-":}' (38)

i=r+l1 f=r+a+l

Denote by z the first two sums in equation (38),

Z= leiip\' + (_I)L .Zl PiiPi- (39)

z must be non-negative for any j and L. If not, then for some large
enough L, u; will have negative elements, which is a contradiction.

Since z is a linear combination of p, , * -+ , Pr+. , & set of linearly inde-
pendent vectors,z = Qonly if p;; = 0,72 =1, ---, 7+ s Furthermore,
if p,; = Oforallj = 1, -+, n, then the transformation matrix P has a

row of zeros, which is again a contradiction. Thus we conclude that,
for some choice of u, , i.e., for some j,

u, = Aiux{z‘ + E (h_)\!—) pnp.} (40)

i=r+e+1 max

with z non-negative independent of L. The total number of allowable
sequences is

Ny(L) = ?\i“{l’z + Z (?\M ) pfil’p-}' (41)

i=r+a+l

Substituting Ny (L) in equation (28), and passing to limit, we get
equation (27). The proof is now complete.

1IV. NUMERICAL RESULTS AND DISCUSSIONS

4.1 Numerical Calculation

Using the digital computer, the calculation of Amax of any transition
matrix 4, is not difficult except maybe for large n. In the following,
we discuss several alternative approaches to evaluating Am.., and
we present results for three important cases.

# Tt can be shown that r = 1 and s = 0 or 1. But the proof that follows does
not require this fact.
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(1) Find Apax by direct diagonalization of the matrix A,. There
are computer programs developed for this purpose. This is done for
the binary case and the quaternary case, and the limiting efficiency
n is plotted (solid curve) as a function of allowable states n in Figs.
1 and 2 respectively.

(i) In the binary case, the characteristic polynomial ¢,(A) of
A, satisfies a simple recursive relation (56). Treating (56) as a differ-
ence equation of ¢,(A)’s, one can express ¢,(A) in an alternate form:*

sin [(m + 1) cos™ (\/2)]

= 9
$.(N) sin [cos™' (A/2)] (42)
The roots of ¢,(A) are, as easily seen in equation (42),
kw
— 9 = ce
M= 2 c0s 7 k=1, , M. (43)

(it} The ternary case can be reduced to the binary case by replac-
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Fig. 1—Limiting efficiency vs allowable states binary alphabet (41, —1).
*p = M* — M- + 1, where M* and M~ are the upper and lower bound of
the RDS.
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Fig. 2—Limiting efficiency vs allowable states quarternary alphabet (4-3, +1,
—1, —8). *n = M* — M- + 1, where M* and M~ are the upper and lower
bound of RDS.

ing A in ¢.(A) by A 4+ 1. Therefore, one gets Amax 0f the ternary case
by adding 1 to the corresponding (same n) Amax Of the binary case.
The top curve in Fig. 3 is plotted in this way.

(1v) From the well-known formula®

Amax = ﬂl”a:f x'A.x (44)
where
Ty
x=| - (45)
T,

and the norm of a veetor ||z||, is

lall = (3 =2) (40

i=1
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we have
n—ai nt+ai
Ampe = MAax Z E TiTisa, + Z Z xixi-u"}
Ixll=1 \aiz0 i=1 @i<0 =1
where the a;’s are members in the alphabet set. F'or example,

n—1

An:lm: = max 2 E TiZiv1,

Nxll=1 i=1
in the binary case;
n n
Amae = MAX {Z xi+2 ) a:.-z.-“}
x|l =1 im] i=1
in the ternary case; and
n—1 n—3
Mmax = ﬁlﬂl}f 2{_ . TiTia T Z} xixua}
x|| = = =

in the quaternary case.
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(47)

(48)

(49)

(50)

Tig. 3—Limiting efficiency vs allowable states ternary alphabet (41, 0, —1).
*n = M* — M- 4+ 1, where M* and M- are the upper and lower bound of

the RDS.
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In this formulation, Am.x becomes the extreme value of a quadratic
form with an equality constraint. There are a number of ways to
effect a numerical solution.

s.2 Approximation Formula
To search for Am. using equation (47) is not an easy alternative,

but it leads to an estimation of Apas. If we let &3 = @0 = -+ = Ty,
then, from equation (47), we have
N = Ty Z?_%_'F_B_-. (51)
asz0 M ai<0 n

Any other choice of the ;s will lead to a different estimate of Amax
which may be better or worse than that of equation (51). We justify
the present choice by noting the simplicity of equation (51). Using
equation (51), we obtain an approximation formula for the limiting
efficiency 7,

log, ( > n___—n =S nta a‘)

— i=0 i<h n
= log, K
where as are members of the K-ary alphabet set. The approximate
7 are also plotted in Figs. 1 to 3 (dashed curve).
As expected, the approximation is reasonably good for large n and
it’s for large n that we may have to rely on the approximation formula.

(52)

4.3 Discussion
(1) It is of some interest to see how the efficiencies of various codes
with the de-constrained property compare with the limiting curves.
We have located the following known codes:
ZDN (Zero-Disparity Binary Code of Block Length N)*® and
LDN (Low-Disparity Binary Code of Block Length N)® in Fig. 1;
and
BP (Bipolar Code)*, n = 2,3 = 0.631,
PST (Paired Selected Ternary Code)’, n = 4, » = 0.63,
BNZS (Bipolar with N Zero Substitution Codes)®,
n = 4, n = 0.63,
V143 (Variable Length Ternary Code)?, n = 5, » = .84, and
MS43 (Fixed Length Ternary Code)?, n = 6, » = 0.84, in Fig. 3.

* N = 6. The allowable states for BP are —1 and 0 or 0 and +1 depending
upon whether the first pulse transmitted be —1 or +1. A similar situation exists
for PST, BNZS.
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The BP and BNZ* codes are used in T-1 and T-2 systems"* re-
spectively and PST is used in the experimental T-4 system.® In
comparison with their limiting efficiencies, one gets the impression that,
barring the fact that these codes have other properties in addition to
the de-constraint, there is some room for improving the coding ef-
ficiency. V143, and MS843 are examples along this direction.

It should be pointed out® that the real engineering problem is to
control baseline wander. A true comparison of different coding schemes
should therefore be done on this basis. The relation between RDS
and baseline wander is an elusive one. It depends upon the detailed
structure of the code in question and the channel to which the signal
is applied. In terms of RDS, it depends not only on the bounds and
the distribution of the allowable RDS but also on its dynamics. By
dynamics we mean the “speed” of moving from one state to another,
the dynamic behavior is of importance because the channel has
“failing memory”’, so to speak. For example, it can be shown!* under
certain conditions that a quick jump from one extreme state to the
other results in a larger amount of baseline wander than would occur
from staying in an extreme state for a long time.

(iz) As a general observation, the limiting curves saturate rapidly.
This implies that, to make a high cfficiency code possible, a physical
system should be designed to operate beyond the fast rising portion
of the curves. It would be reasonable then to expect that a simple
ternary block code could be found with 90 percent efficiency or better
for, say, n = 15.

(iit) An interesting question which arises naturally in connection
with the limiting efficiency is its realizability. If one accepts infinite
delay, the answer is affirmative. If one thinks in terms of block codes
of finite length, then the limiting efficiency cannot be realized.

V. CONCLUSION

We have shown that, for a de-constrained code, the limiting effi-
ciency is related to the number of allowable RDS states in a very
simple way. The result is effective in the sense that it lends itself
easily to numerieal evaluation.

The underlying mathematical fact in our proof is the property of
non-negative matrices and vectors. Using the theorem of Frobenius
on non-negative matrices,'® our result can be proved in a few steps.

_ *The discussion here is heuristic in nature. A thorough treatment of the sub-
ject i3 beyond the scope of this paper.
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We retain our approach for the reasons that it only requires ele-
mentary knowledge of matrix theory and it gives more insight to the
problem.

The technique developed in this paper can be used to investigate
bounds for some other classes of codes, say timing codes. This will
be done elsewhere.
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APPENDIX

The class of matrices which we want to investigate has the follow-
ing general form*

0
1 01
A= 1 - | (53)
.- .-1
0 1 o]

Each matrix A4, is a square matrix of size n and it has ones in the
super- and sub-diagonal and zeros elsewhere.
Let ¢,(A) denote the characteristic polynomial of 4,. By definition,

¢.(\) £ det A1, — 4,]

| 0
-1 A -1
= det -1 - . . (54)
-1
0 —1  AJ

The first few polynomigls ¢n(N) are

* A special class of Jacobi matrix.12



dc-CONSTRAINED CODES 2283

‘\‘{'D(A) = lr
‘leo\) = X,
é:(\) =\ — 1, (55)

¢'3(}\) = ha - 2)\1
ds(\) = A — 3N+ 1,
where ¢,(A) is defined to be 1. The polynomials ¢,(x) have some
interesting properties. We state them as lemmas.
Lemma 1: ¢,(x) satisfies the following recursive relations:
Forn = 2
6a(A) = Mp1(N) — a2V, (56)
and for n > m,
6N = ¢n(Nbr-n(N) — Gu-1(N)bu-n-1(N). (57)

Proof: To prove equation (56), we expand the determinant in (54)
with respect to the first column. To prove (57), we expand the
determinant with respect to the first m columns and observe that the
only two nonzero products of minors are of size m and n — m.

Lemma 2: ¢, (\) 18 an even (odd) polynomial if n is even (odd), i.e.,

¢.(\) = (—1)"¢.(—N). (68)
Proof: Assume that (58) is true for ¢,.,(x) and ¢,-2(r), then by
(56),
“)\tﬁn“l(_?\) - ¢'n—2('—7\),
(—1D)"\omr(A) — (=)™

¢n(_>\)

Il

‘\bnvz(k)!
= (= D"AGn-tN) — dua(M)],

= (_I)Cb"(?\)-
Since (58) is true for ¢o(A) and &, (A) by inspection of (55), (58) is
true for any n by induection.

Lemma 8: If \y 15 a root of ¢,(\) and ko # 0, then —), 7s also a root
of $n(N).

Proof: TFollows directly from the previous lemma.

By definition, the roots of ¢,(A) are the eigenvalues of matrix 4, .
Since A, is real symmetric, it follows that all the roots of ¢.(A) are
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real. Let 2™ denote the root of ¢,(A) with largest absolute value. In

view of the result in Lemma 3, A"} ean always be taken to be positive.
Lemma 4: For any finite n, N\ of ¢,(\) has the following ordering:

My < A < v < g < 20 (59)

Proof: We will prove this lemma again by induction. Clearly, ¢,(\) —
o as A — o foranyn = 1, 2, - -+ . It follows that ¢,(A) > 0 for x >
MM the largest positive root of ¢,(A). Now, assume that (59) holds for
A and A, then, from (56),

¢z = N "$ums (i) — duma (i) (60)
= —¢,(Ax") < 0.
Hence ¢,(A) changes sign at least once between A" and . This
implies that
Mamr > Amee - (61)
Since (59) holds for n = 1 and 2, it holds for any .
To show that \{") < 2 for any finite n, we make the observation

that for A > 2, the matrix A1, — A, is a dominant matrix,"* and there-
fore nonsingular. For A = 2,

‘bn(z) = n¢1(2) - (n - 1)¢’0(2); (62)

=n+1=0,

by repeated use of the recursive relation (56).
Lemma 5: For some number \q, if ¢.(ho) = 0, then ¢,_1(N) #= 0.
Proof: Assume the contrary, i.e.,

bu(ho) = du_a(No) = 0. (63)
Then from the recursive formula (56),
$n-2(No) = 0. (64)
Repeating the same argument, we econclude
d.(ho) = -+ = d1(ho) = do(ho) =0 (65)

which is impossible.

Lemma 6: ¢,(\) has only simple roots.

Proof: Let Ao be a root of ¢,(A), then the matrix [Al, — An] is
singular. On the other hand, from the previous lemma, [A¢l,; —
A,-1] is nonsingular. Hence the null space of the matrix [Al, — A,]
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is one-dimensional. From the fact that A, is diagonalizable, we con-
clude that Ay, must be a simple root of ¢,.(A).
Lemma 7: Write

A, = PD,P’ (66)
where
Dy = diag [\, -+, ] (67)
and
PP =1; (68)

then in general, P can be expressed in terms of ¢(A)’s

Po(M) do(A2) . Ba(\n)

o) e\ T B0\
P = . . . (69)
boiN) BN (M)
L o(\) 108 #(\.)
where
n—1 3
d(\) = [E qs?(x)] (70)

18 @ normalization constant.

Proof: Let x be an eigenvector corresponding to an eigenvalue
Nof A, ,

A, x = AX. (71)
Write
x =[x, , T
and expand (71), we have
Ty = A1y,
Ty = Nla — I, ,

(72)
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and

Tp-1 = )\23,, .

Delete the last equation in (72) and then compare with equations (55)
and (56). We can make the following identification:

T, = ¢'0(A)r

T2 = ¢l()\)

: (73)
T, = ¢’n»1(?\)-

To normalize x, we divide (73) by the inner product of x. Denoting
the inner product by ¢(A),

o(\) = [Z ¢?(?\):|

the normalized eigenvector corresponding to the eigenvalue A is

given by

() ¢n-1m]'

Lo\ @iy | 75

(50 )

It is well known that eigenvectors corresponding to different eigen-
values are orthogonal. Therefore, for P as defined in (69), PP = 1,.
Since each column of P is an eigenveetor of 4, , it follows that

}
, (74)

AP = PD,

and equation (66) is immediate.
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