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Previous results on the statistics of avalanche detectors are generalized to
the case where electrons and holes suffer collision ionizations with unequal
probability. It is assumed here that the ratio of collision ionization prob-
abilities per unit length of weaker-to-stronger carrier is a constant k in-
dependent of position in the high-field region. The moment-generating
function of the random avalanche gain G is obtained as a function of k
and the average gain G, and is used to obtain Chernov bounds on error rates
of digital optical receivers employing avalanche detectors. It is shown the
required energy per pulse to achieve a given error rate decreases as k de-
creases for fired G. For each k > 0, there is an optimal mean gain G,,,
resulting in minimum required energy per pulse. Atk = 0.1, G,,, =~ 100
and the required energy s within 10 dB of that required with very high
gains (a few thousand) at k = 0.

I. INTRODUCTION

In a previous paper' results on the statisties of two particular ava-
lanche detectors with applications to optical communication were
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presented. It was required either that only one carrier suffer collision
ionizations in the high-field region (unilateral gain) or that both carriers
suffer collision ionizations with equal probability per unit length in the
high-field region. The present work allows for more general unequal
ionization probabilities per unit length with the requirement only that
the ratio of the two quantities be constant throughout the high-field
region. The moment-generating function of the random gain is obtained
as a function of this ratio and the average gain. The results are con-
sistent with unpublished conjectures of R. J. MeIntyre.” The moment-
generating functions are used to obtain Chernov bounds on the error
rates of digital optical receivers employing avalanche detectors and
using either coherent or incoherent light. Results on avalanche statistics
are summarized in Section V. Numerical results on the Chernov bounds
are given in Section VI (6.5) and Section VIL.

I1I. MODEL OF THE AVALANCHE DETECTOR

The avalanche detector is a device in which thermally or optically
generated hole-electron pairs generate additional hole-electron pairs
through collision ionizations. Within the device there is a “high-field
region”’ where holes have probability 8(z) per unit length (which depends
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Fig. 1—Avalanche detector.
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upon the position ) of suffering a eollision ionization as they travel to
the left under the influence of the electron field (see Fig. 1). Electrons
traveling to the right have a probability «(r) per unit length of collision
ionization. Carriers can be created within the high-field region due to
thermal effects or due to the presence of incident light. Carriers can
also drift into the region if they are generated outside of the region. It is
assumed that all collision ionizations are independent. This requires
that the mean distance between ionizing collisions be large compared
to the distance over which a carrier ean randomize its momentum after
a collision.” Hole-electron pairs created through collision ionization can
in turn generate additional pairs by the same mechanism. This is the
avalanche process.

IIT. THE STATISTICS

We seek the statisties of the random total number of hole-electron
pairs which result ultimately through collision ionizations when an
initial hole-electron pair is injected into the high field at some position z.
Define p,(n, ) as the probability that n pairs ultimately result in-
cluding the initially injected pair. The moment-generating function of
the number of pairs M,(s) is therefore*

M5, 2) = 3 puln, D)™ )

We shall derive M (s, z). Before proceeding we must review some well
known results which will be needed in that derivation.

If {x;} are random variables which are independent, then the moment-
generating function of the sum of the |, } is the product of the individual
moment-generating functions.® The semi-invariant moment-generating
function SIMGL of a random variable X having probability density
px(2) is the natural logarithm of the moment-generating function of X

¥x(@ = In [Mx()] = In [E P\('E)e":l- -

The SIMGF of a sum of n independent random variables is the sum of
the individual SIMGF’s.

We can now proceed to derive M ,(s, r). Divide the high-field region
into K intervals of width dX = W/K. See Fig. 2. Label these intervals
1,2, 3, --- 4§, --+ K. If a hole-electron pair is injected into interval j,
define, as above, the probability density of the total number of pairs
ultimately resulting in the avalanche process (including the initial pair)
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as p,(n, r) where z is taken as the center of interval j. The hole of the
initial pair moves to the left and the electron to the right toward
r = 0 or z = W respectively. As they pass through their respective
intervals, new pairs may be created in each through collision ionization.
We shall assume that the interval width dX is sufficiently narrow so
that the initial pair carriers create either one or no new pairs in each
interval. If the initial hole or electron generates a new pair in some
interval k, then that new pair will ultimately generate N pairs including
itself through the avalanche process. Thus with each interval we can
associate a number of pairs N, . This number equals zero if the appro-
priate initial pair carrier suffers no collision ionizations in interval k.
This number equals one or more if the appropriate initial pair carrier
suffers a collision ionization in interval k. The total number of pairs
ultimately generated through the avalanche process including the
initial pair is one plus the sum of the {N,}. Since collision ionizations
are all independent, all the N, are independent. Thus we have the
SIMGT of the total number of pairs given by

W/dX

’!bv(sa ZE) =8 + knzl 'lei(s) (3)
where s is the SIMGF of the deterministic initial pair and ¥y, (s) is
the SIMGF of N, .

The SIMGF of N, is obtained as follows. The probability that
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Fig. 2—Avalanche process.
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N, =0is1 — ydX wherey = a(z) if interval k is to the right of interval
j where the initial pair enters, vy = 8(z) if k is to the left of j. (z is eval-
uated at the center of interval k.) The probability that N, = Z > 0 is
the probability of a collision ionization in interval k times the probability
that a new pair created at interval &k ultimately results in Z pairs
including itself. That is

Pr(N,=2) =vdX p,(Z,z) for Z >0 (4)

with z evaluated at the center of interval k. Thus

Un = In [i Pr (N, = 2)6'2]

= In [(1 — vdX)e® + 3 v dX p,(Z, :c)e'z]

In[1 —vdX + vdX M,s, z)]

=In[l —ydX 4+ ydX e "] (5)
where
v =oafr) if k>
v =B if k<j
x = center of interval k.

Using (3) and (5) and taking the limit as dX gets infinitely small, one
obtains

i) = s+ [ BT — 1 da
0
w
+ [ el — na. ©
Equation (6) is the critical equation for determining ,(s, z), and thus

M,(s, ) = exp [¢,(s, 1)]. Using Leibnitz’s rule for differentiation of
integrals one obtains

d ola,x)
a9z Vol& @) = [B() — a(@)] (e’ - 1. 0]

The solution of (7) is

¥(s,2) = In — ®)
1 o ([ 186) — ) )
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where C = (e***"® — 1)/e****® which ean be checked by substitution.
Substituting (8) into (6) one obtains the particular result

¥, (s, 0)

— s+ fow a(:c’)[ ! ) - 1J dz'. (9)
] da"

1 — Cexp (_/: [8(z"") — a(z'")

If one makes the assumption® that at each point in the high-field
region

B(x) = k-a(x) (10)

where k is a constant, one can solve (9) to obtain

B ~ 1 (k—1)3 ]
e, ) =s — 8+ g7 In [M.,(s, 0) — ¢“ ™M, 0) — 1]

= s+ o In [M(s, 0) — e[, (s, 0) — 1] an
where

M,(s,0) =e*”” and &= f a(z) dx.

One can write (11) in another way by making a substitution.* Define
&8’ (s) implicitly by

e’ = M,(s, 0)e'°, (12)
that is,
e\p,(r.ﬂ) - II’I,(S, O) — ea—5+5'(-)- (13)
Using (12) in (11) one obtains the implicit equation
pTH W g gt g (14)

which determines 6'(s) and thus M (s, 0) through (13).

Equation (14) is still not explicit. A numerical technique for solution
is discussed in the next section. One can use (11) [or (14)] and (8) to
obtain ,(s, ) or M,(s, x) for any z. Recall that z is the point of entry
of the initial pair. In the applications we shall be concerned with z = 0
or z = W. That is, pairs are generated in a drift region outside the high-
field region with carriers drifting into the high-field region.

* Equation (14) will follow from (11) and (12) by tedious algebra. Further, (14)

will not be used in the following results except to compare with McIntyre's work
in Appendix A.
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The equation (14) is consistent with some unpublished conjectures of
Melntyre given in Appendix A,

IV. NUMERICAL SOLUTIONS

Equations (11) through(14) can be solved numerically. One technique
is to differentiate (11) to obtain the result

%M,(s, 0) = M,(s, 0)(1%1)[1 - kl- (M,(s, 0)e e )H]ml (15)

where M ,(0, 0) = 1.
Equation (15) can be integrated with a computer to obtain M,(s, 0)
explicitly.

V. SUMMARY OF ANALYTIC RESULTS ON AVALANCHE STATISTICS

From Sections I through IV and a previous paper by this author,'
we obtained the following:

A ssumptions:

Holes travel toward r = 0, electrons toward z = W.
Hole ionization probability per unit length = A(z).
Electron ionization probability per unit length = a(x).
B(x) = k-a(z), k a constant for all r.

High-field region width = W.

Definitions:

W
6= j; a(z) dz,

p,(n, ) = probability that if an initial pair enters the high-field region
at point z, n pairs will ultimately result through the avalanche process
including the initial pair,

L]

mean avalanche gain = Y np,(n, z),
1

G(z)

Il

M,(s, £) = moment-generating function of p,(n, x)

i p,(n, x)e™.

n=1

Results:
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[, _ 60— [ 0 [ e ]]
1. M,(s,x) = [1 M., 0) exp | (k — 1) ) a(z') dx
forall k. (16)
For k = 0 (Unilateral Gain)

2a. M,(s,0) = [l — e'[l —e’]]”" where G(0) = ¢". (17)
%b. p.(n, 0) = %(G = 1) where G = G(0). (18)

Fork =0,k =1

3.2 M,s,0) = MG, 0)(%)[1 - 2,6, O)e-'e‘)*"]_',
where
M,0,0) =1 (19)
where

N

For k = 1 (Equal Ionization)

£ L0 =g, 0)[1 ~ (G-, 0)] l
M,0,0) =1
where
G = G(0). (20)

VI. APPLICATIONS TO RECEIVERS USING AVALANCHE DETECTORS

6.1 General Comments

We shall next apply the results of Section V to obtain bounds on the
error rates of digital receivers. The receivers to be discussed here are
the single- and twin-channel systems described below. We shall upper-
bound the power required at the receiver to obtain a desired error rate
using the Chernov bounds.

6.2 The Receivers

The twin-channel receiver is shown in Fig. 3. Depending on the state
of a binary information source, one of two channels has optical output
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Fig. 3—Twin-channel system.

power p for duration T while the other has output power p-EXT for
duration T. EXT signifies extinction. £ZXT would ideally be zero, but
is left finite and less than unity for practical reasons. The optical power
falling on an avalanche photo diode causes the emission of photo-
electrons which are multiplied along with the detector ‘‘dark current”
through the avalanche gain mechanism. The detector outputs (multi-
plied counts) are integrated in devices having thermal noises referred to
their respective inputs. The integrator outputs are subtracted and the
difference X is compared to a threshold of zero to decide what the
information state was.

The single-channel system is essentially half the twin-channel system
as shown in Fig. 4. The single integrator output X is compared to a
threshold v to decide upon the information state.

6.3 The Chernov Bounds

The Chernov bound is a useful tool for bounding the probability that
a random variable X will lie above or below a given threshold . It is
given as follows®

PI‘ (X > 'Y) g e\!f."(!)‘!ﬁ‘_\’(l) |7=¢‘.‘:(”
provided s > 0,
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Pr (X < ’Y) =< e\!f_r(l)—nl'x(sl l'r=\‘u\"(ﬂ)
provided s < 0, (21)

where

Yx(s) = SIMGF of X

In [ [ : px(@)e” dx:l

and

VE) = 5 9.

8

6.4 Chernov Bounds for the Two Systems

6.4.1 Preliminaries

We wish to determine the required power p to achieve a desired
decision error probability for each of the receivers discussed in Section
6.2 with various types of detectors and various values of other system
parameters such as dark current and thermal noise in the integrators.
To apply the Chernov bounds we will need the SIMGIE’s of the variables
X at the outputs of the receivers. (See Figs. 3 and 4.)

An important result needed here is the following:

Lemma: If C s integer-valued and greater than or equal to zero; and if
U = 3.5 g. where the g; are independent, identically distributed random
variables (that is, each ‘‘count” produced by the C process independently

TO
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HANN
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DARK THERMAL
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Fig. 4—Single-channel system.
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generales ¢, conlrtbutions lo the U process through some gain mechanism);
then the SIMGF of U is'

Yuls) = de(¥(s) (22
where ,(s) is the SIMGF of the identically distributed random variables g, .

One can model an avalanche photodiode as a photon counter followed
by a random avalanche multiplier. Each photon ecounter output “count”
produces a random number of “‘counts” at the multiplier output. Thus,
sinee we know from Section V the SIMGF of a random multiplier which
corresponds to ¢,(s) in (22), and since we seek the SIMGF of the photo-
diode output which corresponds to ¢ (s) in (22), it follows that we need
the SIMGEF of the number of counts emitted by a photon counter with
light incident upon it, which corresponds to y.(s) in (22).

6.4.2 Photon Counter Stalistics

6.4.2.1 C'oherent Light. If the light incident upon the photon counter
is ecoherent, then it is well known that the SIMGF of the total counts
emitted in an interval T is given by® (see Appendix B)

Ye(s) = [LAMSIG 4+ LAMD] [e* — 1] (23)
where
LAMSIG = Total incident light energy - n/ i
n = Detector quantum efficiency
1 = Energy of photon at optical frequency used

LAMD Mean number of dark eurrent counts before avalanche
gain in an interval T.

6.4.2.2 Incoherent Light. If the incident light is incoherent with H
independent spatial-temporal “degrees of freedom,” then the SIMGF of
the total counts emitted by the photon counter in interval T is (see
Appendix B)

Yo = LAMD[' — 1] + In [[1 — % € — 1):|H:| (24)

where LAMSIG is the average total incident energy times n/hSQ.
Clearly (24) is the same as (23) as H approaches infinity, which is a
well known result.

6.4.3 Final Calculations

6.4.3.1 Twin-Channel System. Since, for the twin-channel receiver,
X consists of the difference of two random integrator outputs, we need
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the following well known result.* If X = X, — X,, and if X, and X,
are independent, then the SIMGT of X is

¥x(s) = ¥x.(s) + ¥x.(—5). (25)
Each integrator output contains the sum of the counts emitted by its
detector and the integral of its thermal noise. The SIMGF of the random

variable N obtained when Gaussian thermal noise spectral height N, is
integrated over an interval T is well known to be

@ = S N (26)

Using (22) through (26) we obtain for the SIMGF of the twin-channel
receiver output X when the information is in state “one’”, and the
optical source is coherent,

vx(s) = &N, + [ hi;"’ + LAMD][M,,(.S) — 1]

n [ﬂ% + LAMD][Mg(—S) -1 (27

where

LAMD = mean number of dark current counts before avalanche
gain in an interval 7'

spectral height of the thermal noises referred to the
integrator inputs.

Il

N,

M ,(s) is obtained from (16) through (20) depending upon the particular
gain mechanism. If the optical source is inecoherent, we have

¥x(8) = §'NoT + LAMDI[M (s) + M,(—s) — 2]

+In [[1 ~ 20 g ) 11]_”]
+In [[1 - ’i}%& [M,(—s) — 1]]_1- (28)

We seek the probability that when the information is in state “one”,
X is less than zero, and we therefore decide that the information state
was ‘‘zero.” That is, we seek the error probability. One can use (27)
or (28) and the Chernov bound of (21) to determine the required value
of LAMSIG = p-T-7/(hQ) to achieve a desired error probability.
Since the twin-channel receiver is symmetric, the error probability
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when the information is in state “zero’” is the same as when it is in
state “one.”

6.4.3.2 Single-Channel System. For the single-channel receiver, we
need the SIMGF of X under both information states. Call X, the random
variable X when the information is in the state “one.” Call X, the
random variable X when the information is in state zero. Using results
of Section 6.4, one obtains for coherent light

¥r(s) =2 N“ + [LAMD + %ﬂ][M,(s) —1]

an EXT-4

+ [LAMD + '”'T'h—ﬂ][M,(s) —1. (29

Px.(8) =

For incoherent light
s N(l

+ LAMD[M (s) — 1]

_pTn
+ In l:[l Hhﬂ

-]

4 In [[1 _ l’% (M (s) — 1]] :| (30)

One can then use the results of (29) and (30) along with the Chernov
bounds of (21) to simultaneously find values of LAMSIG = p-T-n/(hQ)
and the threshold v (see Fig. 4) to ensure some desired error probability
(which for convenience here will be the same for either information state).

Yx,(s) =

Yx.(8) =

6.5 Numerical Resulls

The Chernov bounds described above were evaluated numerically.
The results are displayed on the attached figures described below. The
range of parameter values is realistic and practical, to the best of this
author’s knowledge. The curves presented are those deemed most
interesting by the author. Other calculations can of course be made.
Parameters used are defined as follows:*

LAMSIG = Required mean number of detected photons per
pulse in the “on” channel of the twin-channel

* SIG, EXT, G, K, H, and LAMD are input parameters to the program which
calculates LAMSIG for a desired error rate.
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receiver or in the “one’ state of the single-channel
receiver.

LAMSIG-EXT = Mean number of detected counts per pulse in the
“off”” channel of the twin-channel receiver or in
the “zero” state of the single-channel receiver.

SIG; = Normalized thermal noise standard deviation

= [4£0T/[Re*]}} = [4£0C/e*}}

where e = electron charge, £6 = Boltzmann’s
constant -absolute temperature, R = equivalent
noise resistance at integrator input, T' = pulse
duration, C = T/R = integrator equivalent input
capacitance. Tor the results to follow, a reasonable
value of SIG was chosen to be 6000.
¢ = Mean avalanche gain.
H = Temporal-spatial diversity for incoherent carrier
case.
k = Ratio of ionization probability per unit length of
weaker and stronger ionizing carriers.*
LAMD = Dark current counts per interval T before
avalanche gain.

Fig. 5

LAMSI( vs (7 is plotted for the twin-channel case with k as param-
eter. SIG was set at 6000, the error rate is 107", LAMD was set at
5 counts and EXT = 0.01. H = 10,000 which is equivalent to assuming
a coherent carrier.

Fig. 6

The value at optimal gain of LAMSIG vs k is plotted. Points are
tagged with the optimal (7. The receiver is a twin-channel system with
SIG = 6000, EXT = 0.01, LAMD = 5. H is 10,000 which is equivalent
to assuming a coherent carrier. The error rate is 107"

Fig. 7
LAMSIG vs G is plotted for two values of error rate 10~ and 107° for

* For these caleulations it was assumed that the detector is designed so that the
stronger ionizing carriers generated optically or associated with dark current enter
the high-field region from a drift region outside the high-field region. This corresponds
to initial pairs entering the gain mechanism of = 0 orz = W as discussed in Section
1.
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Fig. 6—LAMSIG at optimal gain versus k.
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a twin-channel system with SIG = 6000, EXT = 0.01, H = 10,000
LAMD =5,k = 0.1

Fig. 8

Single- and twin-channel systems are compared. LAMSIG vs G is
plotted for SIG = 6000, EXT = 0.01, LAMD = 5, H = 10,000, error
rate = 107°, k = 0. Note that from an average power viewpoint the
single-channel system is 3 dB better than shown if the binary informa-
tion source is random, since LAMSI( is the energy in ‘“‘one”’ state.

Fig. 9
Same as Fig. 8 except & = 1. Note the scale change.

Fig. 10

LAMSIG vs G for H = 100 and H = 10,000 for twin-channel system.
SIG = 6000, EXT = 0.01, LAMD = 5, k = 0, error rate = 107".

6.6 Further Comments

When systems were investigated for sensitivity to the choice
LAMD = 5, EXT = 0.01, it was found that insignificant changes in
LAMSIG vs G oceurred when various combinations of LAMD = 5
or 50, EXT = 0.01 or 0.001 were tried.
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Fig. 10—LAMSIG versus gain.

VII. CONCLUSIONS ON APPLICATIONS

If one assumes that the Chernov bounds are sufficiently tight so that
actual energy required per bit to achieve specified error rates can be
compared for various system parameters by comparing the bounds,*
then one can conclude the following.

(7) Define k as the ratio of the collision ionization probabilities per
unit length of the weaker-ionizing to the stronger-ionizing carrier
(carriers are of course holes and electrons). Assume that the detector
is designed “well” such that optically and thermally generated carriers
enter the high-field region from a drift region outside. From the bounds,
one obtains the result that the required energy per pulse to achieve a
desired error rate decreases as k decreases for fixed average avalanche
gain. A value k = 01is best; but a value k = 0.1 will allow one to operate
with energy within 10 dB of that required at very high gains with a
k = 0 device. For each value of k exeept zero there is an optimal gain
resulting in minimum required energy per pulse. The optimal gain is
larger for smaller k. At £ = 0.1, the optimal gain is about 100. At
k = 0, the optimal gain is infinite, but a gain of a few thousand allows

* For simple cases where both the bounds and actual energy requirements can
li)e obtained (for instance for the & = 0 case) the two results differ by a few dB or
ess.
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close to optimal required energy per pulse. One can conclude that a
silicon device with k = 0.1 and a gain of about 100 would be a good
choice for an optical detector. This is true since a detector with & less
than 0.1 and yet having gain significantly higher than 100 is not avail-
able at this time.

(77) The required energy per pulse for systems using incoherent
optical sources differs from that for systems using coherent sources by
less than a few dB provided the product of the source bandwidth and
the pulse duration exceeds 100. This is true even if there is no spatial
incoherence of the light at the detector.

(#77) For reasonable parameter values, and assuming a random
information stream, the single-channel receiver requires about 1.5 dB
less energy per pulse to achieve a desired error rate than the twin-channel
receiver.

(fv) The required energy per pulse is insensitive to reasonable values
of dark current and extinction ratios.

(v) For a particular system, a change in the desired error rate from
107" to 1077 results in a change in the required energy per pulse of
1 to 3 dB, depending upon the avalanche gain. This shows that the
required energy per pulse is fairly insensitive to the error rate. On the
other hand, this means that poor error rates will result if insufficient
loss margin is provided. That is, a small lowering of the received energy
can greatly increase the error rate.

APPENDIX A

In an unpublished work, MecIntyre conjectures (from special case
calculations) that the probability density of the random gain, defined
here as p,(n, 0) is given by

where k and § are the same as in (10) through (13).

If one makes the assumption that the conjectured p,(n, 0) has sum
over n normalized to unity for each value of k and for each §, then one
obtains the result of (14) by using the definition of the moment-generat-
ing funetion and the normalization property.



3094 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1971

APPENDIX B

If light of known intensity falls upon a photon counter during an
interval T, then the probability density of the total number of counts
emitted is well known® to be Poisson distributed as follows

—(LAMD+A)

peln) = [A + LAMD]"-e—-—-—;”—- 31)

Where A* is the total energy incident in the interval T times /A%,
LAMD is the mean number of dark current counts per second times
the interval T, and »/hQ is the detector quantum efficiency divided by
the energy in a photon.

The moment-generating function of the distribution of (31) is given by

Mc(s) = exp [[A + LAMD][e' — 1]]. (32)

If the incident light is a stochastic process, then the moment-generat-
ing function of the output count distribution is obtained by averaging
(32) over the probability density of the stochastic total energy incident
in the interval T'

Mo(s) = f " exp (A + LAMDI[e" — 1))p(4) dA. (33)

An incoherent light field is normally taken to mean that the complex
envelope of the classical field is a complex Gaussian random process.
That is, such a field incident on the photon counter plane can be written
as

E(P; t) = ‘/Qre{e(P; t)ém }
p € counter plane (34)
te(0,T)

where €(p, {) is a complex Gaussian random process.
If one expands e(p, {) in its Karhunen-Loeve eigenfunctions,® one
obtains

C(Pr t) = E ekd’k(P: t)
p & counter plane (35)

te(0, 1)

* In the text, A is called LAMSIG.
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where

T
f . f dulp, Dg%(p, 1) d°p dl = 8 ;
counter plane 1]

and the coefficients e, are independent complex Gaussian random vari-
ables satisfying

{exe®) = vibe.i (36)
{e:e;) = 0.
The energy incident upon the photon counter is
PUN = [ o 0et(o, 0 Podt = T e (37)
. p, t)e*(p, P el - :

If one assumes an equal distribution of average energy in roughly H
“modes,”

EEsH
=0, k>H

2
o

Il
=
—
IIA

(38)

then it follows that from (33) and the complex Gaussian statistics of
the e, that

M(s) = exp [LAMD(e" — 1)]-[1 — fﬁ'y(e' — 1)]_H. (39)

Assumption (38) implies that the energy of the incoherent light is
roughly equally distributed in H degrees of freedom.
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Previous resulis on the statistics of avalanche detectors are generalized to
the case where eleclrons and holes suffer collision ionizations with unequal
probability. It is assumed here that the ratio of collision tonization prob-
abilities per unit length of weaker-to-stronger carrier ts a constant k in-
dependent of position in the high-field region. The moment-generating
function of the random avalanche gain G is obtained as a function of k
and the average gain G, and is used to obtain Chernov bounds on error rates
of digital optical receivers employing avalanche detectors. It is shown the
required energy per pulse to achieve a given error rate decreases as k de-
creases for fived G. For each k > 0, there is an optimal mean gain G,
resulting in mintmum required energy per pulse. At k = 0.1, G... =~ 100
and the required energy is within 10 dB of thal required with very high
gains (a few thousand) atk = 0.

I. INTRODUCTION

In a previous paper' results on the statistics of two particular ava-
lanche detectors with applications to optical communication were

3075
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presented. It was required either that only one carrier suffer collision
ionizations in the high-field region (unilateral gain) or that both carriers
suffer collision ionizations with equal probability per unit length in the
high-field region. The present work allows for more general unequal
ionization probabilities per unit length with the requirement only that
the ratio of the two quantities be constant throughout the high-field
region. The moment-generating function of the random gain is obtained
as a function of this ratio and the average gain. The results are con-
sistent with unpublished conjectures of R. J. McIntyre.” The moment-
generating functions are used to obtain Chernov bounds on the error
rates of digital optical receivers employing avalanche detectors and
using either coherent or incoherent light. Results on avalanche statistics
are summarized in Section V. Numerical results on the Chernov bounds
are given in Section VI (6.5) and Section VII.

II. MODEL OF THE AVALANCHE DETECTOR

The avalanche detector is a deviee in which thermally or optically"
generated hole-electron pairs generate additional hole-electron pairs
through collision ionizations. Within the device there is a “high-field
region” where holes have probability 8(x) per unit length (which depends

- | |

INITIAL | COLLISION |

PAIR | JIONIZATIONS\ |
| [

h I e |\ y |

| ol |

| - = I

| |

| n " |

| AN INITIAL PAIR |

|5 c |

| |
—‘—_’.——

| h e |

BULK | HIGH-FIELD REGION I BULK
=0 =W
= F|ELD

Fig, 1—Avalanche detector.
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upon the position z) of suffering a collision ionization as they travel to
the left under the influence of the electron field (see Fig. 1). Electrons
traveling to the right have a probability a(x) per unit length of collision
ionization. Carriers can be created within the high-field region due to
thermal effects or due to the presence of incident light. Carriers can
also drift into the region if they are generated outside of the region. It is
assumed that all collision ionizations are independent. This requires
that the mean distance between ionizing collisions be large compared
to the distance over which a carrier can randomize its momentum after
a collision.® Hole-electron pairs created through collision ionization can
in turn generate additional pairs by the same mechanism. This is the
avalanche process.

111, THE STATISTICS

We seek the statistics of the random total number of hole-electron
pairs which result ultimately through collision ionizations when an
initial hole-electron pair is injected into the high field at some position z.
Define p,(n, z) as the probability that n pairs ultimately result in-
cluding the initially injected pair. The moment-generating function of
the number of pairs M,(s) is therefore®

M5, 2) = 2o pun, 2)e™ )

We shall derive M ,(s, r). Before proceeding we must review some well
known results which will be needed in that derivation.

If {x;} are random variables which are independent, then the moment-
generating function of the sum of the {z,} is the product of the individual
moment-generating functions. The semi-invariant moment-generating
function SIMGI® of a random variable X having probability density
px(z) is the natural logarithm of the moment-generating function of X

¥x(s) = In [Mx(s)] = [E Pl r)e":l : 2

The SIMGTI of a sum of n independent random variables is the sum of
the individual SIMGUF’s.

We can now proceed to derive M (s, x). Divide the high-field region
into K intervals of width dX = W/K. See Fig. 2. Label these intervals
1,2, 3, .-+ j, -+« K. If a hole-electron pair is injected into interval j,
define, as above, the probability density of the total number of pairs
ultimately resulting in the avalanche process (including the initial pair)
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as p,(n, r) where z is taken as the center of interval j. The hole of the
initial pair moves to the left and the electron to the right toward
z = 0 or z = W respectively. As they pass through their respective
intervals, new pairs may be created in each through collision ionization.
We shall assume that the interval width dX is sufficiently narrow so
that the initial pair earriers create either one or no new pairs in each
interval. If the initial hole or electron generates a new pair in some
interval k, then that new pair will ultimately generate N, pairs including
itself through the avalanche process. Thus with each interval we can
associate a number of pairs N, . This number equals zero if the appro-
priate initial pair carrier suffers no collision ionizations in interval k.
This number equals one or more if the appropriate initial pair carrier
suffers a collision ionization in interval k. The total number of pairs
ultimately generated through the avalanche process including the
initial pair is one plus the sum of the {N,}. Since collision ionizations
are all independent, all the N, are independent. Thus we have the
SIMGF of the total number of pairs given by

w/dX

V(s 2) = s + Z‘, ¥, (8) (3)

where s is the SIMGF of the deterministic initial pair and ¢y,(s) is
the SIMGF of N, .
The SIMGF of N, is obtained as follows. The probability that

INITIAL ,NO IONIZATION ~IONIZATION IMPLIES
PAIR / NK=0 - 2t
/ /
- J‘Te, i* Looe A
|0N|2AT|0N—”‘|/*| h_:‘“ Ll W
MEMBER OF |
N, IMPLIES I | | I
Mmz2 hle |
| |
| |
| |
[T R A By I I N VR
2=0 j=1 i=k =t =W
j=o0 x=dX i =W _k
<— FIELD dx

Fig. 2—Avalanche process.
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N, =0is1 — v dX wherey = a(z) if interval k is to the right of interval
j where the initial pair enters, ¥ = B(x) if k is to the left of 7. (x is eval-
uated at the eenter of interval k.) The probability that N, = Z > 0is
the probability of a collision ionization in interval k times the probability
that a new pair created at interval k ultimately results in Z pairs
including itself. That is

Pr(N.=2)=~vdX p(Z, ) for Z>0 (4)

with z evaluated at the center of interval k. Thus

Yy (s) = In [i Pr (N, = Z)e'z:l

Il

In [(1 — ydX)e + 3y dX p,(Z, :z)e‘”]
Z=1

=In[l —vydX 4+ vdX M,s, z)]

=In[l —ydX 4+ ydXe*""] (5)
where
vy=uoafr)y if £k>j
vy =8 if k<j
x = center of interval k.

Using (3) and (5) and taking the limit as dX gets infinitely small, one
obtains

o) = s+ [ BEHE T — 1] da
0
W
+ f 2@ — 1) e’ (6)
Equation (6) is the eritieal equation for determining y,(s, r), and thus
M, (s, ) = exp [¢,(s, ¥)]. Using Leibnitz’s rule for differentiation of

integrals one obtains

2 9,65, 2) = 8@ — @] — 1), @

The solution of (7) is

Yu(s,2) = In - ®)
o L _ Cexp ( f Br') — ale)] d:r’)):l
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where C = ('™ — 1)/e***"” which ean be checked by substitution.
Substituting (8) into (6) one obtains the particular result

V(s, 0)

—s+ fwa(x')l: L - 1} dz'. (9)
° ] d:n”)

1 — Cexp (j: [B(z'") — alz')

If one makes the assumption® that at each point in the high-field
region

B(z) = k-a(z) (10)

where k is a constant, one can solve (9) to obtain

o ) (k-1)3 :|
(s, 0) =s -+ —7n [M,(g, 0) — ¢“ " [M,(s, 0) — 1]

1
1—k

In [Mv(sa 0) - e(k_”[Mn(Ss O) - 1]} (11)

s+
where

w
M,(s,0) = and &= f a(z) dz.

0

One can write (11) in another way by making a substitution.* Define
8'(s) implicitly by

e’ = M, (s, 0)e’ ™, (12)
that is,
et = M,(s,0) = &V, (13)
Using (12) in (11} one obtains the implicit equation
R 1 CAE (14)

which determines 8’(s) and thus M (s, 0) through (13).

Equation (14) is still not explicit. A numerical technique for solution
is discussed in the next section. One can use (11) [or (14)] and (8) to
obtain ,(s, z) or M,(s, z) for any x. Recall that z is the point of entry
of the initial pair. In the applications we shall be concerned with z = 0
or r = W. That is, pairs are generated in a drift region outside the high-
field region with earriers drifting into the high-field region.

* Equation (14) will follow from (11) and (12) by tedious algebra. Further, (14)

will not be used in the following results except to compare with McIntyre’s work
in Appendix A.
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The equation (14) is consistent with some unpublished conjectures of
Meclntyre given in Appendix A.

IV. NUMERICAL SOLUTIONS

Equations (11) through(14) can be solved numerically. One technique
is to differentiate (11) to obtain the result

6,0 = w6, 0(: 7)1 - Lare oeer | an

where M ,(0, 0) = 1.
Equation (15) can be integrated with a computer to obtain M ,(s, 0)
explicitly.

V. SUMMARY OF ANALYTIC RESULTS ON AVALANCHE STATISTICS

From Sections I through IV and a previous paper by this author,’
we obtained the following:

Assumplions:

Holes travel toward x = 0, electrons toward z = W.
Hole ionization probability per unit length = 8(z).
Electron ionization probability per unit length = «(r).
B(z) = k-afx), k a constant, for all r.

High-field region width = W.

Definitions:
W
5= f a(r) dz,
1]

p,(n, ) = probability that if an initial pair enters the high-field region
at point z, n pairs will ultimately result through the avalanche process
including the initial pair,

G(r) = mean avalanche gain = 2, np,(n, z),
1

M,(s, r) = moment-generating function of p,(n, z)

i p,(n, x)e'.

n=1

Results:
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_ [ 0660 -1 [ — 1 [ e ]]
1. M,(s,z) = [1 MG, 0) exp | (k — 1) i a(z’) dz
for all k. (16)
For Ikt = 0 (Unilateral Gain)

2a. M,(s,0) = [1 — €[l —e’]]”" where G(0) = €’ (17)
B, om0 =7 (%)_ where G = G(0). @1s)

Fork =0,k # 1

3. a% M,Gs, 0) = MG, 0)('T°;—1)[1 - %(M,(s, 0)6-'8)*-‘]_1,
where
M,(0,0) =1 (19)
where

SECT

For k = 1 (Equal Ionization)

s T 0 = 0)[1 - (Q%I)M,(s, 0)]-1
M,0,0) = 1
where
G = G(0). (20)

VI. APPLICATIONS TO RECEIVERS USING AVALANCHE DETECTORS

6.1 General Comments

We shall next apply the results of Section V to obtain bounds on the
error rates of digital receivers. The receivers to be discussed here are
the single- and twin-channel systems described below. We shall upper-
bound the power required at the receiver to obtain a desired error rate
using the Chernov bounds.

6.2 The Receivers

The twin-channel receiver is shown in Fig. 3. Depending on the state
of a binary information source, one of two channels has optical output
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Fig. 3—Twin-channel system.

power p for duration T while the other has output power p-EXT for
duration T. EXT signifies extinction. £ZXT would ideally be zero, but
is left finite and less than unity for practical reasons. The optical power
falling on an avalanche photo diode causes the emission of photo-
electrons which are multiplied along with the detector “dark current”
through the avalanche gain mechanism. The detector outputs (multi-
plied counts) are integrated in devices having thermal noises referred to
their respective inputs. The integrator outputs are subtracted and the
difference X is compared to a threshold of zero to decide what the
information state was.

The single-channel system is essentially half the twin-channel system
as shown in Fig. 4. The single integrator output X is compared to a
threshold v to decide upon the information state.

6.3 The Chernov Bounds

The Chernov bound is a useful tool for bounding the probability that
a random variable X will lie above or below a given threshold v. It is
given as follows®

Pr(X >q9) e | i
provided s > 0,
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Pr(X <o) SO |l
provided s < 0, (21)

where
Yx(s) = SIMGF of X = In [ f " pe@)e” dz:l

and

VO = 2 ¥x(o).

6.4 Chernov Bounds for the Two Systems

6.4.1 Preliminaries

We wish to determine the required power p to achieve a desired
decision error probability for each of the receivers discussed in Section
6.2 with various types of detectors and various values of other system
parameters such as dark current and thermal noise in the integrators.
To apply the Chernov bounds we will need the SIMGF’s of the variables
X at the outputs of the receivers. (See Figs. 3 and 4.)

An important result needed here is the following:

Lemma: If C is integer-valued and greater than or equal to zero; and if
U = 25 g: where the g; are independent, identically distributed random
variables (that is, each ‘“‘count” produced by the C process independently

TO
DATA "ONE" OR "ZERO" OPTICAL | CHANNEL
SOURCE SOURCE
POWER = p OR pP+EXT
r DETECTOR _i
FROM | | T "ONE"
=il 2 COUNTER |— 4 —=f Rg:?ﬁ” —l— + ()dt ——o Y
* * 1] " "
[ | | \ ZERO
| |
DARK THERMAL
| CURRENT ‘ NOISE
e _ |

Fig. 4—Single-channel system.
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generates g; contributions lo the U process through some gain mechanism);
then the SIMGF of U is'

Yuls) = Yo(iu(s) (22)
where ,(s) is the SIMGF of the identically distributed random variables g, .

One can model an avalanche photodiode as a photon counter followed
by a random avalanche multiplier. Each photon counter output “count”
produces a random number of “‘counts’” at the multiplier output. Thus,
since we know from Section V the SIMGI of a random multiplier which
corresponds to ¢,(s) in (22), and since we seek the SIMGT of the photo-
diode output which corresponds to ¥ (s) in (22), it follows that we need
the SIMGT of the number of ecounts emitted by a photon counter with
light incident upon it, which corresponds to ¥ (s) in (22).

6.4.2 Photon Counter Statistics

6.4.2.1 Coherent Light. If the light incident upon the photon counter
is coherent, then it is well known that the SIMGF of the total counts
emitted in an interval 7' is given by® (see Appendix B)

Ye(s) = [LAMSIG + LAMD] [¢' — 1] (23)
where
LAMSIG = Total incident light energy -5/ hQ
n = Detector quantum efficiency
hQ = Energy of photon at optical frequency used

LAMD Mean number of dark current ecounts before avalanche
gain in an interval 7.

I

6.4.2.2 Incoherent Light. If the incident light is incoherent with H
independent spatial-temporal “degrees of freedom,” then the SIMGI of
the total counts emitted by the photon counter in interval 7' is (see
Appendix B)

Ve = LAMDE" — 1] + In [[1 - ‘T—"%ﬂﬁ € — 1)]_ ] (24)

where LAMSIG is the average total incident energy times n/hQ.
Clearly (24) is the same as (23) as H approaches infinity, which is a
well known result.

6.4.3 F'inal Calculations

6.4.3.1 Twin-Channel System. Since, for the twin-channel receiver,
X consists of the difference of two random integrator outputs, we need
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the following well known result.* If X = X, — X,, and if X, and X,
are independent, then the SIMGI of X is

Yx(s) = ¥x,(s) + ¥x,(—s). (25)

Each integrator output contains the sum of the counts emitted by its
detector and the integral of its thermal noise. The SIMGTF of the random
variable N obtained when Gaussian thermal noise spectral height N, is
integrated over an interval T is well known to be

o = S NT. (26)

Using (22) through (26) we obtain for the SIMGF of the twin-channel
receiver output X when the information is in state ‘““one”, and the
optical source is coherent,

Ux(s) = N, T + [%—’1 + LAMD}[M,(s) - 1]

n [?% + LAMDjl[M,,(—S) -1 @)

where

LAMD = mean number of dark current counts before avalanche
gain in an interval T'

spectral height of the thermal noises referred to the
integrator inputs.

N,

M (s) is obtained from (16) through (20) depending upon the particular
gain mechanism. If the optical source is incoherent, we have

¥x(s) = $°NoT' 4+ LAMDI[M (s) + M,(—s) — 2]

+1n [[1 — 22y - 1]]_”]
rnl[1-2TE T g g e

We seek the probability that when the information is in state ‘‘one”,
X is less than zero, and we therefore decide that the information state
was “zero.” That is, we seek the error probability. One can use (27)
or (28) and the Chernov bound of (21) to determine the required value
of LAMSIG = p-T-n/(hQ) to achieve a desired error probability.
Since the twin-channel receiver is symmetric, the error probability
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when the information is in state ‘“‘zero” is the same as when it is in
state ‘‘one.”’

6.4.3.2 Single-Channel System. Tor the single-channel receiver, we
need the SIMGF of X under both information states. Call X, the random
variable X when the information is in the state “one.” Call X, the
random variable X when the information is in state zero. Using results
of Section 6.4, one obtains for coherent light

¥ (5) —SN°T+[LAMD+” Ion ]LM() 1]

Yr(s) =2 N ELCIEE [LAMD + ’%ﬂ—"][m(@ —1]. (29

For incoherent light
sN,T N T

0@ = N 4 LAMDIM@ — 1)
s [[1-2Ta 00 - 0]
o) = [M,6) — 1)

+In [[1 ~ LB gy - 1]]_ ] (30)

One can then use the results of (29) and (30) along with the Chernov
bounds of (21) to simultaneously find values of LAMSIG = p-T-n/(hQ)
and the threshold v (see Iig. 4) to ensure some desired error probability
(which for convenience here will be the same for either information state).

6.5 Numerical Results

The Chernov bounds described above were evaluated numerically.
The results are displayed on the attached figures deseribed below. The
range of parameter values is realistic and practical, to the best of this
author’s knowledge. The curves presented are those deemed most
interesting by the author. Other calculations can of course be made.
Parameters used are defined as follows:*

LAMSIG = Required mean number of detected photons per
pulse in the ‘“on” channel of the twin-channel

* SIG, EXT, G, K, H, and LAMD are input parameters to the program which
calculates LAMSIG for a desired error rate.
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receiver or in the “one’ state of the single-channel
receiver.

LAMSIG-EXT = Mean number of detected counts per pulse in the
“off’” channel of the twin-channel receiver or in
the ‘‘zero” state of the single-channel receiver.

SI(i = Normalized thermal noise standard deviation

= {4£0T/[Re’]}} = [4£6C/¢"}}

where e = electron charge, £ = Boltzmann’s
constant-absolute temperature, £ = equivalent
noise resistance at integrator input, ' = pulse
duration, C = T/R = integrator equivalent input
capacitance. For the results to follow, a reasonable
value of SIG was chosen to be 6000.

(i = Mean avalanche gain.

H = Temporal-spatial diversity for incoherent carrier
case.

I = Ratio of ionization probability per unit length of
weaker and stronger ionizing carriers.*

LAMD = Dark current counts per interval T before

avalanche gain.

Fig. 5

LAMSI(G vs (7 1s plotted for the twin-channel case with &k as param-
eter. SI( was set at 6000, the error rate is 107", LAMD was set at
5 eounts and EXT = 0.01. H = 10,000 which is equivalent to assuming
a coherent carrier.

Fig. 6

The value at optimal gain of LAMSIG vs k is plotted. Points are
tagged with the optimal (7. The receiver is a twin-channel system with
SIG; = 6000, EXT = 0.01, LAMD = 5. H is 10,000 which is equivalent
to assuming a coherent carrier. The error rate is 107"

Fig. 7
LAMSI(G vs (7 is plotted for two values of error rate 10™° and 10~° for

* For these calculations it was assumed that the detector is designed so that the
stronger mmzmg carriers generated optically or associated with dark current enter
the high-field region from a drift region outside the high-field region. This corresponds
ii(ilillit-inl pairs entering the gain mechanism of x = 0 or x = W as discussed in Section
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Fig. 6—LAMSIG at optimal gain versus k.



3090 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1971

5000
SIG = 6000
4000 |- LAMD=35
EXT= 0.0
TWIN CHANNEL
H = 10* (COHERENT)
3000 k=01
v
[0}
=
<
|
2000 -
ERROR RATE = 1079
1000 |-
ERROR RATE = 1072
o 1 1 1 1 i ]
) 25 50 75 100 125 150 175

Fig. 7—LAMSIG versus gain.

a twin-channel system with SIG = 6000, EXT = 0.01, H = 10,000
LAMD =5k = 0.1.

Fig. 8

Single- and twin-channel systems are compared. LAMSIG vs G is
plotted for SIG = 6000, EXT = 0.01, LAMD = 5, H = 10,000, error
rate = 107°, & = 0. Note that from an average power viewpoint the
single-channel system is 3 dB better than shown if the binary informa-
tion source is random, since LAMSIG is the energy in “one” state.

Fig. 9
Same as Fig. 8 except k = 1. Note the scale change.

Fig. 10

LAMSIG vs G for H = 100 and H = 10,000 for twin-channel system.
SIG = 6000, EXT = 0.01, LAMD = 5, k = 0, error rate = 107",

6.6 Further Comments

When systems were investigated for sensitivity to the choice
LAMD = 5, EXT = 0.01, it was found that insignificant changes in
LAMSIG vs G oceurred when various ecombinations of LAMD = 5
or 50, EXT = 0.01 or 0.001 were tried.
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Fig. 10—LAMSIG versus gain.

VII. CONCLUSIONS ON APPLICATIONS

If one assumes that the Chernov bounds are sufficiently tight so that
actual energy required per bit to achieve specified error rates ean be
compared for various system parameters by comparing the bounds,*
then one can conclude the following.

(7) Define k as the ratio of the collision ionization probabilities per
unit length of the weaker-ionizing to the stronger-ionizing ecarrier
(carriers are of course holes and electrons). Assume that the detector
is designed “well”’ such that optically and thermally generated carriers
enter the high-field region from a drift region outside. From the bounds,
one obtains the result that the required energy per pulse to achieve a
desired error rate decreases as k decreases for fixed average avalanche
gain. A value k = 0 1is best; but a value & = 0.1 will allow one to operate
with energy within 10 dB of that required at very high gains with a
k = 0 device. For each value of k except zero there is an optimal gain
resulting in minimum required energy per pulse. The optimal gain is
larger for smaller k. At & = 0.1, the optimal gain is about 100. At

= 0, the optimal gain is infinite, but a gain of a few thousand allows

* For simple cases where both the bounds and actual energy requirements can
:ne obtained (for instance for the & = 0 case) the two results differ by a few dB or
ess.
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close to optimal required energy per pulse. One can conclude that a
silicon device with k = 0.1 and a gain of about 100 would be a good
choice for an optical detector. This is true since a detector with k less
than 0.1 and yet having gain significantly higher than 100 is not avail-
able at this time.

(77) The required energy per pulse for systems using incoherent
optical sources differs from that for systems using coherent sources by
less than a few dB provided the produet of the source bandwidth and
the pulse duration exceeds 100. This is true even if there is no spatial
incoherence of the light at the detector.

(i77) TFor reasonable parameter values, and assuming a random
information stream, the single-channel receiver requires about 1.5 dB
less energy per pulse to achieve a desired error rate than the twin-channel
receiver.

() The required energy per pulse is insensitive to reasonable values
of dark current and extinction ratios.

(v) For a particular system, a change in the desired error rate from
10~ to 107° results in a change in the required energy per pulse of
1 to 3 dB, depending upon the avalanche gain. This shows that the
required energy per pulse is fairly insensitive to the error rate. On the
other hand, this means that poor error rates will result if insufficient
loss margin is provided. That is, a small lowering of the received energy
can greatly increase the error rate.

APPENDIX A

In an unpublished work, Melntyre conjectures (from special case
calculations) that the probability density of the random gain, defined
here as p,(n, 0) is given by

F(l i A + 1)8_6((5—“ _ c—ﬁ)n—l

n!F( = ‘+2—n)

p,(n, 0) =

where k and § are the same as in (10) through (13).

If one makes the assumption that the conjectured p,(n, 0) has sum
over n normalized to unity for each value of & and for each &, then one
obtains the result of (14) by using the definition of the moment-generat-
ing funection and the normalization property.
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APPENDIX B

If light of known intensity falls upon a photon counter during an
interval 7', then the probability density of the total number of counts
emitted is well known® to be Poisson distributed as follows

—(LAMD+A)

pe(m) = [A + LAMD]"® (1)

n!

Where A* is the total energy incident in the interval T times 7n/kQ,
LAMD is the mean number of dark current counts per second times
the interval T', and »/kQ is the detector quantum efficiency divided by
the energy in a photon.

The moment-generating function of the distribution of (31) is given by

Mq(s) = exp [[A + LAMD][e' — 1]). (32)

If the incident light is a stochastic process, then the moment-generat-
ing function of the output count distribution is obtained by averaging
(32) over the probability density of the stochastic total energy incident
in the interval 7'

Meo(s) = L " exp (A 4+ LAMDIfe" — 1)p(A) dA. (33)

An incoherent light field is normally taken to mean that the complex
envelope of the classical field is a complex Gaussian random process.
That is, such a field incident on the photon counter plane can be written
as

E(p, 1) = V2rele(p, 1)é™ }
p e counter plane (34)
te(0,T)

where e(p, £) is a complex Gaussian random process.
If one expands e(p, f) in its Karhunen-Loeve eigenfunctions,’ one
obtains

elp, t) = Z exdi(p, 1)
p £ counter plane (35)

te(,T)

* In the text, A is called LAMSIG.
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where

T
[ [ e 08t 0 et = b
counter plane 0

and the coefficients e, are independent complex Gaussian random vari-
ables satisfying

(ee®) = 1ibe.; (36)
{e:e;) = 0.
The energy incident upon the photon counter is
"N = [ o 0o, 0 dpdt = T fel? (37)
7 elp, t)e*(p, p el -

If one assumes an equal distribution of average energy in roughly H
“modes,”

Ye = 7, 1=sk=H
=0, E>H

then it follows that from (33) and the complex Gaussian statisties of
the e, that

(38)

Mo(s) = exp ([LAMD(e" — 1)]-[1 — }:’_Q’Y(B" - 1)]4}1. (39)

Assumption (38) implies that the energy of the incoherent light is
roughly equally distributed in H degrees of freedom.
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