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We discuss in this paper the excitation of dielectric waveguides used for
integrated optical circuitry. Thin optical films are usually excited by means
of coupling prisms using frustrated total internal reflection. We propose
instead excitation of thin-film waveguides directly by gaussian laser beams.
Harmful effects of imperfect substrate edges can be avoided by letting the
dielectric waveguide end inside of the substrate. The exciting laser beam
18 directed towards the end of the guide from the inside of the substrate
material.

The analysis is based on neglecting reflection al the end of the thin-film
waveguide and on assuming that the thin film is infinitely extended in one
dimension. The maximum excilation efficiency predicted with this model is
97 percent. It is expected that the excitation efficiency of more realistic
guides for integrated optics can be as high as 90 percent.

1. INTRODUCTION

Communications systems using light waves as the carrier of infor-
mation need some means of signal processing at the end terminals and
perhaps also at intermediate repeater points along the transmission
lines. It has been suggested™* to employ integrated optical circuits for
the purpose of filtering, amplifying, pulse regeneration, etc., of the
optical signal beam.

These introductory remarks make it plausible that the need exists
for exciting guided modes in the waveguides used for integrated optical
circuits.® An efficient method of mode excitation utilizes the evanescent
field outside of a high-index prism to couple light energy from a laser
beam to one of the guided modes of a thin-film waveguide.* This
method is particularly suitable for wide thin-film guides. However,
for the very narrow light guides that are likely to be used for inte-
grated optical circuits the prism coupler method may become less
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efficient since the dielectriec optical waveguide may easily be narrower
than the laser beam. A very narrow beam must be highly focused and
thus has the disadvantage of a high-beam divergence contrary to the
requirements of the prism coupler.

An alternate method of exciting the guided modes of dielectric
waveguides is by shining the laser beam directly at the end of the
guide. It has been shown theoretically that the conversion efficiency
obtainable by this method is as high or higher than that of the prism
coupler.®® Light injection by direct excitation with a laser beam is
usually employed with cladded round optical fibers. The application
of the same method to the dielectric waveguides of integrated optical
circuits suffers from the disadvantage that the ends of these guides
are likely to be of poor optical quality. Figure 1 shows the geometry
of one possible form of an integrated optical waveguide. This guide
can be produced by diffusion, by sputtering or evaporation techniques.

Unless the end of the substrate of the guide is optically polished
after the deposition of the higher refractive index region, the end of the
resulting guide can be expected to appear as shown in the figure. The
optical quality of the end of the guide can be improved if the guide
is not allowed to extend all the way to the end of the substrate but
instead terminates inside of it as shown in Fig. 2. Even though this
method may avoid the problem of poor optical quality of the edge
of the substrate, it introduces the new problem of how to excite the
dielectric waveguide whose end is not easily accessible from the outside.

A solution to this problem is shown in Fig. 3. The laser beam is
incident not from the outside of the dielectric substrate but from
inside of it. The problem of injecting the beam into the substrate is
not as severe as the problem of shining a laser beam directly on the
end of the waveguide shown in Fig. 1. The beam enters the substrate
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Fig. 1—Thin-film waveguide located directly under the surface of the sub-
strate extending all the way to its edge.
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Fig. 2—Thin-film waveguide not reaching to the edge of the substrate.

not at its edge but in a region that is more easily kept free of damage.
An external focusing system is, of course, required to achieve a beam
of the desired convergence angle.

To study the required beam pattern for the efficient excitation of the
optical waveguide, we reverse the problem and study instead the radi-
ation pattern produced by a guided mode reaching the end of the
waveguide of Fig. 3. The shape of the laser beam used for mode
excitation must be made as similar as possible to the radiation pattern
of the waveguide with the only exception that the direction of travel of
the light field be reversed.

In the bulk of the paper we discuss the far field radiation pattern
of a guided mode leaving the end of the waveguide inside of the sub-
strate material. For simplicity we assume that the waveguide has
the form of a slab that is infinitely extended in a direction perpen-
dicular to the plane of Fig. 3. The excitation problem of the actual
waveguide is very similar to that of the slab. In particular it is well
known that a mode can be excited with high efficiency by an external
laser beam. The only complication introduced into the problem under
discussion is the presence of the air-dielectric interface of the sub-
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Fig. 3—Thin-film waveguide geometry used for the calculation.
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strate material. This complication exists only in the direction parallel
to the plane of the drawing. The mode matching problem in the direc-
tion perpendicular to the plane of the figure is no more difficult than
that treated in earlier publications.®

A brief discussion of slightly different waveguide geometries can be
found in the section on conclusions at the end of the paper.

II. MODES OF THE DIELECTRIC MEDIUM

The radiation pattern of the guided mode leaving the end of the
dielectric waveguide could be computed with the conventional methods
of the Kirchhoff-Huygens diffraction integral if it were not for the
presence of the air-dielectric interface of the substrate material. A sub-
stantial part of the radiation field is reflected at this interface compli-
cating the beam pattern. It appears more natural to employ the
normal mode method for the solution of the radiation problem. This
method utilizes the fact that any field can be expressed as a super-
position of a complete set of normal modes. The air-dielectric interface
is thus included automatically. We assume that the difference between
the refractive index of the waveguide and the substrate is so slight
that reflection at the end of the waveguide can be neglected. The radia-
tion field is then obtained by the requirement that the transverse elec-
trie field component must be continuous in the plane z = 0 of Fig. 3.
The radiation field is expressed as a superposition of the normal modes
of the structure to the right of the end of the waveguide. No guided
modes exist in this region so that the superposition of modes must be
expressed as an integral over the continuum of radiation modes.

Since we have simplified the problem to that of a slab infinitely
extended in y direction, we impose the condition that there is no field
variation in that direction

i
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The guided mode field is assumed to be of the form
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A factor exp [i(wt — Bo2)] has been suppressed. The constants and
parameters appearing in these equations have the following meaning:

2rf radian frequency,

= power carried by the mode,

po = magnetic susceptibility of free space,
Bo = propogation constant,

d = slab thickness,
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K= (ﬂgk, - 183)!: (4)
y = (B — nik?)?, (5)
0 = (B — nak’)?, (6)

k = wlem)'’? free space propogation constant,

n, = refrective index in the region x > 0,

n, = refractive index in the region —d <z <0,

n, = refractive index in the region —w <z < —d.

The magnetic field components follow from the relations

—1 dE,

B =0 Q)
i oE,

Hl - @it ax * (8)

The values of the propagation constant B, are obtained from the
eigenvalue equation

tan kd = ©

(1-%)
k{1 — 5
K

In addition to the guided modes there is also a continuum of radiation
modes in the region z < 0. However, these modes are of no interest
to us.

To the right of the region where the dielectric waveguide has ended
(z > 0) no guided modes are possible. The continuum of radiation
modes can be subdivided into three distinet groups. We use the propa-
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gation constant B of the continuum modes for their classification. In
the region

08 <mnk (10)

the following radiation modes exist:

<
8,(,1) — {Ar COS p% 0=z < w0, (11)
A, cos oz —w < r =0,
and

iA,\/Esinpx 0=s2< o,
gD = P (12)

iA,\/Esinax —w <z =20.

a

A factor exp [i(of — B2)] has again been suppressed. The ampli-
tude A, is related to power by the relation

_ wupP  \
4. = Q(Wﬁ(v + p)) ' (13)

However, it must be pointed out that the power carried by one indi-

vidual radiation mode is infinite. The power P appearing in equation
(13) is defined by the expression

Pi(p — o7)5,, = ﬁ [ &) E () da. (14)

[8(p — p’) is Dirac’s delta function, §,,”, is the Kronecker delta
symbol.] Equation (14) expresses the orthogonality of the radiation
modes. It implies that the modes (11) and (12) are not only orthogonal
among each other but also that the modes given by (11) are orthogonal
to the modes given by equation (12). The parameters p and o are
related to the propagation constant 8 by the following expressions

p = ik’ — g} (15)
and
o = mik* — ). (16)

Whereas there are two sets of radiation modes in the interval given
by equation (10) there is only one set of radiation modes in the interval

nk £ B £ nak. (17)
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This set is given by the equation

8@ — B, exp (—éz) 0=z< o, as)

B,(cos or — gsin a':E) —wo <z =0,
with
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The parameter ¢ is given by equation (16) while & is defined as

(19)

5= (8 — nik)h (20)

The modes (18) are orthogonal among each other as well as to the
modes (11) and (12).

Actually the radiation modes (11) and (12) cover also the range
along the imaginary 8 axis from 0 to ¢ «o. However, the modes belong-
ing to this imaginary branch of 8 values do not carry power and are
thus of no interest to our investigation.

A more detailed study reveals that the radiation modes of equations
(11) and (12) do not take part in forming the main lobe of the
radiation field in the space z > 0. The main lobe is obtained by a
superposition of the radiation modes (18).

III. CALCULATION OF THE RADIATION PATTERN

We simplify the calculation of the radiation pattern (resulting from
the guided mode carried in the waveguide at z < 0 spilling over into
the half space z > 0) by matching the transverse component E, of the
electric field at the plane z = 0. The continuity condition for the trans-
verse H component is ignored. This approximation is acceptable if
reflection at the plane z = 0 can safely be neglected.

The continuity condition for the transverse E field can be expressed
by the equation

(ng3—n N
5= a(5) £, 8) do. @1)
0

The field on the left side of this equation is the guided mode at
z = 0 while the field on the right side is the radiation field at z = 0
expressed as a superposition of radiation modes. Only the main radia-
tion lobe is included by restricting the mode expansion to the modes of
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equation (18). The much smaller side lobes are, however, of no interest
to us.

Using the orthogonality of the radiation modes we obtain the expan-
sion coefficient ¢ (8) from equation (21)

1) = 55 [ B@EE, 9) de = 2608} ms — m)K

(y — G + ) + (& + 7’)*[(3 + 8) cos od + (%‘5 — a) sin ad]

[wa(a+ 1+ e + 96 + 196 + |« - P67 = 8

(22)
In principle the radiation problem is thus solved. Substitution of equa-
tions (22) and (18) into (21) (restoring the omitted exponential z
dependence) allows us to calculate the main lobe of the radiation
field at any point z > 0. An exact evaluation of the integral is not
possible. However, a good far field approximation can be obtained with
the method of stationary phase. The result of this far field approxima-
tionis (x < 0,z > 0)

2% (wpuP) *(n; — na)ny *k""* exp {i[—mkr + arctan g]}
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The parameters entering this equation are now related to the z, z
coordinates

B = mnk z
r
o = _nakE
T r. (24)
8 = (niZ" — nir )*
r= (' + 2
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Equation (23) is valid only in the region where § is real. Equation
(23) does not have any poles since the numerator vanishes simul-
taneously with the denominator.

Figure 4 shows plots of the absolute value of E, as a function of
the angle

o = arctan LZ1 (25)
2

for the case n; = 1, ny = 1.51 and ny = 1.5 and for several values
of kd. The most interesting aspect of these curves is their width and
the position of their maxima. It is easiest to visualize the meaning of
these curves by assuming that the wavelength is fixed but that the
guide width d is changing. For small values of d the guided mode field
extends far into the substrate medium with refractive index ns. A
wide aperture field leads to a narrow radiation lobe. This explains the
narrow radiation pattern for the curve with kd = 9. As the width d
increases the guided mode contracts at first giving rise to a wider
radiation pattern. At kd = 20 the radiation pattern assumes its greatest
width. As d increases even more the guided mode field again becomes
wider and thus creates a narrower radiation lobe.

The position of the maximum is shown as the solid line in Fig. 5.
A qualitative explanation for the position of the radiation maximum
can be given as follows. The guided mode field inside of the medium

Emax.

0 0.05 0.10 Q15 0.20
a IN RADIANS

Fig. 4—Ratio of E, over the peak value of the electric vector of the radiation
field as a function of the angle in radians. n, = 1.00, n. = 1.51, na = 1.50.
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Fig. 5—Location of the peak of the radiation pattern. The solid curve indicates
the maxima of the curves of Fig. 4; the dotted curve represents the direction of
travel of the plane waves whose superposition comprise the guided mode; the
dash-dotted curve indicates the location of the field maxima of the optimum
gaussian distribution used to excite the waveguide.

with index n, can be decomposed into two plane waves traveling at
certain slant angles given by the equation

tan o’ = = (26)
0

It might be expected that the radiation field can be explained by
assuming that the two plane waves composing the guided mode simply
detach themselves from the guidance structure and travel out into the
space z > 0. The wave whose slope points up towards the air-dielectric
interface is totally reflected and is forced to travel in the same direc-
tion as the other plane wave component. The dotted curve of Fig. 5
shows the angle o’ of equation (26) as a function of kd. The dotted
and solid curves do not coincide indicating that the picture of the plane
waves simply detaching themselves to form the radiation pattern is
not quite accurate. However, it is also apparent that this explanation
provides a first rough idea of the direction into which the radiation
is emitted.
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Figure 6 is a plot of the phase angle

¢ = a,rctang 27

appearing in equation (23) as a function a. This curve is independent
of kd and holds for all radiation patterns shown in Fig. 4. It is ap-
parent that the surface r = const. is not exactly a surface of constant
phase. Since the departure from constant phase is linear, Fig. 6 indi-
cates that the radiation pattern does not originate at the coordinate
origin but at a slightly shifted point. The shift of the far field source
point is so slight however (only a few percent of the width of the
guiding region) that its exact position is not important. For all prac-
tical purposes it can be assumed that the source point of the far
field radiation pattern is located at the air-dielectric interface at the
point where the guiding structure ends.

IV. MATCHING THE RADIATION PATTERN WITH A GAUSSIAN BEAM

We are now in a position to return to the primary purpose of our
investigation. Knowing the radiation pattern produced by a guided
mode we can also answer the question: what is the efficiency with
which this mode can be excited? To do this we need to find what
fraction of the radiation pattern appears in form of a gaussian beam.
The efficiency with which the radiation field excites a given gaussian
beam mode of free space is, by the reciprocity theorem, identical to
the efficiency with which the radiation field and consequently the
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Fig. 6—The phase angle occurring in equation (23) as a function of a.
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guided mode producing this radiation field can be excited by a
gaussian beam mode.
The radiation field E, can be expressed as a sum of hermite-gaussian
modes &,
E, = 3 c.8.. (28)
n=0

The only coefficient of interest to us is ¢y, the excitation coefficient of
the lowest order hermite-gaussian mode. Since the zero order hermite
polynominal is the constant unity, this mode is purely gaussian. Using
the gaussian mode

o= () Get) oo [-(5%)] @

with the angular beam half width 6, we can express the expansion
coefficient ¢, as follows.

_ nik
CO_%MP

2°*n3(n; — ni)xk*

= 1/2
Ta“[ﬂoﬁo(d + ;} + %)(x“ + 1+ 6’)]

.j:,h P l:_(a ;(; aﬂ) 2] (* + 52)?}5([1; io Sa'g‘)('Y2 — &)

{o - 06 + o9+ @ 47

f "E, &% da
0

.[(g + 8) cosad + (%‘_3 — a) sin ad]} da. (30)

The upper limit «, of the integral corresponds to the angle at which &
of equation (24) vanishes, The transmission coefficient from the free
space gaussian beam mode to the guided mode of the waveguide is
now given by

T = |ef”. (31)

The integral in (30) was evaluated numerically. The results are
shown in Fig. 7. The optimum angles for the maximum of the gaussian
beam ap and the optimum half width 8, had to be determined by trial
and error. The optimum values ap of the peak of the gaussian beam
distribution are shown as the dash-dotted curve of Fig. 5. This curve
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Fig. 7—Optimum transmission (excitation) coefficient 7' and optimum beam
half width 6 of the exciting gaussian beam.

falls between the position of the maxima of the radiation pattern and
the dotted line indicating the direction of the plane waves composing
the guided mode. The optimum position of the gaussian beam mode
approaches the dotted curve more closely. The idea of determining the
required direction of the incident laser beam from the direction of
the plane waves comprising the guided mode is thus more accurately
reflected in the maximum position of the optimum gaussian beam.

The optimum half width 6, of the gaussian distribution is also shown
in Fig. 7. The optimum position of the gaussian beam as well as its
optimum width can not be obtained simply from the curves of Fig. 4
because of the asymmetry present in these curves.

The maximum achievable coupling efficiency is quite high. Accord-
ing to Fig. 7, 97 percent of the power can be converted from an op-
timally placed gaussian beam to the guided mode of the waveguide.
We must remember, however, that our present case was oversimplified
by assuming that the dielectric waveguide is infinitely extended in y
direction. If the waveguide has only a finite width in y direction the
gaussian beam must also be focused in that direction in order to match
it to the guided mode. However, the matching problem in the y direc-
tion is not complicated by a dielectric interface. The radiation pattern
that results from the finite beam width in y direction is perfectly
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symmetrie. Matching to symmetric radiation fields has been discussed
in earlier work®® and was found to be highly efficient. (99 percent of
the laser power can theoretically be converted to the dominant mode
of a round optical fiber.) The loss in excitation efficiency caused by a
finite width of the waveguide in y direction is expected to be slight.
It is safe to assume that 90 percent conversion efficiency can be ob-
tained for a more realistic waveguide with finite width in = as well
as y direction.

V. CONCLUSION

We have seen that a dielectric optical waveguide constructed as
shown in Fig. 2 can be excited by a gaussian laser beam with high
efficiency. Based on the assumption that the waveguide is infinitely
extended in y direction the maximum obtainable excitation efficiency
is 97 percent. For a more realistic guide whose y dimension is also
finite the conversion efficiency must be somewhat less. However, based
on experience with mode excitation by gaussian beams in symmetrical
waveguides we expect the excitation efficiency to be better than 90
percent.

The gaussian beam must be inserted into the waveguide from the
side of the substrate. This requires shining the beam into the sub-
strate material at a small angle with respect to its air-dielectric inter-
face. A typical angle is of the order of 2°. It may be necessary to
shape the substrate in order to facilitate the injection of the laser
beam. The main advantage of this scheme over injection of the beam
into a waveguide that reaches to the edge of the substrate consists in
avoiding the imperfections in geometry that must be expected to
exist at the edge of the substrate material. The waveguide extends
only a few microns into the substrate material so that the edge of
the substrate would have to be absolutely perfect to within a fraction
of a micron,

Other waveguide geometries can be excited by a similar technique.
It is possible to create a region of higher refractive index inside of the
substrate material by ion implantation using high energy ion beams.
A waveguide of this kind is shown schematically in Fig. 8 The wave-
guide may reach the outer face of the substrate material or it may
end inside of the substrate. Excitation of this guide with a gaussian
laser beam is possible in either case. This geometry is particularly
advantageous since the radiation pattern of this type of waveguide is
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Fig. 8—Alternate dielectric waveguide configuration. The guiding region is
located beneath the surface of the substrate.

not influenced by the presence of the air-dielectric interface. High
excitation efficiency can be expected.
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