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In this article we propose a fast, efficient technique for generating a
pseudorandom stream of uniformly-distributed numbers. The arithmetic
operations required are an L bil exclusive-or, a rotation, and a shift to
update the state of the number generator. With moderately large values of
L we have been able to generate sequences of numbers whose periods are
quite long (on the order of 2 X 107 long). Its simplicity of construction,
as well as its ability to generate long streams of independent pseudorandom
uniformly-distribuled integers make this noise generator a worthy candidate
for use in high-speed digital systems.

I. INTRODUCTION

Almost all methods of generating digital random numbers use as
input a set of previously generated random numbers which were pro-
duced by an iterative arithmetic process (modulo a large integer)—e.g.

X,.=FX,, X002, ,X,-s/)mod N n=201---

with initial conditions

X_l = Cl N

X—2 = 02 ’

X_J = C_{ .
For each new random number, X, this arithmetic process is repeated.
The integer N and the initial values Ci, Cs, ---, C; are chosen to

*Mr. Rader is with Lincoln Laboratories, Massachusetts Institute of Tech-
nology, Lexington, Massachusetts. Lincoln Laboratories is operated with sup-
port from the U. 8. Air Force.
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guarantee a large period of repetition. Methods of the type described
above involve a considerable propagation delay, representing at the
least one addition or one multiplication time, between the time the
nth random number is put into its storage register, and the time at
which the (n + 1)st random number is available. This delay is not
generally a problem in most applications, because computational de-
lays in other parts of most digital systems are far greater than those
encountered in generating random numbers. However, it is conceivable
that in the future a need will arise for which random numbers must
be computed far more rapidly than is now necessary. With such a
time in mind we propose the following algorithm, for which the time
necessary to produce a new random number is equal to the sum
of a flip-flop settling time, and the propagation delay of an exclusive-
or gate.

II. THEORY

The algorithm for generating the L-bit random number X, from
the two previous L-bit numbers X,_; and X,_» may be stated as

X,, = TP(X -1 @ Xﬁ—-ﬂ)

where T»(+) denotes a cyclic rotation of P places to the right and @®
denotes exclusive-or. The algorithm requires L flip-flops to store X,_,
and L flip-flops to store X,_, . Each bit of the new random number X,
is derived by an exclusive-or operation on a pair of corresponding
bits in the previous random numbers. These bits are not stored in the
bit positions from which they were produced, but instead each new
bit is rotated cyclically to the right by P bit positions, with overflow
on the right being fed into the left. The process is illustrated in Fig. 1
for P = 1. At each cycle, the new random number generated (X,)
is clocked into the lower flip-flops (X,-,); at the same time the number
stored in the lower flip-flops (X,-,) is clocked into the upper flip-flops
(X._s). For maximum period, P should be chosen mutually prime to L.
Otherwise, the bit rotation may be shown to be composed of several
interleaved rotations of shorter words. As seen from Fig. 1, the bit
rotation does not constitute a separate hardware operation. In physical
terms, the exclusive-or of two flip-flops in corresponding bit positions
is clocked into a third flip-flop while one of the pair of flip-flops is
clocked into the other. An example of the process is given in Table 1
for L = 3, P = 2. (The starting values of X_, = 000, X_, = 001 are
used here.) The period of this generator is 15. It is easily shown that
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Fig. 1—Schematic diagram showing how the random numbers are generated
and stored.

with the output depending on the state of six (2L) flip-flops, the maxi-
mum theoretical period of any random number generator is 64, or in
general (2°”), and the maximum period of any random number generator
using only flip-flops and exclusive-or elements is 63, or in general
(2** — 1), since the state when all the flip-flops are zero is succeeded
only by itself.

Even though the period of the generator of Table I, and the periods

TABLE [—Tyrican OurPuT SEQUENCE FOR NoOISE GENERATOR
with L = 3, P = 2

r -\.n—l *YII—E -Xn
New Random
Clock Number ‘ Most Recent | Next Most Recent Number
0 000 001 010
1 010 000 100
2 100 010 101
3 101 100 010
4 010 101 111
5 [ 111 010 011
6 011 111 001
7 001 011 100
8 100 001 011
9 011 100 111
10 [ 111 [ 011 001
11 | 001 | 111 101
12 101 001 001
13 001 / 101 001
14 \ 001 001 ‘ 000
(15) | (repeats) repeats) (repeats)
I l 000 | | [ 001 | [ 010 |
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for other values of L, are small fractions of the theoretical maximum,
it is possible to choose L to obtain a very long period. It is also pos-
sible, as we shall see, to combine the results of several generators to
get still longer periods. We have theoretically predicted all the word
lengths (I, < 25) for which very short periods result*, and we have
measured the periods associated with the remaining values of L. The
longest periods result for word lengths of L = 11, 13, 17, 19, 22, 23
and 25. For 25 bits, the longest period results, and is 17,825,775. How-
ever, since 2”° is about 3.3 X 107, not all the possible 25 bit numbers
appear at the output of the generator. The computation of the period
assumes that the word is rotated a number of bits mutually prime to
the word length (e.g., P = 1) and that the starting states are reasonable
(e.g., X_, = 0, X_, = 1). There exist unreasonable starting states, such
as all zeros in one word and all ones in the other word, which have
much shorter periods than those prescribed, but these can be avoided
in all cases by restricting the starting values to 0 and 1.

Table II lists the periods of the generators for values of L from 1
to 25, as well as the factorization of these periods. The factorization
is useful in predicting the periods associated with generators made up
of two or more of these simple generators with interleaved bits. For
example, it is possible to generate a 48 bit random number by inter-
leaving the bits of a 25 bit word with the bits of a 23 bit word. The
periods of the two generators may be found to have only the prime
factor 3 in common, as seen from Table II. Thus the joint period (the
least common multiple) is % of the product of the periods of the
individual generators, resulting in a period of about 2 x 10. Sim-
ilarly a 24 bit word could be made up of an 11 bit word and a 13 bit
word, with a joint period of about 2 x 10°. The disparity of prime
factors among several interesting cases seems surprisingly fortuitous.

III. TESTS FOR RANDOMNESS

Tt is clear that a long period does not by itself indicate a good ran-
dom number generator (e.g. the iteration r, = 7,_, + 1 would have a

* 1t is possible to equate any bit (as a function of time) to the mod 2 sum
of the same bit delayed by various amounts. For example, with L = 3 the equa-
tion for any bit of the 3 bit word is:

bn:bn-a@ba—aﬂabn-aQbH-

This equation describes a particular 6 bit shift register with feedback. The
analysis of such shift registers is described in Ref. 1. Specifically it is possible
to obtain the maximum period associated with a given shift register, and there-
fore with a given random number generator, by obtaining the factors of certain
characteristic polynomials over the Galois Field mod 2.
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TaBLE II—THE PERIOD AND ITs DECcOMPOSITION INTO ITS PRIME
IFacToRrs FOR NoOISE GENERATORS WITH VALUES
ofF L rroMm | TO 25

L Perlod Factors

1 3 3

2 6 (2) (3)

3 15 (3) (5)

4 12 (2)* (3)

5 255 (3) (5) (17)

6 30 ‘ (2) (3) (5)

7 63 [ (3)2 (7)

8 24 (2) (3)

9 315 (3)2 (5) (7)

10 510 (2) 3) (5) (17)

11 33825 (3) (5)* (11) (41)

12 60 (2)% (3) (5)

13 159783 (3) (13) (17) (241)
14 126 (2) (3)2 (7)

15 255 (3) (5) (17)

16 48 2)t (3

17 65535 (3) (5) (17) (257)

18 630 ‘ (2) (3)* (5) (17)

19 14042265 | (3) (5) (13) (19) (37) (109)
20 1020 j (2)2°(3) (5) (17)
21 4095 (3)2 (5) (7)( )
22 67650 | (2) (3) (5)2 (11) (41)
23 4194303 (3) (23) (89) (683)
24 120 (2% (3) (5)
25 17825775 (3) (5)2 (11) (17) (31) (41)

very long period, but would be unaceceptable to most users). A better
indication of the acceptability of a random number generator is the
autocorrelation funetion of the output of the generator, R.(n). It is
difficult to obtain R,(n) theoretically for the generators desecribed
here; so instead we have estimated R.(n) by standard techniques for
several cases of interest. In Fig. 2 we show the estimated autocorrelation
function for the generator with L = 13. Approximately N = 15000
samples were used in the estimate, and Fig. 2 shows the results for up
to 512 delays. It seems clear that there are no irregularities present in
the autocorrelation function. The peak values of the autocorrelation
function of Fig. 2, for n # 0, are £0.026. It is easily shown that esti-
mates of the autocorrelation function (for n # 0) tend to be normally
distributed random variables with zero mean, and variance of 1/N. For
the data of Fig. 2, the standard deviation, &, was calculated to be 0.008.
Cramer® shows that the expected value of the upper extreme of 512
values from a normal population with zero mean, and standard deviation
of ¢, is approximately 3.25 o, or 0.026 in this example. The 50 percent
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Fig. 2—Autocorrelation function of noise generator with L = 13.

confidence interval for the upper extreme is about 0.4 ¢ wide, thus peak
values of the autocorrelation estimates from 0.024 to 0.028 would be
quite common. Therefore the peak values of +0.026 in Fig. 2 are not
inconsistent with the above theoretical results based on a true normal
population.

To empirically test the uniformity of the output of the generators
for L = 11 and L. = 13, we measured the number of occurrences of
each of the 2% output states during a single period. For hoth cases all
states were present at the output of the generator. In Fig. 3, we show
plots for L = 11 and 13 of the number of occurrences of each of the
128 cells specified by the 7 most significant bits of the output as a
function of cell number. The upper plot shows the measured result
for I = 11, and the lower plot shows the measured result for L = 13.
The solid lines across the plots indicate the expected number of oc-
currences of each state based on uniformity assumptions. The plots
of Fig. 3 tend to validate the assertion that the amplitude distribution
of the output of the noise generator is uniform for certain values of L.

We have also measured the mean value for the entire sequence for
I = 11 and L = 13 and it is near to 2L if the L bits are interpreted
as a positive integer. The nearest means obtained were 1024.3169 for L
= 11 and 4095.8326 for L = 13. (Starting values for the two sequences
were X_1 =341, X_,=0forL =11,and X_; = 15],and X_» =0
for L = 13.) Also, it was found that a scatter diagram from the gen-
erator with I, = 17 showed no tendencies to order, such as are common
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in the simple multiplicative congruence generators. It is expected that
this result would be true for any of the generators with reasonably
long periods.

It was stated earlier that it is possible to generate longer random
numbers than 25 bits by interleaving bits of shorter generators. Be-
sides the prerequisite that the periods of the individual generators have
few or no prime factors in common, it is important that the outputs
of the individual noise generators be uncorrelated. To check whether
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Fig. 4—Cross-correlation function of noise generators with L = 11 and L = 13.
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or not the individual outputs of the noise generators, for the desirable
values of I, were uncorrelated, we again used standard statistical tech-
niques to measure the cross correlation function. Figure 4 shows the
cross-correlation function, R,,(n), for the case where one input was
the output of the generator with L = 11, and the other input was the
output of the generator with L = 13. The cross-correlation function is
plotted for delays up to 512 samples, and is again based on approxi-
mately N = 15,000 samples. There are no apparent irregularities seen
in this figure, and the peak values of the cross-correlation function,
+0.027, are quite close to similar peaks observed for the autocorrela-
tion function of Fig. 2, and again consistent with the assumption that
these 512 estimates are from a normal population with ¢ = 0.008.

The reader should be eautioned that a poor choice of the rotation P
can cause an ordering in the pseudorandom outputs which may be
harmful for some applications. For example, consider the set of all
triples (2, Tne1 , Tnso) When P = 1, If the sign bits (using two's com-
plement integer notation) of x, and x,., are the same, the most signif-
icant it of z,.. will always be zero. Thus, if (s, ¥4.) lies in quadrants
1 or 3, &y.» is constrained to either

0 g ] < 21:'_:"
or
_2L“1 é -’Eﬂﬂi < ’_21‘_2.

A similar constraint results when (7., @..;) lies in quadrants 2 or 4.
This effect is eliminated by choosing P = L/2, but mutually prime to
L. We have not considered what ordering might exist in quadruples,
quintuples, ete., for various choices of P.

IV. CONCLUSION

In conclusion, we have presented a fast and efficient technique for
generating digital random numbers. The simple statistical tests to
which we have subjected several of these noise generators indicate they
are more than adequate for use in simulation programs for communi-
cations systems.
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