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In this paper, we derive statistics of the random gain of two types of
avalanche diode optical detectors. A simple optical binary receiver which
could employ these devices 1s analyzed. In particular, we delermine the
moment generating function of the random gain probability density for
a diode with equal hole and electron collision probabilities and for a diode
with unilateral gain. For the unilateral gain case, we tnvert the moment
generaling function to obtain the probability density which turns out fo
be a shifted Bose Einstein densily. Using the Chernoff bound, we analyze
the performance of a simple binary receiver using the above devices. In
addition, we exactly analyze a recetver with a deterministic gain device.
We upper bound the degradation incurred from the use of a random gain
rather than a deterministic gain. For the devices above, the degradation
can be as small as a dB or less in certain ranges of parameter values dis-
cussed in the text.

I. INTRODUCTION

Practical optical direct detection receivers can employ detectors
with internal gain (more than one output electron on the average per
optically or thermally generated primary electron) to overcome ther-
mal noise in amplifying stages following the detector. Since the gain
is a random variable, its statistics affect the system performance. In
certain systems (e.g., linear analog intensity modulation with linear
processing and a mean square error risk criterion) it is sufficient to
know the mean and variance of the random gain to determine per-
formance. Various authors®? have calculated those statistics for a
variety of avalanche multiplier models. In digital systems with a prob-
ahility of error risk, one needs to know the probability density of the
gain to evaluate performance.
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Up to now, little work has been published on these statistics.* In
this paper, we derive the moment generating function (and in one
case the density) of the multiplication statistics for two special cases
of avalanche diode detectors. We apply results to performance evalua-
tion for a simple binary optical receiver.

II. A REVIEW OF THE AVALANCHE MULTIPLICATION PROCESS

To understand the results which follow, we briefly review some re-
sults which have appeared in the literature.

We can model an avalanche diode as follows. Incident light or
thermal agitation causes the generation of a hole-electron pair in a
portion of the semiconductor bulk of the device. An electric field across
this bulk not necessarily uniform in strength causes the carriers to
drift in appropriate directions. In certain regions of the bulk where
the field is sufficiently high, carriers of one type or the other pick up
enough energy to suffer ionizing collisions which result in the gen-
eration of additional hole-electron pairs. Each of these secondaries
may of course generate additional secondaries. We wish to find some
statistics of the total number of secondaries that result from a given
primary (initially generated) pair.

To solve this problem, we must pick the right bookkeeping scheme.
That is, after making more detailed assumptions about the above
process, we must find a scheme which will lead to an algebraically
tractable way of keeping track of all of the secondaries. We shall solve
for some important statistics of two particular types of avalanche
multipliers in the next section.

First, for both of these types, we shall make the following assump-
tion. We require that the field strength and bulk characteristics be
such that with high probability the interval (in time or distance as
you wish) between ionizing collisions of a given carrier is sufficiently
large that previous collisions do not appreciably affect the statistics
of a current collision. That is, we assume that we can model all
ionizing collisions of a given carrier on its way through the high field
region of the bulk as independent. We shall assume that each carrier
type (hole and electron) has an associated probability per unit length
of suffering an ionizing collision. These probabilities may be functions
of position if the field in the bulk is not uniform. As a result, the

* To the best of the author’s knowledge, the only other results on the com-
plete statistics are due to R. J. Meclntyre! and were derived independently of
these results. At the writing of this manuseript they are not yet published.



AVALANCHE MULTIPLICATION STATISTICS 169

number of secondaries directly generated by a given carrier (not in-
cluding secondaries generated by these secondaries) is Poisson dis-
tributed with mean equal to the integral of the generation probability
per unit length over the path travelled by that carrier.

We now study two important special cases of the above. By special
case it is meant that assumptions on each carrier will be made about
the ionization probability per unit length.

Case 1 will correspond to a diode in which holes and electrons have
equal collision ionization probabilities per unit length. In such a diode,
we have a feedback situation where carriers travelling in one direc-
tion create carriers through collision travelling in the opposite direc-
tion which in turn create carriers travelling in the original direction,
ete. For such a case, we shall see that the mean number of pairs di-
rectly resulting from any given pair, which is a function of the ap-
plied voltage, must be less than one in order to have a stable (non-in-
finite) multiplication. Case 2 will correspond to a diode where only
one type of carrier causes collision generation of new pairs. Such a
diode is said to have unilateral gain.

III. CASE 1: THE EQUAL IONIZATION PROBABILITY DIODE

Suppose we assume that the ionization probabilities for holes and
electrons (at a given velocity) are equal. We also assume that the
shape of the high field region of the bulk is such that its length parallel
to the field is constant. As a result no matter where in the bulk a hole-
electron pair is created the sum of the distances in the high field region
travelled by the two carriers is the same (since they travel in opposite
directions). More important, the total number of secondaries directly
generated by the two carriers is Poisson distributed with mean equal
to the integral of the ionization probability per unit length over the
total distance in the high field region parallel to the field travelled
by both carriers, which is constant (see Fig. 1). The fact that the
statistics of the secondaries directly generated by a given hole-elec-
tron pair is independent of where that pair itself is generated is the
bookkeeping aid we shall next exploit. We discuss a type of random
multiplier which is a generalized case of the above multiplication
process.

IV. A RANDOM MULTIPLIER

Consider the following random multiplier. Into the device we send
an initial “count” (which for the avalanche diode corresponds to &
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Fig. 1—Model of equal ionization device.

hole-electron pair). This count generates “directly” a random number
of first-order secondary counts. What we mean by ‘“directly” shall be
clear presently. Each first-order secondary count independently gen-
erates a random number of second-order secondary counts. Analo-
gously, each secondary of order j (if any of this order are created)
generates a random number of (j + 1) order secondaries. For any
order j, the probability density governing the number k of (j + 1)th
order secondaries generated by that count is f(k). We emphasize that
an important assumption in the ensuing analysis is the fact that a
secondary of any order generates higher-order secondaries independ-
ently of what order it is and how many other counts of other orders
there are.

We are interested in determining the statistics of the total number
of counts of all orders (we shall call the input count an order zero
secondary for convenience). Our procedure will be as follows. We shall
find the statisties of the sum of the counts up to order, say, n in terms
of the statistics of the sum of counts up to order n — 1. Since we
know the statisties of the sum of the counts up to order zero (namely
there is one count) and order 1, we use induction to get an expression
for the statistics of the total sum of all counts of all orders.

Call the number of counts of order j the random variable S;. Re-
member that these counts are randomly generated by all counts of
order j — 1. Now call the sum of the S; from zero to n inclusive the
random variable G,. We seeck the statistics of the random variable
G., which is the limit of the G, as n goes to infinity and which is as-
sumed to exist. (We shall soon see that for G, to have finite mean, the
average number of direct secondaries per primary must be less than 1.)

As mentioned, we wish to determine some statistics defined upon
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the partial sums G,. For reasons which will soon be clear, we define
fu, n1(z, ¥) as the discrete joint density on G, and G5 (i.e., the prob-
ability that simultaneously G, equals z and G, equals y). Now we
ask the question: How can we have G, = z given ¢,,_; = y assuming &
greater than y? Well, by definition S, must equal the difference v — y.
That is, the number of nth-order secondaries must be x — y. How can
this happen? We know G,_; = y. Suppose G,_> = z of course less than
y (or equal). Therefore S,; = y — z. It is these secondaries (i.e., S,-1)
which must contribute # — y nth-order secondaries. The probability
that S,.; = u and that G,,_; = v is just fu1, no(y, v — u). The prob-
ability that the number of nth-order secondaries created by these
w(n — 1)th-order secondaries is * — y is the probability that « inde-
pendent random variables whose distributions are all f(k) add up to
x — 7. This is simply f**(x — y) where f**(x — y) is the convolution
of f(z) with itself % times, the result evaluated at z = (xr — y). (A
well-known result about sums of independent random variables.) Thus
the probability that @, equals « and G-y = ¥ is equal to the probabil-
ity that G,.; = ¥ and G,» = y — u and that u secondaries of order
n — 1 result in @ — % secondaries of order n—the preceding averaged
over all possible values of . In symbols

fa,n—'l(m! ?}) = Z f*(v~z;(x - y)fn—l.n~2(yv Z) (1)

where f*@ is the convolution of f with itself x times.

The next steps we shall take are not intuitive. They come from expe-
rience with dealing with equations like equation (1).

First to change convolutions to products, Laplace transform equa-
tion (1) on both variables z and v using the corresponding transform
variables s and {.

My oa(s, ) = E fana(z, ¥) exp (sz + fy) = ; ; Z * @ — ),

“fa1.n-2(y, 2) exp (sz + ty)
,E > exp (o) — 2)] exp (sy) exp (t)fa-1.n-2(¥, 2),

= Mooy ne2(Po(s) + 5 + £, —ols)),

I

@

where y,(s) is given by*

W = o 3 1) exp (5. (22)

*ln z = natural logarithm of z.
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Lemma: The iterative relationship in equation (2) implies the itera-
tive relation

Moir.a(s, 1) = exp [s + ¢t + Yolln (M, .-1(s, 1)))]. 3)
Proof: Using induction. We know the joint moment generating func-
tion of G4 and G since Gy = 1 with probability 1 and G; = 1 + a
random variable with density f(k).

Mi.ofs, t) = exp [s + & + vo(s)]. (4)

Using equation (2) we obtain

M,a(s, t) = exp [¥o(s) + 5+ £ — ols) + Yols + 7 + ¥u(9)]

exp [s + ¢ + vols + ¢ + o)

which is also the result predicted by equation (3).
Now assume equation (3) holds for some arbitrary n. Then using
equation (2), we obtain

Mn+2m+l(3, t) = Mu+1.n(‘|bo(3) + 8 + tv - \l’a(s))
exp [s 4 £ 4+ Yo(s) — ¥ols)

+ Yo(In (M, nea(s + £+ Y0ols), — (8]
which using our result (2) immediately yields

Mﬂ+2,n+1(sj f) =exp[s+t+ Yo(In (Mn+1.n(3l t)))] (7)

Thus if equation (3) holds for n = j, it holds for n = j + 1. Fur-

thermore equation (3) holds for n = 1. Thus the lemma is proven true.

If we set ¢ = 0, then we have the moment generating function of
@, in terms of the moment generating function of Gyy.

(5)

I

(6)

pa(m) = density of G, , ®)
M. (s) = Zp.(m) exp (sm) = Zfn n-1(m, 1) exp (sm) exp (0r),
= M, .5, 0).

Thus
Mn(S) = Mn,n—:l(si 0) = exp [s + ‘I’o(ln (Mn—'lm—2(8! 0)))]: (9)

= exp [s + Yo(In (M.-1())].
Now assume that as order gets higher and higher, the probability of
a secondary of that order goes down fast enough so that M;(s) con-
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verges (i.e., we get a finite number of electron-hole pairs out in re-
sponse to the initial pair). Then we obtain

M (s) = exp [s + Yo(ln (M(s)))]. (10)

We obtain the differential equation*

M_(s)

M(s) [1 + ¥o(In (M(s))) j%i%] .

M.(5) ,
1 — o(ln (M(s)) °

In principle we can solve for M,(s) using equation (11) and we
can take the inverse Laplace transform to find p.(m) the probability
of the sum of all the secondaries. In addition we can solve for all the
moments of G, without inverse transforming by repeated differentia-
tion of equation (11) as will be shown in the next section.

M.(0) = 1. (11)

V. APPLICATION TO AVALANCHE DIODE

Getting back to the avalanche diode with equal carrier collision
ionization probabilities, it is clear that each secondary (pair) created
in the multiplication process discussed in Section III produces higher-
order secondaries as discussed in Section TV with f(k) a Poisson den-
sity with mean equal to the integral of the ionization probability per
unit length over the path of an electron pair in the high field region
of the bulk. That is

fk) = Z* exp (—Z)/k! (12)
where Z is the mean of the density f (k).
From equation (2a) we obtain
Yols) = Zlexp (s) — 11. (13)
Plugging into equation (11), we get
M)
1 — ZM(s)

If we call the total number of pairs in the response G (for Gain) we
have (@ is a random variable equal to the total number of electron-

M) = (14)

* Throughout the text 2’(-) means differentiation with respeet to the total
argument in parenthesis.
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hole pairs at the output resulting from an input pair)

= (1 — Z)™' = meansecondary pairsinresponse.

G = E@G) = ML)

e _ 7 2y r — M:o(s) ZM,,(S)
¢ = EB@) = M) ‘ = T= 200 o T 0 = ZME o
1 2 Z 1 3
‘(1—2) +(1—Z)3ﬁ(1—-Z)
= mean square number of output pairs. (15)

This corresponds to results by previous authors* which were limited
to calculating these first two moments. We can calculate all order
moments, and in addition we can numerically integrate equation (14)
to obtain M, (s).

VI. CASE 2: SINGLE CARRIER AVALANCHE DIODE

Returning to the discussion of Section III, suppose that only one type
of carrier causes ionizing collisions. Further, assume that the prob-
ability per unit length of an ionizing collision as a carrier of that type
travels through the high field region of the bulk is constant-8. Also
assume that the initial carrier of the ionizing type starting the multi-
plication process will travel a total distance W on its way through the
multiplication region. We shall now set up bookkeeping.* Divide the
multiplication region into increments of length A. Model the multi-
plication process as follows (see Fig. 2).

Let pr(n) be the probability density of the number of carriers n
present at the beginning of the kth increment when the carriers pass
that point. Assume each of these carriers generates a Poisson dis-
tributed number of new carriers in the kth increment with mean BA.
The total number of carriers at the beginning of the (k& + 1)th incre-
ment given N are present at the beginning of the kth increment is N
plus a random variable whose density is the above Poisson density
convolved with itself N times. Therefore we have (by argument similar
to those in Section 1V)

Deni(n) = Z 2Pt — ) (16)

* The reader is cautioned that our bookkeeping scheme for case 1 is quite dif-
ferent from that for case 2.
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Fig. 2—Model of unilateral gain device.
where P%7(n) is the j-fold convolution of

PA(’H) — (6A)" eiﬁ (_-BA)

the result evaluated at the argument n. Taking the Laplace transform
of equation (16) we obtain

Myii(s) = Z"Zmﬂ(n) exp (sm) = ;pk(j)Mi(s) exp (s)

M ($a(s) + 3)

17

where

Ma@) = X B exp (—88) exp (om) = exp [B)(exp @) — 1)
and

Ya(s) = BA(exp (s) — 1).

Lemma: The solution of equation (17) satisfies the iterative relation
M (s) = M,_,(s) exp (BA[M,_,(s) — 1]). (18)
Proof: At the input, we have one count, therefore
M,(s) = exp (8).
By equation (17) we have

M,(s) = exp (BA (exp (s) — 1) + s). (19)
But equation (19) is the result predicted by equation (18). Thus (18)
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is true for k = 1. Next, assume equation (18) is true for k = £, by (18)
M(s) = M,1(s) exp (BA[M -i(s) — 1]). (20)
Using equation (17), we obtain
Mi(s) = Moa(¢a(8) + 8) exp (BA[M —i(¥a(s) +5) — 1))

M (s) exp (BA[M ,(s) — 1]).
Thus by induction, the lemma is true.
We now wish to let A approach zero. Defining

¥i(s) = In My(s) (21)

I

we obtain

Yi(s) = Yu_a(s) + BAlexp (Yr-i(s)) — 1]
Taking the limit as A — 0 (A is the width of the increment in posi-
tion x along the bulk)

2 W9 = Blexp (¥(z, ) — 1. 22)

(Where z replaces kA as the variable of position in the multiplication
region.) And where

\{’(O: S) =3
(i.e., M(0,s) = exp(s) since there is one pair at x = 0). Solving equa-
tion (22) we obtain

1

= 2
M@ = T~ o B — exp (—9) @)
which can be checked by differentiation.
If we evaluate equation (23) at x = W, we obtain
MW, s = ! (24)

1 — G — exp (—9)

where G = exp (8W) = (8/3s)M (W, s) |,-o = mean multiplication =
average number of pairs at the output in response to an initial pair.

The corresponding probability density of the total carriers leaving
the multiplication region is the inverse Laplace transform of M (W, s)
as given by equation (24).

Pwn) = 51(@—5—1)_1 n=1,23 . (25)
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VII. APPLICATION TO OPTICAL COMMUNICATION

In the following sections, we shall obtain bounds to the received
energy per pulse required to achieve a desired error rate in a simple
optical binary receiver. That is, there is some optimal adjustment of
system parameters which requires a minimum of signal energy to
achieve exactly a desired error rate. We cannot exactly ealculate the
minimum energy but we can find a range which we prove that energy
falls into. We call upon the Chernoff bound?® to upper bound the energy
requirements. We obtain a lower bound by studying a receiver which
we prove performs better than the receiver we wish to obtain the
bounds for, but which is easy to analyze. Hopefully, the upper and
lower bounds will be close enough to each other to be useful for deter-
mining the actual energy requirements. The assumed receiver is shown
in Fig. 3.

VIII. THE CHERNOFF BOUND

The Chernoff bound is useful for studying the tails of distributions.
It is simply derived as follows.

Let p(z) be a probability density. Suppose we wish to know Q(y)
defined as

) = [ p@ ax. (26)
¥
Let s be a real number. Clearly
M>l for §>0,z>« (27)
exp (sv) ' '

Therefore we have

Q) = fw exp (sz) p(z) dr = jim wp(.’c) dx for s> 0. (28)

4 €xp (sv) = exp (s7)
Hi
>
INCIDENT __ | erecToR INTEGRATER THRESHOLD
LIGHT <

Ho

WHITE NOISE

Fig. 3—Receiver.
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Define the moment generating function of x, M,(s) as

M6 = [ o (2)p) do = exp (106, (29)

where y,(s) is a natural log of M,(s) and is called the semi-invariant
moment generating function (S.I.M.G.F.} of the random variable .

Examining the bound of equation (28), we can minimize the right
side (obtain the tightest bound) by choosing an optimal s within the
constraint region. Differentiating we obtain

Y!(s) = v as the optimal s provided s > 0 (30)

(prime denotes derivative). It can be shown that a unique s satisfying
equation (30) exists and is greater than zero if y is greater than the
mean of the distribution of the random variable x. This situation will
always be satisfied for cases of interest here. We obtain the hound

Qy) = exp (¥=(s) — s¥i() |y ucormy - (31)

Similarly, if we define

T
P0) = [ p@ dz (32)
where y is less than the mean of z, then we obtain the bound
P(y) = exp ($u(s) — s¥2(8)) |4 ucnr-v (33)

(where s will turn out to be negative).
Equations (31) and (33) constitute the Chernoff bounds.

IX. APPLICATION OF THE CHERNOFF BOUND TO A SIMPLE ADDITIVE
GAUSSIAN NOISE PROBLEM

Suppose an observer must distinguish between two hypotheses H (1)
and H (0) based upon his received value of a random variable X. He
desires to minimize his probability of error. For the case of interest
here the best (minimal error test) technique simply compares the re-
ceived value of the random variable to a threshold—and a decision
H (1) or H(0) is made.

Define p.. , the miss probability, as the probability that the decision
is H(0) when H(1l) was actually the true hypothesis. Define p, , the
false alarm probability, as the probability that the decision is H(1)
when H(0) is the true hypothesis. For a communication system where
H(1) and H(0) are a prior: equally probable, the error probability p,
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equals 3 the miss probability p,, plus % the false alarm probability p;, .
(An error occurs if either a miss or a false alarm occurs.) In this paper
we shall assume that we desire p,, =2 p, =2 p, .

Suppose we have chosen a threshold, and we decide H(1) if the
received random variable is above threshold and H(0) if the received
random variable is below threshold. Let p,(z) be the probability
density of the received random variable X given H(1) is true. Let
Po(x) be the density given H(0) is true. Then clearly if the threshold
is v, we have

Y
D =f () de,
o (34)

pr= [ ) dz.
Y

We can bound p,, and p; using the Chernoff bound if we know the
semi-invariant moment generating function of the received statistic
X on both hypotheses.

For cases of interest here, X will consist of the sum of two inde-
pendent random variables. There will be a gaussian random variable
of zero mean and known variance ¢* representing thermal noise con-
tributions. This gaussian component will be independent of which
hypothesis is true. In addition there will be added a random variable
Y, whose statistics depend upon the hypothesis. From the definition
in equation (29) it is easy to see that the semi-invariant moment, gen-
erating function of the sum of two independent random variables is
simply the sum of the two separate semi-invariant moment generating
functions. The S.I.M.G.F. of a gaussian zero mean random variable is
s20%/2. Thus to apply the Chernoff bound, we must know the S.I.M.G.F.
of Y under both hypothesis. As we shall see, we can use equation (34)
to pick the threshold and the required received energy to achieve at
least a desired performance.

X. DETAILS OF THE RECEIVER

Figure 3 is a block diagram of the system. Figure 4 schematically
depicts the system in somewhat more detail. The current %,(¢) is gen-
erated when incident light is present. The presence of incident light is
from now on called hypothesis one. If the incident light is from a
coherent or highly incoherent source (the required bandwidth depends
upon the intensity), then (f) consists of electrons arriving as in a
Poisson process with rate yP/hf per second. 5 is the quuntum efficiency
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Fig. 4—Schematic.

of the light sensitive surface; P is the incident light intensity and hf
is Planck’s constant multiplied by the incident light center frequency.
If the light is partially coherent, then the statistics of the current i, (¢)
are considerably more complicated. We shall not study this case here,
but shall assume the Poisson statistics for both incoherent and coher-
ent light sources.

The current ig(t) arises when electrons are spontaneously emitted
in the detection device due to thermal effects. In the literature it is
usually called dark current. It shall be modelled as consisting of elec-
trons arriving as a Poisson process with rate Ag.

The devices we are interested in employ internal current gain. That
is, every electron in the processes ,(¢) and () enters a random multi-
plication mechanism whereby it generates a random number of sec-
ondary electrons. We shall ignore the time dispersion of the secon-
daries around the arrival time of a primary. We are only interested
here in the statistics of the number of secondaries per primary. (The
electrons in 7,(t) and 7g(t) make up the primary process.)

We call the current at the output of the random multiplier y(¢).
To y(t) we add white gaussian noise representing the thermal noises
of the receiver following the detector. The sum is integrated over the
pulse duration and the resulting random variable normalized by the
electron charge, e, is compared to a decision threshold. The random
variable X consists of a gaussian random variable whose mean is
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zero and whose variance is the thermal noise spectral height N, times
the pulse duration T* and an added random variable ¥ dependent upon
the hypothesis, equal to the number of secondary electrons leaving
the random multiplier during the pulse duration interval. As dis-
cussed in Section ITI, we need the SI.M.G.F. of ¥ under both
hypothesis. (Note the electron charge e has been absorbed by normal-
ization into N.)

XI. OBTAINING THE S.I.M.G.F.

As discussed above, the random variable Y is generated when two
Poisson processes—one due to signal if present and the other due to
dark current—drive a random multiplier. In Sections II-VI, statistics
of two avalanche multiplier processes are discussed. These results will
be called upon soon.

Suppose we wish to know the S.LM.G.F. of the total number of
secondary electrons leaving the random multiplier in an interval. We
know that the number of electrons incident upon the multiplier has
Poisson statistics with mean proportional to the interval length T.
Let A equal this mean. Let Pi(n) equal the Poisson density with mean
A. Let P,.(x) equal the density of the number of secondaries resulting
from a given primary. The density of the total secondaries is given by

Prwt @ = 3 Pa@Pu(@)*” (35)

n=0

where the notation P,,(z)*" denotes convolution of P, (x) with itself
n times.

If My(s) is the moment generating function of the total secondaries,
then transforming equation (35) we obtain

M y(s)

i Py(n) M5 (s)

>:j P,(n) exp (nm(s)
Mo (4nls) (36)

where
Mpy(s) is the moment generating function of the multiplication

statistics, ¢, (s) is the corresponding SI.M.G.F. [natural log of

*If n(t) = thermal noise and N = [Jn(t) dt where Eln()n(u)] =
'6(t — u), then we have E[N2] = E[f"fn(t)n(u) di du]l = N.T.
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M,.(s)] and M.(s) is the moment generating function associated
with the Poisson density.

But

M@ = 310" o (~0)/ml] exp (n) = exp (Alexp ) — D). (1)
Thus
My(s) = exp (A(Mn(s) — 1)), (38)

Yr(s) = AM.(65) — 1).
Thus, if we know A,T the component of A due to dark current, and
if we know M,,(s), then we have the SI.M.G.F. of ¥ under both
hypotheses.

XII. APPLICATION OF CHERNOFF BOUND

Using equation (38), we know that the SI.M.G.F. of the statistic X
under hypothesis zero is

¥xo(s) = NT(M,(s) — 1) + NnTsz/Z. (39)
Under hypothesis one, the S.I.M.G.F. is
¥xi(s) = O\ + Pu/kf)yT(Ma(s) — 1) + NoTs*/2. (40)

Since equation (30) is independent of the signal power P, we can
use the following Chernoff bound

Pr = exp [¥xo(s) — s¥ka(8)] [4 uetnr=n (41)
to determine an upper bound to the required ¢ to achieve the desired
false alarm probability. That is, we evaluate (41) at equality to deter-
mine y given the desired p;.

Having obtained y in this way, we use the bound

Pm = exp [‘PXI(S) - S‘P’XI(S)] {w'.-(-)-'r (42)
to determine the upper bound on the power P. That is, using the
value of y found above and using (42) we determine an upper bound
to the required power P. It is an upper bound since v is larger than is
actually required, and (42) itself is a bound given .

XIII. OBTAINING A LOWER BOUND

Examine the system shown in Fig. 5. Essentially we have there the
system of Fig. 4, except that the random multiplier has been replaced
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Fig. 5—Lower bounding receiver.

by a deterministic gain. It is intuitive and straightforward to prove
that the system of Fig. 5 performs better than the system of Fig. 4,
for a given energy per pulse and a given dark current. Therefore, if
we determine the energy per pulse required for the system of Fig. 5
to achieve a given error rate, that value is a lower bound to the
corresponding quantity for the system of Fig. 4.

The technique we use to analyze the system in Fig. 5 depends upon
the parameter values. If under hypothesis one or under both one and
zero, the mean number of electrons per pulse is large enough (greater
than 250), we can simply replace the Poisson random variable by its
mean. This results in a slightly looser lower bound, since we are
eliminating another random quantity. Caleulations indicate that the
difference between the lower bounds for such large mean count num-
bers is small. On the other hand, for small mean count numbers on
either hypothesis zero or zero and one, we should retain the Poisson
statistics and use a computer to calculate the required threshold and
light energy. It should be noted that the system is indifferent to a
change of noise standard deviation ¢ and gain G provided the ratio
of these two quantities is fixed. A calculation of the required mean
number of counts per pulse A, = P;T/hf, in the presence of light,
assuming no dark current and a 10~ error rate is displayed in Fig. 6.

XIV. APPLICATION TO AVALANCHE DIODE DETECTORS

In Sections II through VI, the moment generating function we call
M, (s) (of the multiplication probability density) was derived for
two types of avalanche diodes. The first is a two-carrier device with
equal hole and electron ionization probabilities (e.g., a Germanium
diode). For such a device M,,(s) must satisfy the differential equation

d/ds[M ()] = M,.(6) / (1 - (%)Mm(s)) . M0 =1  (43)

where G is the mean multiplication.
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Fig. 6—Lower bound to required mean detected photons per pulse vs o/G.
¢ = +/NoT.

The second type of diode is a unilateral gain device (single carrier
ionization), The corresponding moment generating function is

M.(s) = 1/[1 + G (exp (—s) — 1)]. (44)

For G larger than about 10 the probability density (25) of the mul-
tiplication for this device is approximately exponential (it is exactly
a shifted Bose-Einstein) and would have moment generating function

M .(s) = 1/(1 — sG). (45)
expon. approx.

Suppose we wish to apply the bounds to these devices. Let us
take the following special case for our calculations. We shall assume
zero dark current. We will set the desired error rate to 10-°. Under
these assumptions the probability of a false alarm is the probability
that the thermal noise of variance N,T drives the statistic X above
threshold. Since the noise is gaussian, it is straightforward to see that
the threshold is very nearly (to two decimal places) six standard
deviations, i.e., 6(N,T)#, for a 10-° error rate. Using this threshold, we
calculate the value of P, the light power needed to achieve a 10-°
miss probability.

We have

107 = p,, < exp (PTa/hf)(Ma(s) — 1 — Mj(s)) — NoTs*/2)  (46)
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where we must have
(PTn/R)M(s) + NoTs = 6(N,T)*.

Solving equation (45) with equality for P yields an upper bound.

The lower bound, calculated as described in Section VII as a func-
tion of the noise standard deviation over the mean gain is plotted
in Fig. 6.

Without loss of generality, we solve for the upper and lower
bounds to A, = TPg/hf, thus eliminating the quantum efficiency and
carrier frequency as parameters.

Now we must specify Ny and 7. The thermal noise has been nor-
malized by the electron charge squared so that Y could represent the
total number of received electrons rather than the total charge per
pulse. Therefore

N, = k8/(Re") 47
where

I is the Boltzman constant,

R is the equivalent receiver input resistance,

¢ is the electron charge,

6 is the absolute receiver temperature (assumed 300°K).

Assuming T roughly in the range of 10~® to 10** seconds, and R
roughly 10 to 100 ohms we find that the square root of NoT the noise
standard deviation is in the range of 100 to 10,000.

If we apply these parameter values to equation (46) using the
multiplication statistics of (43), (44) and (45), we obtain the follow-
ing results.

For the single carrier diode, and mean gains of 20 and 100 in the
multiplier, the actual moment generating function (44) and exponential
approximation (45) yield equivalent results within desired compu-
tational accuracy. This leads to an interesting consequence. The upper
bound is independent of changes in the noise standard deviation and
the mean gain, provided the ratio of these two quantities is the same.
(This is a consequence of the exponential multiplication and is not a
general result.) Thus, a single curve can be plotted where the abscissa
represents this ratio, and the ordinate is the percent by which the upper
bound Ay to the required counts A, exceeds the lower bound Aj. In
fact, we can also plot the same ordinate against the lower bound Agr
as abscissa. Such plots are shown in Figs. 7 and 8 respectively.
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Fig. 7—Percent by which upper bound exceeds lower bound vs /@ for unilateral
gain diode. Percent = ((Ay — AL)/Az) X 100.
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Fig. 8—Percent by which upper bound exceeds lower bound vs lower bound
for unilateral gain diode.
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For the two carrier diode, the above simplification does not occur.
A family of curves similar to the ones above must be plotted for different
mean multiplications. Two such curves (for G = 100 and G = 20)
are plotted in Fig. 9.

14.1 Ezample:

To use the curves, assume for instance the following parameter
values

mean avalanche gain G = 100,

light pulse duration 7' = 107",

dark current-negligible,

equivalent noise resistance of circuitry following avalanche detector
R = 1002,

then we have

kg  4.14 X 107"

= 7  EoT A 15
No=rpz =956 x 10> ~ 16X107,
o= (N,T) = 4 X 10*,
G/G' =4
500
400
— 300
z
g
B
2001
100
o | | L

1 10 102 103
/G

Fig. 9—Percent by which upper bound exceeds lower bound vs «/G for equal
ionization diode.
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From Fig. 6, the lower bound Ar, = yPrT/hfo to the required mean
number of detected photons for a 10-° error rate is roughly 100. From
Fig. 7, the upper bound for a unilateral gain device is 30 percent more
or 130 photons.

From Fig. 9, the upper bound for an equal ionization avalanche
diode is 500 percent more than the lower bound or 600 photons. The
upper bound gives an indication of the degradation associated with
random gain rather than deterministic gain.

14.2 Comments

The curves of Figs. 6-9 are intended as an example of the use of
equations (39) through (42) with devices having statistics given by
(43) or (44) and (45) assuming no dark current and an error rate
of 10°.

For other error rates and nonnegligible dark current, we must
return to equations (39) through (45) and generate new curves.

For other types of random gain we can still use equations (39)
through (42). The cases of equal electron-hole ionization and unilateral
gain are probably bounds to the practical case of unequal nonzero
ionizations. That is, if results on mean square gain®? are any indica-
tion, the degradation for an unequal ionization device should lie be-
tween the degradations (compared to deterministic gain) of the devices
studied above. To test this conjecture, we need the statistics (moment
generating functions) of such unequal ionization devices.

XV. CONCLUSIONS

We have derived the moment generating functions for two special
case avalanche diodes. The important intermediate cases of unequal
ionization coefficients is an important area for further study.

Application to the direct detection receiver indicates that for im-
portant ranges of parameter values we can tightly bound the energy
required for a desired error rate. Further, the nature of the lower
bound indicates that there may not be much degradation, for certain
parameter values, due to the use of random rather than deterministic

gain.

APPENDIX

Glossary of Terms

G = mean avalanche gain
T = input pulse duration
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e = electron charge
R = post detector circuit equivalent noise resistance
6 = 300°K
k = Boltzmann constant
N, = (k0/Re*) = post detection circuit thermal noise spectral height

c = VN
A, = required mean number of detected photons to achieve a desired
error rate
Ay = upper bound to A,
A; = lower bound to A,
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