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We develop a method for calculating the pull-in range of a phase-locked
loop with a binary phase comparator and an arbitrary loop filter. Complete
numerical results are presented for loop filters of the phase-lag and low-pass
types. The problem of stability 1s also considered, and it is proved that with
these loop filters mo steady-state phase jitter can exist after frequency
acquistion has been achieved.

I. INTRODUCTION

The phase-locked loop (PLL) is an important element of many
modern communication and control systems. A PLL block diagram is
shown in Fig. 1. The input v, (wst + 6;) is a narrow-band signal with
carrier frequency wy and phase 6,(t). This phase is compared with
the phase 6, (t) of the voltage-controlled oscillator (VCO) in the phase
comparator (PC). The PC output f(¢), where ¢ = 6, — 62, is filtered
by the loop filter I (p) and applied to the VCO control terminal.

Depending on the values of the PLL parameters, the phase error ¢
can be kept small even with input phase modulation, Thus with 6; (¢)
= Ot + 60, which represents a constant input frequency offset, the
system can produce a synchronized signal v.(#) with frequency wy +
Q. This synchronization eapability leads to PLL applications in carrier
extraction,* frequency synthesis,* narrow-band filtering,®* FM demodu-
lation,® timing extraction in PCM and data transmission systems,* ete.

In this paper, we examine the aecquisition, or pull-in, range of a
PLIL with a binary PC. We present numerieal results for the special
case of a second-order PLIL, with either low-pass or phase-lag loop
filter.

The PC characteristic considered here is the binary curve shown in
Fig. 2. It is of interest in at least three situations. First, since many
gynchronization systems are designed to operate with very small
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Fig. 1—PLL block diagram.

phase errors, dynamic range limitations in the PC circuitry often pro-
duce severe saturation effects. The characteristic of Fig. 2 corresponds
to the extreme case of vanishing linear range near zero phase error.
However, it is a useful approximation for systems with small but non-
zero dynamic range for the purpose of studying pull-in performance.
Second, a binary PC can be easily implemented with logic circuits.
The resulting characteristic differs from the ideal of Fig. 2 by exhibit-
ing small hysteresis about the zeros at ¢ = nmr, but this hysteresis has
no effect on the pull-in range achieved. Finally, J. J. Stiffler® has
shown that for a first-order PLL with additive white gaussian noise
and no frequency offset, the cross-correlation type PC which mini-
mizes Pr {|¢| > oo} for all ¢o has the characteristic of Fig. 2.
Although such a square-wave correlation function is unrealizable,
this result suggests that PLLs employing other types of PC having
this characteristic are worthy of consideration. In addition, similar
“bang-bang” control characteristics are known to be optimum for
PLIL acquisition.®

II. CALCULATION OF PULL-IN RANGE

The phase model corresponding to the PLL block diagram in Fig.
1 is shown in Fig. 3. We assume that the gain of the loop filter H (p)
is unity at DC. The input-signal frequency differs from the VCO center
frequency by @ rad/s:

6,(t) = Qt + 6y. (1)
It is convenient to normalize the detuning © to the de loop gain* «:
7 = Q/a @)

* Since no gain can be defined for the binary PC being considered, the symbol
« does not represent the usual small-signal loop gain.
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Fig. 2—Phase comparator characteristic.

When the normalized detuning y is not too great, the VCO frequency
changes toward the input frequency, and eventually the PLL synchro-
nizes to the input signal with zero frequency error and finite phase
error. The normalized lock range vz is the maximum detuning |y |
for which the PLL can remain locked after synchronization has been
established. Inspection of de conditions in the phase model of Fig.
3 shows that y;, = 1. The normalized pull-in range yp is the maximum
| v | for which eventual synchronization is assured from any initial
conditions in the loop filter and VCO. In general yp < 1 for PLLs of
order higher than first. The order of a PLL is defined as one plus the
number of poles in H (p). Caleulation of yp is the subject of this paper.
The method employed here is similar to that used by A. J. Gold-
stein” to caleulate yp» for a PLL with a sawtooth PC. Due to the binary
nature of f(¢), the PC output waveform f[¢(t)] is piecewise constant,
assuming only the values 1. Assume that the PLL is not synchronized
to the input signal. Then ¢ () increases with time (for @ > 0), and the
waveforms ¢ (¢) and f[¢(¢)] appear as shown in Fig. 4. The time ori-
gin has been selected so that ¢(0) = 0. The transition instants are

0=top <ty <l< - < <tpp < -+ (3)
gi=at+4 f
1 + |o+® B £e) (o) H(p)
F)
[4%
-

Fig. 3—Phase model of PLL.
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Fig. 4—Phase and PC output waveforms.
where

#(1,,) = (27 — )7 (negative transition),

#(t;2) = 2jr(positive transition). (4)
An expression can be written for f[¢(#)] by summing all of the seg-
ments corresponding to 27 increments in ¢(t):

o0

o] = 2 Wl = tian) — 2u(t — L) +ult — )] (6)

j==o0
The j = 1 segment is shown crosshatched in Fig. 4. Since the PLL is
not synchronized to the input signal, the steady-state PC waveform
fes[@(t)] is periodic, and the transition instants can be written:
bz = .1‘(T3 + Ty, (6)
iTs+Ty) — Ty

T, and T, are the times between transitions as indicated in Fig. 4.
Using equation (6), equation (5) becomes:

Il

til

fulo()] = Z [u(t — [j — 1[Ts + T])

j=—o

—2u(t — j[Ts + T + T.) +ult — j(Ts + T.D]. (D)
From equation (1) and Fig. 3, the phase error in steady state is:
H
bul) = 01+ 6 — 1.L60) + {22 @)} ®)

where ¢, is some constant. Since f,[¢(¢)] is composed only of step
functions, the last term in equation (8) can be written as a sum of
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delayed functions g (f), where
H
elo®) = G = TP ©)
The general expression for ¢.(¢) is then
$u(l) = O + ¢ — @ 2 [g(t — [ — 1[Ts + Tu])
— 2g(t — j[Ts + T\ + T.) + g(t — ilTs + T:Dl.  (10)
From equation (4) and Fig. 4, we have the following conditions on
bas (1) :
¢ll(0) = 0)
d’sa(TS) = Trj (11)

d’u(Ta + T4) = 2r.

These conditions are sufficient to determine the unknown constants ¢ ,
Ty, and T, in equation (10). Thus equations (10) and (11) together
define the relationship between the normalized detuning y and the
loop-filter parameters [through ¢(¢)] which must be satisfied for the
PLL to be out-of-lock in the steady state. Then clearly yp is the
minimum value of y for which these equations possess a solution.

III. RESULTS FOR SECOND-ORDER PLL

In this section, the method derived above is applied to the second-
order PLL with loop filter

_ 1+ Tp

This is a phase-lag filter for 0 < T < T;. It becomes a simple low-
pass filter for T, = 0, and setting 7> = T, reduces the PLL to first
order. The corresponding g (), from equation (9), is

gty = [t — (T, — T)(1 — exp (—=t/T))Ju(t). (13)

In Appendix A, equation (10) is rewritten using equation (13) and is
evaluated at ¢ = 0, Ty, and T3 + T, . Equation (11) is then applied,
along with the normalization

Ti = OLT‘-, 1= 1: 2: 31 4. (14)
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The equations which result are

U+ 71— 7
R 15
v PR (15)

4(""1 - 72)(73 + T4)

= [ry(rs + ) + 73(7s — 7)) [coth %'3-‘ + coth l‘] . (16)
T 27,
According to the discussion following equation (11), the pull-in range is

v, = min M—_‘N, th)

73,7420 T3 + 74

subject to the constraint equation (16). It is important to note that
equation (15) is simply the de balance equation for the PLL model
of Fig. 3, and therefore holds for any H (p) with unity de gain. Since
equation (15) gives y explicitly in terms of =5 and =4, it can always
be used to eliminate vy from a constraint equation corresponding to
equation (16). Therefore vy, can be calculated from equation (17)
for any H(p) subject to the appropriate constraint equation which
relates the loop-filter parameters to the transition-time parameters
rs and vy . Hence only ¢, (0) and ¢, (T3) actually had to be evaluated
in Appendix A.

The method employed to evaluate y, for various values of =, and r»
was to choose r3 > 0, use equation (16) to obtain the corresponding 4,
and calculate y from equation (15). The =3, 4 relationship was found
to be single-valued for all loop filters investigated. Examples of the
behavior of y with r3 are given in Fig. 5. The filter parameter r is
defined as

r= T,/T,. (18)

In all cases the curves y(r3) are smooth and exhibit a single local min-
imum. This minimum is found by computing a sequence v (rg,), where
Tan = Tam-1 . When this sequence begins to increase, the minimum v,
has just been passed, and can be estimated accurately from the last
three computed values of y.

Curves of v, versus r, with r as a parameter are presented in Fig. 6.
Several characteristics are notable. First, v, = 1 for » = 0.5 indepen-
dent of 7, . Second, as r, increases with r constant, v, approaches an
asymptotic value v,, which is a function only of ». Later we shall derive
an explicit formula for v,. . The same results are presented in a differ-
ent way in Fig. 7, which shows curves of constant v, on the =, , 7,



p

PHASE-LOCKED LOOP

2.0
LABELS: 7\, P =75/ 7
1.5
1, 0.4
1.0
05+
o ] 1 ] | 1
) 10 20 30 40 50 60
T3
Fig. 5—y versus 7a.
1.2
ASYMPTOTE: yme\} r(1-r) ---
[}
r=0.5
1.0 ¥
\ 0.3
0.2
0.8
0.15
0.6
0.4
0z
0 ] ] | | Lol |

L1
2 4 6 810 20

]

Fig. 6—v, versus r, with parameter r.

40 60 80100

200

400

2295



2296 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1970

20

'Yp = | REGION
10—

a8 - T ]——
Ta=Tmo [1—e-?‘1

-

I

|

| r
I '!I 1 I‘!ll 1

1 1
4 6 8 10 20 40 6080100 200 400

I
I
I

Tig. 7—r: versus =1 with parameter ;.

parameter plane. Below we derive the equation for the curve in this
figure corresponding to v, = 1.

IV. FURTHER RESULTS

Let us consider the important case of very large r;, which corre-
sponds to strong filtering in the PLL. Noting that

Lim coth z = (19)

z=0

and using equation (18), equation (16) becomes for large =, :

4L — P)(rs + 1) = [ra(ra + 1) + 7alra — w)][% + L] (20)

This simplifies to

- T
T o+ @)

Substituting equation (21) into equation (15) gives the result for y
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with =; large:

2 2
rTq + 27"7'73 + ™
=3 T WIS T 29
?‘Ti + 7y ( )
All minima of y must satisfy

dy
dry

= 0. (23)
Applying equation (23) to equation (22) yields a single positive value

()]

Ty = e , <05, (24)

Substituting equation (24) into equation (22) gives the result
_ 2 =), 0=r<o0s5,

1, r = 0.5,

(25)

pa

This agrees with the numerical results in Fig. 6 and with a result
obtained by M. V. Kapranov by a different method in an untranslated
Russian paper.® The existence of only a single minimum of y(r3) for
large r; supports our hypothesis of a single minimum for all v, which is
based on the curves in Fig. 5.

The region v, = 1 in Fig. 7 corresponds to 7, , 7, such that ¥ = 1
for all 73 , 7, . From equation (15), this implies that

T, = m. (26)

Thus from equation (16), =y, r», and 74 on the y, = 1 boundary must
satisfy

41y — )7y + 1) = w(rs + 7) [coth 8. + coth L:I . (27)
27 27y

1

Examination of Fig. 5 shows that the critical y curves approach y = 1
from above for very large r;. Using
Lim cothx = 1, (28)

equation (27) becomes

Ar, — 1)1y = 7r'r;;|:l + coth l:l (29)

27,
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This reduces to the simple expression for the y, = 1 curve:

Tg = T1 — g‘/[l — exp (—=/m)]. (30)

Finally, let us consider the following problem. The periodic behavior
of ¢y (t) assumed throughout this paper which led to equations (15)
" and (16) is known as a limit cycle of the second kind in the phase
plane.? The nonexistence of such limit cycles for |y| < vy, proves that
frequency lock is eventually attained for these values of y. Physically
speaking, ¢, (t) cannot increase monotonically with time as assumed
in Fig. 4. However, proper synchronization of the PLL requires that
phase lock also be achieved. This means that after a long enough time,
the system comes to rest:

I:im ¢(t) = 2nm, |'Y l <Y - (31)
Because of the gross nonlinearity f(¢) in the system considered here,
it is not obvious that equation (31) will be satisfied. Specifically, it is
conceivable that a series of self-sustaining overshoots in ¢(f) could
become established after pull-in which would produce a periodic phase
jitter. This behavior corresponds to a limit cycle of the first kind in the
phase plane. Although this problem is not solved in general here, a
test which is valid for any H (p) is applied to the phase-lag filter case
in Appendix B. It is found that in this case, phase lock described by
equation (31) is always achieved.

V. CONCLUSION

A method has been presented for calculating the pull-in range y, of
a PLL with a binary phase comparator and an arbitrary loop filter.
The result is obtained as the minimum value of a function of two
variables, subject to a constraint equation which relates these variables
to the parameters of the loop filter. Complete numerical results for
vy, were obtained for loop filters of the phase-lag and low-pass types.
Explicit formulas were given in this case for the asymptotic value of
vp With strong loop filtering, and for the set of filter parameters which
result in unity pull-in range. Finally, it was proved that no steady-
state phase jitter can exist after pull-in with these loop filters.

VI. ACKNOWLEDGMENT

The author thanks M. R. Aaron for his suggestions and encourage-
ment throughout the course of this work,



PHASE-LOCKED LOOP 2299

APPENDIX A

Evaluation of ¢.(t)
Consider one period of ¢4 (t), and define the functions ¢;(t) as:

¢..(0) = {"S‘w’ 0=t=T, (32)
$2(1), T, =2t=T,+T,.

From Fig. 4, ¢, (¢) includes all terms in equation (10) which correspond
to transitions prior to t;; = T,. Using equation (13) in (10), ¢,(¢)
becomes:

o) =Q+do—a 2, [t—G— DT+ T)— (T, — Ty

im—w

‘(I —exp [—(t = [j — 1[Ta + T.1)/T.))]

+ 2« Z [t—j(Ta+T4)+T4_(T1_T2)

j==0

(I — exp [—( — j[Ts + Tu] + TW)/T\)))

—a 3 [t— T+ T) — (T, — T))

‘(1 — exp [—(t — j[Ts + Tu])/T\D]. (33)
Absorbing all constant terms into ¢, , equation (33) becomes:

$:(f) = Q + ¢g — at
— Ty — Ts) exp (—¢/T)) 2. [exp [i(Ts + T,)/T]

1=—w

— 2 exp [([Ts + T.] — T)/T\] + exp [§i(Ts + T.)/T1]1,
= Qt+ ¢f — at — 2a(T, — T,)
1 — exp (—T,/T))

vexp (—¢/T)) ;= exp [— (T + T /T’ (34)
¢4 1s eliminated from equation (34) using
$.(0) = 0, (11a)

which yields
é:(t) = (@ — )t + 2a(T, — T>)

| exp (—T4/T1)
T= exp (— (T, + To/T) &~ &P (ZUTD). 35
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Now requiring that
& (T;) = (11b)
results in
=(Q — a)T; + 22T, — T5)

(= exp (=TT = exp (“T/T) (g4
1= exp (T + T)/T.]

which after some manipulation becomes

— (@ — Q)Ts + 4a(T; — T5) / [coth 37 + coth é'%] 37)

Next, ¢2(t) is obtained from equation (35) by adding the term in
equation (10) which corresponds to the transition time ¢, = Ty:

da(t) = (@ — &)t + 2a(T, — T)

1= exp (=TT
1 —exp [—(Ts + T)/T\

+ 2a(t — To) — 2a(T, — To)(1 — exp [—(t — To)/T0]).  (38)
Requiring that

] (1 — exp (=/T)))

¢o(Ty + T,) = 27 (11e)
and performing some simple manipulation leads to the result
= QTs + Ty) — a(Ty — T4). (39)
Equations (37) and (39) can be normalized by letting
Y= Q/ar (2)
= ol i=1,2 3,4 (14)

Equation (39) becomes
_ 2r + 13 — T4
i T3+ T,
which is equation (15) in Section III. Equation (37) becomes

=14+ {r — 4(r, — rﬂ/[cotht + oth ]} (40)

Eliminating y between equations (15) and (40) gives the constraint
equation (16).

(15)
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APPENDIX B

The Phase Jitter Problem

In this appendix it is proved that whenever the second-order PLL
studied here achieves frequency lock, it also achieves phase lock:

Lim ¢(t) = 2nm, v ]| <7 . (31)

t—ro0
It can be shown that for this system any steady-state phase jitter ¢(t)
is eonfined within the 4= neighborhood of some lock point ¢ = 2nmr.
This is a result of the periodicity of the phase-plane geometry in the ¢
direction. However, since this proof requires a rather lengthy deseription
of the properties of the phase-plane trajectories, it will be omitted.
Below we prove that equation (31) holds when the phase error remains
within such a 4= neighborhood of a lock point.

The technique used previously to calculate v, can also be employed
here. Assume that in the steady state, a periodic phase jitter ¢(f)
exists. Then the waveform f[¢(¢)] is binary and periodie, and the phase
error is again given by equation (8). Since we are now considering a
phase jitter within &7 of ¢ = 2nm, the requirements on ¢,,(f) are:

¢'al(0} = d’u(TH) = d’u(TQ + T&) = 2?’17{'. (41)

Proceeding as in Appendix A, we obtain the equations

_Ta_‘Ti
'Y—Ta+74, (42)

27, — 1o)(ra + 1) = ran[coth J2 4 coth T—*]- (43)
21’1 271

These equations may be written directly from equations (15) and (16)
by replacing = with 0. Below it is demonstrated that r3 = =4 = 0 is the
only solution of these equations when |y| < 1, which proves equation
(31).

Using |y| < 1 in equation (42) yields

T3, 14 > 0, (44)

so that only equation (43) must be considered. Using » of equation
(18) and dividing by 374 gives

1 1
2:.(1 — T)(T_a + —T—) = coth g:—l + coth 2%1 (45)
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Defining

z;=-, =234, (46)

equation (45) becomes

1 - r)(i + L) — coth , + coth z, . @)
I3 :)E.;
Recalling that » = 0, we have for z > 0:
cothz >+ 2 1=T. (48)
T T

Thus the only possible nonnegative solution of equation (47) is

T3 = Ty = 0 (49)

which is the desired result.

REFERENCES

1.
2.
3.

VitIt_;Ir}IJli, A. J., Principles of Coherent Communications, New York: McGraw-

ill, 1960.

Noordanus, J., “Frequency Synthesizers—A Survey of Techniques,” IEEE
Trans. Commun. Tech., COM-17, No. 2 (April 1969), pp. 257-271.

Gilchriest, C. E., “Application of the Phase-Locked Loop to Telemetry as a

Discriminator or Tracking Filter,” IRE Trans. Telemetry Rem. Cont.,
TRC-4, No. 1 (June 1958), pp. 20-35.

. Saltzberg, B. R., “Timing Recovery for Synchronous Binary Data Transmis-

sion,” BS.T.J., 46, No. 3 (March 1967), pp. 593-622,

. Stiffler, J. J.,, “On the Selection of Signals for Phase Locked Loops,” IEEE

Trans. Commun. Tech., COM-16, No. 2 (April 1968), pp. 239-244.

. Shaft, P. D., and Dorf, R. C., “Minimization of Communication-Signal Ac-

quisition Time in Tracking Loops,” IEEE Trans. Commun. Tech., COM-
16, No. 3 (June 1968), pp. 495-499.

. Goldstein, A. J., “Analysis of the Phase-Controlled Loop with a Sawtooth

Phase Comparator,” BS.T.J., 41, No. 3 (March 1962), pp. 603-633.

. Kapranov, M. V., “The Asymptotic Value of the Locking Band in Phase

Automatic Frequency Control” [in Russian], Radiophysics, 71, No. 7
(1968), pp. 1028-1040.

. Minorsky, N., Nonlinear Oscillations, Princeton, New Jersey: Van Nostrand,

1962,



