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A bank of bandpass filters is often used in performing short-time spectrum
analysis of speech signals. This paper is concerned with the analysis and
design of digital filter banks composed of equally spaced bandpass filters.
It is shown that significant improvement in the composite filter bank
response can be achieved by proper choice of the relative phases of the band-
pass filters. The results are extended to more general filter bank configura-
tions.

I. INTRODUCTION

Many speech processing systems are based on the concept of short-
time spectrum analysis.''* Spectrum analyzers for such systems often
consist of a set of bandpass filters whose combined passbands cover a
desired frequency range. Although continuous-time filters have tradi-
tionally been used in filter banks for speech analysis, hardware realiza-
tions of digital filters are now available,’ and the advantages which
digital filters offer should be exploited in filter bank design. These
advantages include: flexibility of design of the individual bandpass
filters, precision of realization, stability of digital hardware, and the
efficiency of realization of the filter bank afforded by the possibility
of multiplexing the digital hardware. Thus it is important to consider
design techniques for filter banks composed of digital bandpass filters.

To focus on the basic concepts in filter bank design, it is useful to
define an ideal filter bank spectrum analyzer. Figure 1 depicts such a
filter bank composed of digital filters whose impulse responses are
denoted by h.(nT), k = 0, 1, --- , M, where 1/7T is the sampling
frequency of the input signal.* Such a filter bank constitutes an ideal
spectrum analyzer if the input x(nT) (with possibly further band limit-
ing) can be synthesized exactly (within some fixed delay) by a linear

* The filter ho(nT) is a lowpass filter which is included for completeness although
this band is usually not analyzed in practical speech analysis systems.
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Fig. 1—Bank of digital bandpass filters.

combination of the bandpass filter outputs z,(nT). An example of
such a system would be one in which the filters are ideal rectangular
bandpass filters with the same constant gain and linear phase in their
passbands and zero gain outside. If the filter bandwidths are such
that the frequency range

T

T
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l
“=T
is completely covered without overlap, then the input can be synthesized
exactly by adding together the outputs of the bandpass filters.

The essential characteristics of the ideal spectrum analyzer are that
the frequency response of the combined outputs must exhibit a flat
magnitude response and a linear phase, and therefore the combined
impulse response must be a delayed digital impulse (unit sample).
Causal digital filters (filters whose impulse responses are zero for
n < 0) cannot have the desired ideal gain characteristics and may
not have linear phase.* Therefore a filter bank composed of such filters
cannot achieve the ideal characteristics of flat magnitude response and
linear phase. In this paper we will describe an approach to the design
of filter banks that approximate the ideal spectrum analyzer. First
we present a detailed analysis of a filter bank configuration in which
equally spaced, equal-bandwidth digital filters are used. This analysis
suggests a technique for optimizing the filter bank characteristics and

* Finite duration impulse response digital filters can have precisely linear phase.
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also suggests how the results can be used where nonuniform bandwidths
are desired. The results are illustrated with examples.
II. ANALYSIS OF UNIFORM FILTER BANKS

Assume that the bandpass filters in Fig. 1 have impulse responses
of the form

hnT) = 2| D, | h(nT) cos (wnT + &) k=1,2,..., M
honT) = | Dy | hnT)

where w, = w, + (¢ — 1) Aw, and h(nT) is the impulse response of a
prototype lowpass filter. (When the £ = 0 lowpass filteris used, w, = Aw
and wy, = 0.) The system functions for this set of bandpass filters are

H.(z) = | D, [e'.q)*H(ze_"”"T) + | D, |e_"hH(ze’.”*T) k=12, .- M
Hy2) = | D, | H(z). (2)

The frequency response of these filters is obtained after substituting
z=2¢e""in (2) as

Hk(er'wi") = 1 Dk |ei'1’kH(e,'(m—wk)T) + I Dk ‘e—iﬁyH(ef(m+uk)T),
k=1,2,---, M

(1)

N ¢)
Hye*™) = | D, | He"“™).

If the frequency response of prototype lowpass filter, H(e
off sharply, then it can be seen from (3) that

|Hoe*") |~ | Dy | |HE“™"T) | 02w /T
~| Dy | |HE“"T) | — /T £ 0 < 0.

In this case the filter bank consists of a set of (M + 1) equally spaced
bandpass filters with identical magnitude responses around their
respective center frequencies. We have chosen this method of designing
bandpass filters from lowpass prototypes for analytical convenience
and beecause of the importance of spectrum analysis systems of this
form."* The results to be discussed apply for other bandpass trans-
formations in so far as they yield a set of uniformly spaced bandpass
filters with identical frequency characteristics.

Our objective is to choose the prototype lowpass filter and the
parameters | Dy |, w,, Aw, and &, so that the filter bank will closely
approximate the characteristics of the ideal spectrum analyzer. To do
this we must consider the response of the composite filter bank. First,

jwT

), drops
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however, it is useful to interpret the individual bandpass filter outputs
in terms of spectrum analysis considerations.
The individual filter outputs are of the form

z,nT) = i 2z¢T) | Dy | k(nT — T) cos [wi(nT — rT) + &), (4)

r=—om

2T) = 3 26T) | Dy | AT — ¢T)

which ean be expressed as

mnT) = 2 Re {DX(w. ,n)e ")

(8)
zo(rnT) = Re {D,X(0,n)}
where D, is the complex constant defined by
Dk={Dk|e’.‘h k=1:21"'3M (6)
DU = t DD |J
and
X(we ,n) = 2 zG@Th@mT — rT)e ", 0]

The quantity X(w., n) is the discrete-time version of the short-time
Fourier transform® of z(nT). Thus, (5) serves to relate the bandpass
filter outputs z,(nT) to the short-time Fourier transform.

The frequency response and impulse response of the composite filter
bank are obtained from

M

y(nT) = Y znd). (8

k=0

After substituting (5) into (8) and noting that if x(nT) is real, X (—w; , 1)
is the complex conjugate of X (w, , n), we obtain

M
y(nT) = EM D.X(w, ,n)e " 9
f
where w_, = —w; , and D_, is the complex conjugate of D, . Substituting

(7) into (9) and interchanging the order of summations results in

yT) = Z :c(rT)[h(nT — rT)- f: Dke"“*‘”"“]- (10)

r=—w k=—M

Defining
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A
AnT) = 3 D7, (1
k=— 0
we observe from (10) that the combined impulse response of the filter
bank can be expressed as

R(nT) = h(nT) d(nT). (12)

Equations (11) and (12) are the basic results of the analysis. (Note
that they could have been obtained directly by summing the impulse
responses h,(nT), with the sacrifiee of the interpretation of the filter
bank outputs in terms of the short-time spectrum.)

Equation (12) shows that the filter bank impulse response is the
product of the prototype lowpass filter impulse response h(nT), and
the sequence d(nT) defined by (11). The choice of lowpass filter depends
on both the desired frequeney resolution and the requirement of obtain-
ing flat magnitude and linear phase response in the composite filter
bank. The sequence d(nT) is independent of the prototype lowpass filter
and is a function of the frequency spacing, the relative gains and phases,
and the number of bandpass filters. Thus, for a given choice of prototype
lowpass filter, the parameters of d(nT) can be adjusted to achieve the
best approximation to the ideal spectrum analyzer. To see how this
occurs, we shall first examine in detail the characteristics of the sequence
dnT).

As will be shown in the remainder of this section, a particularly useful
choice of the complex coefficients D; in (11) is

D, =e""" k= 41,42 -, £M.
D, =1,

(13)

where n, is an integer. That is,
®, = wnoT, and |D;| = 1.

(The condition Dy = 1 implies that the band around w = 0 is included
in the filter bank; D, = 0 implies that it is not.) It can be shown that
for this choice of D, , (11) becomes

2sin [M Aw(nT + n,T)/2]
sin [Aw(nT 4+ n,T)/2]

dnT) = D, + cos [w, [T + n,T)] (14)
where w, = w, + (M — 1) Aw/2, and D, is 1 or 0 depending on whether
or not the lowpass echannel is ineluded.

The properties of the sequence d(nT) determine the character of
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the impulse response of the filter bank. Some of these properties are
summarized below:

(7) The parameter n, shifts the sequence d(nT) by n, samples with
respect to A(nT).

(73) The sequence d(nT) is even about the sample n = —mn, ; ie,
dnT — n,T) = d(—nT — n,T).
(¢#i1) The maximum value of d(nT) occurs at n = —mn, . This value

is d(—n,T) = 2M + D, .

(i) If 2r/(AwT) and w,/Aw are both integers, then the sequence
d(nT) is periodic with period 2r/Aw. Otherwise, d(nT) will be
an almost periodic sequence which will peak up at time intervals
of 27/ Aw.

Insight into the properties of d(nT) can be gained by considering a
simple example. Assume that v, = Aw and 2r/(AwT) = N where N is
an odd integer. That is, the entire frequency range —7/T = w = =/T,
is divided into N equal bands. If M = (N — 1)/2, the entire frequency
range is covered. Under these conditions (14) can be written

sin [(z—j‘ii'l) Ao(nT + nOT)]

2

dnT) = «n [Zw(nT ¥ /7] —1 if D=0 (15a)
sin [(M—;—i) AwnT + n.,T)]
= if D, =1. (15b)

sin [Aw(nT + n07)/2]

(If N is even, the k = 0 filter is not used, i.e., Dy = 0, and w, i8 Aw/2.)
It is clear from (15b) that for these conditions d(nT) is a periodic
sequence with period NT = 2r/Aw. In fact, d(nT) may be thought of as
samples of a continuous-time periodic Dirichlet kernel as shown in
Fig. 2a. If M = (N — 1)/2 and D, = 1, d(nT) is a periodic diserete-
time impulse train with impulses oceurring at multiples of NT. This
is because the sample points on the periodic Dirichlet kernel occur at
the maxima and the zero crossings, as indicated by the small circles in
Fig. 2a.

The conditions for d(nT) to be periodic are that both w,/Aw and
27/ (AwT) be equal to integers. To see this, we must examine (14) in
detail. If 2x/(A«T) is an integer, and M is an odd integer, the sequence
2 sin [M Aw(nT + n,T)/2]/sin [Aw(nT + n,T)/2] is periodie with
period NT = 2r/Aw. If w,/ Aw is an integer and M is odd, the sequence
cos [(w, + (M — 1) Aw/2)(nT + n,T)] is also periodic with a period



DIGITAL FILTER BANKS 3103

—os] e R (@)

sin [M Aw(t+ngT) /z]

I‘p‘(/ﬂ sin [ aw(t+nT) 2] f\

N \

I /
A m U o
SAVAIRYAN A VA v A

e (b)

Fig. 2—(a) Periodic continuous-time Dirichlet kernel, (b) continuous-time en-
velope and sequence d(nT') when either wi /Aw or 2r/(AwT') are not integers.

that is an integer multiple of 2r/Aw. Thus the product of these two
sequences is periodic with period 2m/Aw. The identical result holds
for M an even integer and 27/Aw and w,/Aw integers although the
interaction between the component sequences is slightly different.

If either 2x/(AwT) or w,/Aw are not integers, d(nT) will not be
periodic, but will still peak up at time intervals of 2x/Aw. Such a case
is depicted in Fig. 2b where the samples d(nT) are marked by the
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small cireles and the dotted curve shows the factor
sin [M Aw(nT + n,T)/2]/sin [Aw(nT + n,T)/2]

when M is odd. As shown in Fig. 2b, d(nT) will always have even sym-
metry about sample n = —mny .

11I. DESIGN OF UNIFORM FILTER BANKS USING BESSEL FILTERS

In the preceding section we presented a detailed analysis of a filter
bank composed of equally spaced equal-bandwidth filters. In this
section we will show how the results of that analysis can be employed
in filter bank design.

The objective of flat amplitude response and linear phase is most
easily achieved with bandpass filters having these same properties.
For this reason, Bessel (maximally flat delay) filters are often used in
filter banks.’ In the examples shown in this paper, we have used digital
filters obtained from Bessel prototype designs using impulse invariance.’
Tt should be noted that the digital filters obtained this way do not have
the maximally flat delay property. J. P. Thiran” has shown that the de-
nominator of the system function of maximally flat delay digital filters
is a Gauss hypergeometric function. It is reasonable to expect however,
that for the narrow-band filters of interest here, the differences should
be negligible.

As an example a digital filter derived from a sixth-order Bessel
lowpass filter with asymptotic cutoff frequency of 60 Hz is shown
in Fig. 3. The impulse response is shown in Fig. 3a, and the amplitude
and phase responses are shown in Fig. 3b and Fig. 3c. The filter shown in
Fig. 3 was used in a filter bank* with the following choice of parameters:
Dy, =0, T = 107" sec, Aw = 27(100), w, = 27(100), n, = 0, and
M = 30. The resulting filter bank characteristics are shown in Fig. 4.
The filter bank impulse response, A(nT), is shown in Fig. 4a along
with the prototype lowpass impulse response h{(nT). For the above
choice of parameters, d(nT) is obtained from (15a) as

_ sin [0.61an]
dnT) = sin [0.017n]

which is periodic with period 100 samples (10 msee), with peaks oceurring
at nT = 0, =10, 420, - -- msec. From Fig. 4a, it can be seen that
in the product A(nT)-d(nT), the peak of d(nT) at nT = 0 will be
attenuated since h(rT) is small around »nT = 0. On the other hand,

-1 (16)

* Note that the resulting bandpass filters are twelfth order.
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the peak of d(nT) at nT = 10 msee occurs at approximately the peak
of h(nT), and at nT = 20 msee, h(nT) is large enough to produce a
significant echo in the impulse response of the filter bank. As is shown
in Fig. 4b and 4e, this corresponds to a 3.9-dB ripple in the amplitude
response and a 25.5-degree peak-to-peak ripple in the phase response
(after removing a linear phase component corresponding to a 10-msec
or 100-sample delay). To decrease this amplitude and phase ripple, we
should attempt to eliminate the echo in the impulse response. Further-
more, the phase ripple will be eliminated if the impulse response k(nT)
has even symmetry about some delay time n,7T. One approach is to
broaden the filter bandwidths, or equivalently reduce the spacing Aw,
so that hA(nT) is contracted relative to the spacing of pulses in d(nT).
This is generally not an acceptable solution since h(nT) and Aw are
usually fixed by some frequency resolution criterion. However, if we
refer to the properties of d(nT) which were previously summarized,
we note that a negative value of n, will shift d(nT) to the right relative
to h(nT) so that d(nT) will have even symmetry about time n,7T =
—noT. If n, can be chosen so than A(nT) = h(nT)-d(nT) has approxi-
mately even symmetry and consists of only one significant pulse, then
the amplitude and phase ripple will be small. The manner in which this
is achieved is shown in Fig. 5 where it is assumed for simplicity that
d(nT) is a train of digital impulses as would be the case for M = (N —
1)/2. Figure 5a depicts the case where n, = 0. Figure 5b shows the
situation where n, was chosen to shift the impulse which was at nT = 0
in Fig. 5a to the right and into the vicinity of the peak of h(nT). If it
is assumed that only three impulses have nonzero amplitudes (a,,
@y, ;) such that 4 | e, || as | < | @ + s || @ |, then it can be shown
(see Appendix) that the peak-to-peak amplitude ripple of the filter
bank is

R, = 20 log,, [M] (17)

|az“a1_a3!

Similarly, if | @, + a3 | < | as|, the peak-to-peak phase ripple about
a linear phase corresponding to a delay of —n,T is given by

o, — Oy

RBr = 2tan- [(ai — (o + as)z)”z]' s

The conditions for (17) and (18) to hold are satisfied when o, and a;
are small relative to a, , which is the normal situation. It can be seen
from (18) and (17) that the phase ripple will be zero if «, = a,, and
the amplitude ripple will be small if (o, + a@3)/a, is small.

Although these results were derived for the idealized case when d(nT)
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(@)
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(b)

nT

Fig. 5—Illustration of how to adjust the parameter no. (a) Composite impulse
response for no = 0, (b) nq chosen to minimize magnitude and phase ripple (dotted
lines indicate movement of individual pulses in d(nT)).

is an impulse train, we have found that amplitude and phase ripple
can be determined quite accurately using (17) and (18) in more general
situations. With the foregoing prineiples in mind we have written an
interactive computer program for filter bank design. Using this program
we can design a filter bank with low amplitude and phase ripple by
the following process:

(i) Choose w, , Aw, and M to cover the desired analysis band and
choose h(nT) to provide desired frequency resolution. This
results in an A(nT) that has a duration of approximately 4/ Aw
as shown in Fig. 5.

(it) Evaluate h(nT) and determine n, such that a, ~ a; as in
Fig. 5b.

(77) If the resulting filter bank is not satisfactory, steps 7 and 71
are repeated.

In cases where »,/Aw is not an integer, it is important to choose n,
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so that the point of even symmetry in d(nT) is shifted into the vicinity
of the peak of A(nT). Otherwise, it may be impossible to achieve a very
good approximation to linear phase. An example of the improvement
gained by proper choice of n, is shown in Fig. 6. In this example all
the parameters were the same as in the example of Fig. 4 except a value
of n, = —129 was chosen by the above process. In this case the in-band
amplitude ripple is 0.8 dB and the phase ripple is 0.6 degree, as compared
to 3.8 dB and 25.5 degrees when n, = 0.

R. M. Golden® has shown that inverting the sign of alternating chan-
nels often significantly improves the characteristics of a filter bank, This
technique has a simple interpretation in terms of our results. It can be
shown that inverting the sign of alternating channels is equivalent to
delaying the sequence d(nT) by no = —7/(AwT) samples. This amount
of delay may be nearly correct if the duration of h(nT) is approxi-
mately 37/Aw; however for the situation shown in IFig. 4a, such a delay
would produce a worse filter bank than no delay at all (n, = 0). Also,
to achieve linear phase when «,/Aw is not an integer, the point of even
symmetry in d(nT") should be delayed to the vicinity of the peak of
h(nT). This does not occur when the signs of alternate channels are
inverted.

IV. DESIGN OF NONUNIFORM BANDWIDTH FILTER BANKS

In speech applications it is eommon to take advantage of the fre-
quency resolution characteristics of the ear'® by using increasing
bandwidth filters at higher frequencies. The previously discussed tech-
niques ean be applied to this situation if the filter bank consists of
several sub-banks, each with different resolution. Each sub-bank ean
be designed as discussed above, with care being taken to ensure that
the entire frequency band of interest is covered by the combination
of the sub-banks. It may be necessary to equalize the delay between
sub-banks by providing additional delay for all but one of the sub-
banks.* This is depicted in Fig. 7 for three sub-banks with increasing-
bandwidth sixth-order Bessel filters. Figure 7a shows the lowpass
prototype impulse response and shifted d(n7) sequence’ for the first
sub-bank. The lowpass asymptotic cutoff used was 78 Hz, the spacing
of filters was Aw, = 27(125), the first filter was centered at w,, =
27(250), and a value of n,, = —100 (10-msee delay) was required to

* Golden® has shown that the delays can be approximately equalized by increasing
the order of the lowpass prototype in direct proportion to the increase in bandwidth.

T The sequence d(nT') is shown as an impulse train for convenience in plotting.
The actual sequences would look like those in Fig. 4 and Fig. 6.
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response, (¢) composite phase response after subtracting 12.9-msec delay.
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minimize the amplitude and phase ripple. Figure 7b shows the second
sub-bank in which the basic parameters were: lowpass asymptotic
cutoff 136 Hz, Aw, = 27(218), w;, = 27(1296.5), and ng, = —57
(5.7-msec delay). To line up the central peaks, an additional delay
of n, = 43 samples (4.3 msec) was required. Iigure 7c¢ shows the third
sub-bank where the lowpass cutoff was 192 Hz, Aw; = 27(307), w3 =
27(2213), and ne; = —40 (4-msee delay). A value of n, = 60 samples
(6.0 msee) is required to line up the central peak with those in Fig. 7a
and 7b. The response of the combination of these three sub-banks is
shown in I'ig. 8. Figure 8a shows the impulse response, Iig. 8b shows
the amplitude response, and Fig. 8c shows the phase after a linear
phase corresponding to 10-msec delay has been subtracted. It can be

(a)

L
20 nT(msec)

(b)

20 nT(msec)

|
20 aT(msec)

Fig. 7—Illustration of the design of nonuniform filter banks: (a) impulse response
for narrow bandwidth filters, (b) impulse response for intermediate bandwidth filters,
(e) impulse response for wide bandwidth filters.
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seen in Fig. 8b and 8¢ that the ripple in the sub-banks is quite low
as would be expected from Fig. 7. At the boundary between sub-banks,
however, the ripple increases significantly due to the fact that the last
filter in the lower sub-bank drops off more rapidly than the first filter in
the next sub-bank. This excessive variation at the boundary between
sub-banks can be eliminated to some extent by using increasingly
higher-order filters in the sub-banks. Alternatively, nonuniform resolu-
tion can be obtained by using equal-bandwidth filters and adding
together groups of two or more of their outputs to achieve the desired
bandwidth. Such an approach would require increased computation
but would produce filter bank characteristics comparable to those in
Fig. 6.

V. CONCLUSION

We have discussed the analysis and design of digital filter banks
and have shown how the incorporation of a linearly increasing phase
shift in each bandpass filter can significantly improve the overall filter
bank characteristics. We also showed how the techniques can be used in
nonuniform bandwidth filter banks.

The examples which we gave were based on Bessel lowpass prototypes
which have impulse responses of desirable shape but rather poor am-
plitude response. Recent results in the design of finite duration impulse
response filters® offer attractive possibilities for filter bank design.
Such filters can have precisely linear phase and can be designed using
iterative techniques with constraints on both the impulse response
shape and the amplitude response. The use of such filters, together with
the basic principles discussed in this paper, should yield filter banks
with excellent properties.

APPENDIX

Derivation of Magnitude and Phase Ripple Formulas

Assume an impulse response sequence

hin) = o, n =20

= ay n=mn,
= Oy n = 2np
=0 elsewhere. (19)

The system function of this system is

H(e”“’") - a amefiwin 4+ aﬂe—,‘wznpr' (20)
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The squared magnitude response is
| HE™“™) |” = [az + (& + a5) cos (wn,T)]° + (@, — a3)® sin® (wn,T),
(21)

and the phase response is

TFAOTN] g1 (ey — a@3) sin (wn,T)
arg [H(e'*")] = tan Lz et o) c0s (mn,,T)] (22)

where a linear phase component —ewn,T has been removed. Clearly,
both (21) and (22) are periodic functions of « with period 2#/n,T.
To determine the amplitude and phase ripple, we must locate the
maxima and minima of (21) and (22).

If we differentiate (21) with respect to w, we find that the maxima
and minima oceur for values of w satisfying

sin (wn,T) = 0 (23a)
cos @n,T) = —a T ), (23b)

4oy
The second equation is satisfied by a real value of w if and only if
o |fas| >+ ||l (24)
In a good filter bank design, e, and a; will be positive and much smaller
than a, , and (24) will not be satisfied. Evaluating the second derivative

shows that in this case the maxima and minima of | H(e'*") | will
alternate and occur at values of w satisfying (23a);1.e., w = 0, 7/, T,

+27x/n,T, -+ . In this case the amplitude ripple in dB is given by
_ I_Qz_w] .
R, = 20 log,, [l p— (25)

If (22) is differentiated with respect to w, we find that the maxima
and minima occur at values of o satisfying

cos wn, T = —(m) (26)
223

Equation (26) is satisfied by real values of w if e, 4+ as| < | @ |-

In this case the maxima and minima again alternate, and the peak-

to-peak phase ripple is

_ -1 o, — O3 .
R, = 2tan I:(a: — (an + -’-'13)2)“2] (27)




DIGITAL FILTER BANKS 3115

If |ey + @3] > ||, the phase curve will be discontinuous with a
jump of 27 radians occurring at 0 = +w/n,T, £3r/n,T, --- .
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The Preference of Slope Overload to
Granularity in the Delta Modulation of
Speech

By N. S. JAYANT and A. E. ROSENBERG
(Manuscript received June 18, 1971)

A preference study was made to assess the relative annoyance values
of slope-overload distortion and granular noise in delta-modulaled speech.
A recently described adaptive delta modulator was simulated at frequencies
of 20 and 40 kHz, and conirolled amounts of the two types of degradation
were introduced into samples of a 2-second utterance. Rankings were
obtained for these samples on the basis of preference judgments of nine
listeners, each of whom assessed the samples, pairwise, in a tournament-
type strategy. Results indicale thal the speech sample exhibiting the mini-
mum degradation on an objective, overall-noise-power basts 1is not subjectively
the most preferred sample. Furthermore, the subjectively optimum delta
modulator exhibits greater overload and lesser granularity than the ob-
jectively optimum device.

I. INTRODUCTION

The principle of delta modulation' has been widely described in the
literature. Briefly, delta modulation is a digital encoding strategy
which uses a simple feedback mechanism to produce a ‘‘staircase”
approximation to an input signal. A block diagram of the simplest form
of delta modulation appears in Fig. 1. The input sequence {X,} is
usually band-limited and suitably oversampled. The ‘‘staircase’” se-
quence Y, is generated according to the equations

Cr = sgn (Xr - Yr—l) (1)
Y, — Y., =m = A,-C, . (2)

The step-size A, is assumed to be a constant in conventional (linear)
delta modulation. ““Adaptive’” delta modulation, on the other hand,
allows for modifications of A, in acecordance with the changing slope

3117
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1}==X¥J@_
\“ /sgn Tr=Cr
+
INPUT N ¥ J’ 14
Xp
Y=Zm
QUTPUT INTEGRATOR I X
Yp mp=4A Cp u A

Fig. 1—Schematic diagram of a linear delta modulator.

characteristics of the input signal. Such adaptation results in better
encoding, and several types of adaptive delta modulation have been
described in the literature.”"***

Figure 2 illustrates the mechanism of an adaptive delta modulator
and demonstrates how suitable increases and decreases of step size
facilitate better encoding during steep and flat regions of the input
signal waveform. Such adaptations can be effected by observations on a
“recent” segment of the binary sequence {C.}; this is illustrated by
equation (5) in the sequel.

Figure 2 also brings out the distinetion between two types of encoding
error in delta modulation, viz., “‘granular noise’” and “slope-overload”

"HUNTING" OR "GRANULAR"

NOISE
Yt J/
7/
’
%%’
Xt A
"SLOPE-OVERLOAD"
DISTORTION
\\‘.h
o~ _ Yi-4
Y-[u - Yp_1 = Mp
Xp-Xp_1=Sp

Xp- Y= E‘tc. ; Xg- 1= YT,-1=E (t-1)o
sgn [Xp=Ypoy]=Cp=sgn [mp]
Cp= TRANSMITTED "CHANNEL" SYMBOL

Fig. 2—Illustration of adaptive delta modulation.
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distortion. A given error sample
Er = Xr - Yr (3)

can be defined to fall into the granular or slope-overload category,
depending on whether the corresponding step m, crosses the input
waveform or not. Thus, in Fig. 2, there is a ‘granular’ error F,; at the
sampling instant ¢, and an ‘overload’ error E_,, at the sampling
instant ({ — 1). As a matter of definition, we will note that £,, =
Ei-ne = 0.

The signal output {Z,] of the delta modulator is actually obtained by
filtering the staircase sequence {Y,} to the input signal band. Let
{X"} be the result of passing {X,} through the same lowpass filter. A
perceptually relevant measure of signal degradation is accordingly
defined by the encoding error

e,—_—X‘:_Zr- (4)

As with the quantity E, in (3), one ean distinguish samples of granularity
and slope overload, e,q and e,, , in the error sequence {e,}. Referring
to Fig. 2 once more it can be seen that a physical distinction between
the two types of error is suggested. Granularity can be described as a
“‘signal-uncorrelated” random noise-type of phenomenon. It is char-
acterized by alternation of signs and tends to be independent of signal
amplitude. Slope overload, on the other hand, can be described as a
“signal-correlated’”’ distortion, since its sign and magnitude are related
to the slope of the signal. This physical difference between slope overload
and granularity suggests a corresponding perceptual distinction and
raises the question of the relative annoyance values of the two forms
of signal degradation in delta modulation. The present paper describes
a study of the above question as referred to the delta modulation of a
speech signal.

Earlier work in this subject is in the form of a perceptual experiment®
in which H. Levitt, et al., characterized the perceptibility of slope-
overload distortion as such. As mentioned earlier, our paper will seek
to answer the complementary question of the relative perceptibilities
of slope overload and granularity when they occur simultaneously in
delta-modulated speech, as they usually do.

The approach we used was to vary the relative amount of slope
overload and granularity introduced into samples of a test utterance,
and to evaluate these samples on the basis of both objective and per-
ceptual criteria; and then to interpret these evaluations with specific
reference to the overload-granularity dichotomy.
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Section IT summarizes the salient features of a computer-simulated
adaptive delta modulator that was utilized in the present study. This
adaptive encoder has been recently deseribed and shown to provide
toll-quality speech reproduction at bit rates of practical importance.*

Section IIT defines the objective measures of speech quality used in
our study, while Section IV defines a subjective measure of preference
and deseribes an underlying perceptual experiment.

II. DESCRIPTION OF THE DELTA MODULATOR

Figure 3 is a schematie bloek diagram of the adaptive delta modulator
utilized in the present study. This encoder is defined by the basic
equations (1) and (2), and by the adaptation rule

A, = P-A,, if C, = C,,,l

1 . ;
= T)'Arfl lf C,- # C,-_]J !

P

v
—

)

Notice that a conventional (linear) delta modulator corresponds to
the special case of P = 1. In our study the value of P was a variable
parameter; different (delta-modulated) speech samples corresponded to
different suitably spaced values of P, and thereby to different mixtures
of slope-overload and granularity.

The original speech sample X was a 2-second male utterance of ‘“Have
you seen Bill?”’ that had been band-limited to 3.3 kHz. The delta
modulation was performed at sampling rates of 20 and 40 kHz. The
latter frequency provides speech reproduction that approaches telephone

To=XpYo_,
r f r sgn Tp
1 /
INPUT . \) J_ ¥ Cr
+
Xp
- Cr-1
UNIT DELAY ADT_’;TGAIPON
- FOR STEP-SIZE
Y=zm Cr A MAGNITUDE
r-1
UNIT DELAY Ap
OUTPUT
INTEGRATOR X
Yp :,l Ap
mp=Ap: Cp

Fig. 3—Schematic diagram of an adaptive delta modulator.
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Design of Digital Filter Banks for Speech
Analysis

By R. W. SCHAFER and L. R. RABINER
(Manuscript received June 22, 1971)

A bank of bandpass filters is often used in performing short-time spectrum
analysis of speech signals. This paper is concerned with the analysis and
design of digital filter banks composed of equally spaced bandpass filters.
It is shown that significant improvement in the composile filler bank
response can be achieved by proper choice of the relative phases of the band-
pass filters. The resulls are extended to more general filter bank configura-
tions.

I. INTRODUCTION

Many speech processing systems are based on the concept of short-
time spectrum analysis.'”® Spectrum analyzers for such systems often
consist of a set of bandpass filters whose combined passbands cover a
desired frequency range. Although continuous-time filters have tradi-
tionally been used in filter banks for speech analysis, hardware realiza-
tions of digital filters are now available,” and the advantages which
digital filters offer should be exploited in filter bank design. These
advantages include: flexibility of design of the individual bandpass
filters, precision of realization, stability of digital hardware, and the
efficiency of realization of the filter bank afforded by the possibility
of multiplexing the digital hardware. Thus it is important to consider
design techniques for filter banks composed of digital bandpass filters.

To focus on the basic concepts in filter bank design, it is useful to
define an tdeal filter bank spectrum analyzer. Figure 1 depicts such a
filter bank composed of digital filters whose impulse responses are
denoted by h,(nT), K = 0, 1, --- , M, where 1/7T is the sampling
frequency of the input signal.* Such a filter bank constitutes an ideal
spectrum analyzer if the input z(nT) (with possibly further band limit-
ing) can be synthesized exactly (within some fixed delay) by a linear

* The filter ko(nT) is a lowpass filter which is included for completeness although
this band is usually not analyzed in practical speech analysis systems.
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N
| L \
| \
hy (nT) Z: (07) \
\
2(nT) b (nT) z,(nT) TG
hM(ﬂT) .'.CM(I'\T)

Fig. 1—Bank of digital bandpass filters,

combination of the bandpass filter outputs z,(nT). An example of
such a system would be one in which the filters are ideal rectangular
bandpass filters with the same constant gain and linear phase in their
passbands and zero gain outside. If the filter bandwidths are such
that the frequency range

—_—T m

T EeET
is completely covered without overlap, then the input can be synthesized
exactly by adding together the outputs of the bandpass filters.

The essential characteristics of the ideal spectrum analyzer are that
the frequency response of the combined outputs must exhibit a flat
magnitude response and a linear phase, and therefore the combined
impulse response must be a delayed digital impulse (unit sample).
Causal digital filters (filters whose impulse responses are zero for
n < 0) cannot have the desired ideal gain characteristics and may
not have linear phase.* Therefore a filter bank composed of such filters
cannot achieve the ideal characteristics of flat magnitude response and
linear phase. In this paper we will describe an approach to the design
of filter banks that approximate the ideal spectrum analyzer. First
we present a detailed analysis of a filter bank configuration in which
equally spaced, equal-bandwidth digital filters are used. This analysis
suggests a technique for optimizing the filter bank characteristics and

I\

* Finite duration impulse response digital filters can have precisely linear phase.
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also suggests how the results can be used where nonuniform bandwidths
are desired. The results are illustrated with examples.
II. ANALYSIS OF UNIFORM FILTER BANKS

Assume that the bandpass filters in Fig. 1 have impulse responses
of the form

h(nT) = 2 | D, | h(nT) cos (wnT + ®;) k=1,2,.---, M
hoT) = | Dy | h(nT)

where w, = w;, + (k — 1) Aw, and h(nT) is the impulse response of a
prototype lowpass filter. (When the & = 0 lowpass filter is used, w, = Aw
and w, = 0.) The system functions for this set of bandpass filters are

Huz) = | D, | " H(@ze""*") + | Dy | e ""*H(ze**") k =1,2, --- .M
Hy@) = | Do | HG). @)

The frequency response of these filters is obtained after substituting
z=¢e""in (2) as

Hk(er'wr) — | Dk IeimH(ei(u—uk)T) + |D.t |e"i¢‘H(ei‘”+“*’T),
k=1,2,---,M, (3)

(¢))

Hy") = | Do | HE™").

If the frequency response of prototype lowpass filter, H(e'“"), drops
off sharply, then it ean be seen from (3) that

| H(e ") |~ | Di | [HE“™"") | 0=w=a/T
~|D,| |HE“™"") | —x/T £ £ 0.

In this case the filter bank consists of a set of (M + 1) equally spaced
bandpass filters with identical magnitude responses around their
respective center frequencies. We have chosen this method of designing
bandpass filters from lowpass prototypes for analytical convenience
and because of the importance of spectrum analysis systems of this
form."> The results to be discussed apply for other bandpass trans-
formations in so far as they yield a set of uniformly spaced bandpass
filters with identical frequency characteristies.

Our objective is to choose the prototype lowpass filter and the
parameters | D; |, w,, Aw, and &, so that the filter bank will closely
approximate the characteristics of the ideal spectrum analyzer. To do
this we must consider the response of the composite filter bank. First,
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however, it is useful to interpret the individual bandpass filter outputs
in terms of spectrum analysis considerations.
The individual filter outputs are of the form

n

zT) = Y 22¢T) | D, | (T — rT) cos [w.(nT — rT) + &1, (4)

r=—o0

z(nT) = i z(¢T) | Do | RnT — rT)

which can be expressed as

2,(nT) = 2 Re {D,X(w, ,n)e """}

®)
z,(nT) = Re {D,X(0, n)}
where D, is the complex constant defined by
D.=|Dy|e™ k=12 -, M ®)
Dﬂ = | DU I!
and
X(w ,n) = 2, 2GTh(T — rThe 7. (7)

The quantity X(w,, n) is the discrete-time version of the short-time
Fourier transform® of z(nT). Thus, (5) serves to relate the bandpass
filter outputs xz,(nT) to the short-time Fourier transform.

The frequency response and impulse response of the composite filter
bank are obtained from

M

y(T) = Y z,(nT). ®)

k=0

After substituting (5) into (8) and noting that if z(nT) is real, X (—w: , n)
is the complex conjugate of X (w, , n), we obtain

M
yinT) = 2 DX(w ,n)e " ©)
k=—M
where w_, = —w, , and D_, is the complex conjugate of D, . Substituting

(7) into (9) and interchanging the order of summations results in

yol) = 3 x(rT)[h(nT > Dke] 10)

r=-—o0 k=—M

Defining
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A
dol) = 2, D™, (1

we observe from (10) that the combined impulse response of the filter
bank can be expressed as

hnT) = h(nT) d(nT). (12)

Equations (11) and (12) are the basie results of the analysis. (Note
that they could have been obtained directly by summing the impulse
responses h,(nT), with the sacrifice of the interpretation of the filter
bank outputs in terms of the short-time spectrum.)

Equation (12) shows that the filter bank impulse response is the
product of the prototype lowpass filter impulse response h(nT), and
the sequence d(nT") defined by (11). The choice of lowpass filter depends
on both the desired frequency resolution and the requirement of obtain-
ing flat magnitude and linear phase response in the composite filter
bank. The sequence d(n T) is independent of the prototype lowpass filter
and is a function of the frequency spacing, the relative gains and phases,
and the number of bandpass filters. Thus, for a given choice of prototype
lowpass filter, the parameters of d(nT) ean be adjusted to achieve the
best approximation to the ideal spectrum analyzer. To see how this
occurs, we shall first examine in detail the characteristics of the sequence
d(nT).

As will be shown in the remainder of this seetion, a particularly useful
choice of the complex coefficients D, in (11) is

D, =¢*™" k=41, +£2 .-, M.
D, =1,

(13)

where n, is an integer. That is,
d, = wnoT, and |Di| = 1.

(The condition D, = 1 implies that the band around » = 0 is included
in the filter bank; D, = 0 implies that it is not.) It can be shown that
for this choice of D, , (11) becomes

2sin [M Aw(nT 4+ n,1)/2]
sin [Aw(nT + n,71)/2]

dnT) = D, + cos [w,(nT + n,T)] (14)
where w, = w, + (M — 1) Aw/2, and D, is 1 or 0 depending on whether
or not the lowpass channel is included.

The properties of the sequence d(nT) determine the character of
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the impulse response of the filter bank. Some of these properties are
summarized below:

(7) The parameter n, shifts the sequence d(nT) by n, samples with
respect to h(nT).

(77) The sequence d(nT) is even about the sample n = —n,; ie,
dnT — n,T) = d(—nT — n,T).
(7i) The maximum value of d(nT) occurs at n = —n, . This value

isd(—n,T) = 2M + D, .

() If 2x/(AwT) and w,/Aw are both integers, then the sequence
d(nT) is periodic with period 27/Aw. Otherwise, d(nT) will be
an almost periodic sequence which will peak up at time intervals
of 27/ Aw.

Insight into the properties of d(nT) can be gained by considering a
simple example. Assume that w, = Aw and 27/(AwT) = N where N is
an odd integer. That is, the entire frequency range —n/7T < w = #/T,
is divided into N equal bands. If M = (N — 1)/2, the entire frequency
range is covered. Under these conditions (14) can be written

sin [(2%) AT + nOT)il

sin [Aw(nT + n,T)/2]

sin [(M) AolnT + nDT)}

dinT) = -1 if D,=0 (15a)

2
sin [Aw®T + n,T)/2]

(If N is even, the &k = 0 filter is not used, i.e., Dy = 0, and w, is Aw/2.)
It is clear from (15b) that for these conditions d(nT) is a periodic
sequence with period NT = 27/ Aw. In fact, d(»nT) may be thought of as
samples of a continuous-time periodic Dirichlet kernel as shown in
Fig. 2a. If M = (N — 1)/2 and D, = 1, d(nT) is a periodic discrete-
time impulse train with impulses occurring at multiples of NT. This
is because the sample points on the periodic Dirichlet kernel ocecur at
the maxima and the zero crossings, as indicated by the small circles in
Fig. 2a.

The conditions for d(nT) to be periodic are that both w,/Aw and
27/(AwT) be equal to integers. To see this, we must examine (14) in
detail. If 27/(AwT) is an integer, and M is an odd integer, the sequence
2 sin [M Aw(nT + n,T)/2]/sin [Aw(nT + n,T)/2] is periodic with
period NT = 27/ Aw. If w,/ Aw is an integer and M is odd, the sequence
cos [(w, + (M — 1) Aw/2)(nT + n,T)] is also periodic with a period

if Dy =1. (15b)
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sin [M Ao (t+ngT) /e

Ip‘(’f sin[aw(t+ngT) /2] N

/ \ \
| I
LA A
7 \\J/_/JJ \\Lf WIB‘C" U k\ U,T\‘ s
‘—jr;-r— (b)

Fig. 2—(a) Periodic continuous-time Dirichlet kernel, (b) continuous-time en-
velope and sequence d(nT") when either w;/Aw or 2r/(AwT') are not integers.

that is an integer multiple of 27/Aw. Thus the product of these two
sequences is periodic with period 2r/Aw. The identical result holds
for M an even integer and 27/Aw and «,/Aw integers although the
interaction between the component sequences is slightly different.

If either 2r/(AwT) or w,/Aw are not integers, d(nT) will not be
periodie, but will still peak up at time intervals of 2r/Aw. Such a case
is depicted in Fig. 2b where the samples d(nT) are marked by the
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small circles and the dotted curve shows the factor
sin [M Aw(nT + n,T)/2]/sin [Ae(mT + n,T)/2]

when M is odd. As shown in Fig. 2b, d(nT) will always have even sym-
metry about sample n = —mn, .

1IT1. DESIGN OF UNIFORM FILTER BANKS USING BESSEL FILTERS

In the preceding section we presented a detailed analysis of a filter
bank composed of equally spaced equal-bandwidth filters. In this
section we will show how the results of that analysis can be employed
in filter bank design.

The objective of flat amplitude response and linear phase is most
easily achieved with bandpass filters having these same properties.
For this reason, Bessel (maximally flat delay) filters are often used in
filter banks.’ In the examples shown in this paper, we have used digital
filters obtained from Bessel prototype designs using impulse invariance.’
It should be noted that the digital filters obtained this way do not have
the maximally flat delay property. J. P. Thiran” has shown that the de-
nominator of the system function of maximally flat delay digital filters
is a Gauss hypergeometric function. It is reasonable to expect however,
that for the narrow-band filters of interest here, the differences should
be negligible.

As an example a digital filter derived from a sixth-order Bessel
lowpass filter with asymptotic cutoff frequency of 60 Hz is shown
in Fig. 3. The impulse response is shown in Fig. 3a, and the amplitude
and phase responses are shown in Fig. 3b and Fig. 3c¢. The filter shown in
Tig. 3 was used in a filter bank* with the following choice of parameters:
D, =0, T = 107 see, Aw = 27(100), w, = 2x(100), n, = 0, and
M = 30. The resulting filter bank characteristics are shown in Fig. 4.
The filter bank impulse response, A(nT), is shown in Fig. 4a along
with the prototype lowpass impulse response h(n7"). For the above
choice of parameters, d(nT) is obtained from (15a) as

_ sin [0.61wn]

dnT) = sin [0.01mn] L (16)

which is periodic with period 100 samples (10 msec), with peaks oceurring
at nT = 0, =10, 20, --- msec. From Fig. 4a, it can be seen that
in the product A(nT) -d(nT), the peak of d(nT) at nT = 0 will be
attenuated since h(nT) is small around nT = 0. On the other hand,

* Note that the resulting bandpass filters are twelfth order.



0.010

DIGITAL FILTER BANKS

3105

0.005 -

AMPLITUDE

0.005
0

5 10 15 20

TIME IN MILLISECONDS

25

20

LOG MAGNITUDE IN DECIBELS

| L _—

(b)

180

20 40 60
FREQUENCY IN HERTZ

80

120 -

(c)

PHASE IN DEGREES

-120

| |

-180
0

20 40 60
FREQUENCY IN HERTZ

Fig. 3—Sixth-order Bessel filter characteristics. (a) Impulse response, (b) mag-
nitude response, (¢) phase response.
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Fig. 4—Characteristics of 30-channel filter bank. (a) Impulse response (dotted
curve is the impulse response of the prototype lowpass filter in Fig. 3), (b) composite
magnitude response, (¢) composite phase response after subtracting 10-msec delay.
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the peak of d(nT) at nT = 10 msec occurs at approximately the peak
of h(nT), and at nT = 20 msee, h(nT) is large enough to produce a
significant echo in the impulse response of the filter bank. As is shown
in Fig. 4b and 4¢, this corresponds to a 3.9-dB ripple in the amplitude
response and a 25.5-degree peak-to-peak ripple in the phase response
(after removing a linear phase component corresponding to a 10-msec
or 100-sample delay). To decrease this amplitude and phase ripple, we
should attempt to eliminate the echo in the impulse response. Further-
more, the phase ripple will be eliminated if the impulse response i(nT)
has even symmetry about some delay time n,T. One approach is to
broaden the filter bandwidths, or equivalently reduce the spacing Aw,
so that h(nT) is contracted relative to the spacing of pulses in d(nT).
This is generally not an acceptable solution since h(nT) and Aw are
usually fixed by some frequency resolution criterion. However, if we
refer to the properties of d(nT) which were previously summarized,
we note that a negative value of n, will shift d(nT) to the right relative
to h(nT) so that d(nT) will have even symmetry about time npT =
—noT. If n, can be chosen so than A(nT) = h(nT)-d(nT) has approxi-
mately even symmetry and consists of only one significant pulse, then
the amplitude and phase ripple will be small. The manner in which this
is achieved is shown in Fig. 5 where it is assumed for simplicity that
d(nT) is a train of digital impulses as would be the case for M = (N —
1)/2. Figure 5a depicts the case where n, = 0. Figure 5b shows the
situation where n, was chosen to shift the impulse which was at nT = 0
in Fig. 5a to the right and into the vicinity of the peak of h(nT). If it
is assumed that only three impulses have nonzero amplitudes (e,
@y, ay) such that 4 | e, |-| @y | < | @) + as || @ |, then it can be shown
(see Appendix) that the peak-to-peak amplitude ripple of the filter
bank is

ia2 +al+a3 |]. (17)

iaz—al—a3|

R, = 20 logy, l:

Similarly, if | &y + a3 | < | .|, the peak-to-peak phase ripple about
a linear phase corresponding to a delay of —n,T is given by

¢ -1 oy — O3
s e | as
The conditions for (17) and (18) to hold are satisfied when «, and a;
are small relative to a, , which is the normal situation. It can be seen
from (18) and (17) that the phase ripple will be zero if a, = o3, and
the amplitude ripple will be small if (a, 4+ a3)/c, is small.

Although these results were derived for the idealized case when d(nT)
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(a)

nT

(b)

nT

Fig. 5—Illustration of how to adjust the parameter no. (a) Composite impulse
response for ng = 0, (b) no chosen to minimize magnitude and phase ripple (dotted
lines indicate movement of individual pulses in d(»T')).

is an impulse train, we have found that amplitude and phase ripple
can be determined quite accurately using (17) and (18) in more general
situations. With the foregoing principles in mind we have written an
interactive computer program for filter bank design. Using this program
we can design a filter bank with low amplitude and phase ripple by
the following process:

(i) Choose w, , Aw, and M to cover the desired analysis band and
choose h(nT) to provide desired frequency resolution. This
results in an A(nT) that has a duration of approximately 4/ Aw
as shown in Fig. 5.

(i7) Evaluate h(nT) and determine m, such that o, &~ a; as in
Fig. 5b.

(¢77) If the resulting filter bank is not satisfactory, steps ¢ and 7
are repeated.

In cases where w;/Aw is not an integer, it is important to choose n,
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so that the point of even symmetry in d(nT) is shifted into the vieinity
of the peak of h(nT). Otherwise, it may be impossible to achieve a very
good approximation to linear phase. An example of the improvement
gained by proper choice of n, is shown in Fig. 6. In this example all
the parameters were the same as in the example of Fig. 4 except a value
of n, = —129 was chosen by the above process. In this case the in-band
amplitude ripple is 0.8 dB and the phase ripple is 0.6 degree, as compared
to 3.8 dB and 25.5 degrees when n, = 0.

R. M. Golden® has shown that inverting the sign of alternating chan-
nels often significantly improves the characteristics of a filter bank. This
technique has a simple interpretation in terms of our results. It can be
shown that inverting the sign of alternating channels is equivalent to
delaying the sequence d(nT) by no = —r/(AwT) samples. This amount
of delay may be nearly correet if the duration of h(nT) is approxi-
mately 3w/Aw; however for the situation shown in Fig. 4a, such a delay
would produce a worse filter bank than no delay at all (n, = 0). Also,
to achieve linear phase when w,/Aw is not an integer, the point of even
symmetry in d(nT) should be delayed to the vicinity of the peak of
h(nT). This does not occur when the signs of alternate channels are
inverted.

IV, DESIGN OF NONUNIFORM BANDWIDTH FILTER BANKS

In speech applications it is common to take advantage of the fre-
quency resolution characteristics of the ear'® by using increasing
bandwidth filters at higher frequencies. The previously discussed tech-
niques can be applied to this situation if the filter bank consists of
several sub-banks, each with different resolution. Each sub-bank can
be designed as discussed above, with care being taken to ensure that
the entire frequency band of interest is covered by the combination
of the sub-banks. It may be necessary to equalize the delay between
sub-banks by providing additional delay for all but one of the sub-
banks.* This is depicted in I'ig. 7 for three sub-banks with increasing-
bandwidth sixth-order Bessel filters. Iligure 7a shows the lowpass
prototype impulse response and shifted d(n7T) sequence’ for the first
sub-bank. The lowpass asymptotic cutoff used was 78 Hz, the spacing
of filters was Aw, = 2x(125), the first filter was centered at w,, =
27(250), and a value of n,, = —100 (10-msec delay) was required to

* Golden® has shown that the delays can be approximately equalized by increasing
the order of the lowpass prototype in direct proportion to the increase in bandw1dth

t The sequence d(n7") is shown as an impulse train for convenience in plotting.
The actual sequences would look like those in Fig. 4 and Fig. 6.
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Fig. 6—Characteristics of 30-channel filter bank. (a) Impulse response for no =
—129 (dotted curve is the impulse response in Fig. 3), (b) composite magnitude
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minimize the amplitude and phase ripple. Figure 7b shows the second
sub-bank in which the basic parameters were: lowpass asymptotic
cutoff 136 Hz, Aw, = 27(218), w,, = 27(1296.5), and n,, = —57
(5.7-msec delay). To line up the central peaks, an additional delay
of n, = 43 samples (4.3 msec) was required. Figure 7¢ shows the third
sub-bank where the lowpass cutoff was 192 Hz, Aw; = 27(307), w,; =
27(2213), and ng; = —40 (4-msec delay). A value of n; = 60 samples
(6.0 msee) is required to line up the central peak with those in I'ig. 7a
and 7b. The response of the combination of these three sub-banks is
shown in Fig. 8. Figure 8a shows the impulse response, Fig. 8b shows
the amplitude response, and Fig. Sc shows the phase after a linear
phase corresponding to 10-msee delay has been subtracted. It can be

(a)

—————
20 nT(msec)

20 nT(msec)

20 nT(msec)

Fig. 7—Illustration of the design of nonuniform filter banks: (a) impulse response
for narrow bandwidth filters, (b) impulse response for intermediate bandwidth filters,
(¢) impulse response for wide bandwidth filters.
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seen in Fig. 8b and 8c¢ that the ripple in the sub-banks is quite low
as would be expected from Fig. 7. At the boundary between sub-banks,
however, the ripple increases significantly due to the fact that the last
filter in the lower sub-bank drops off more rapidly than the first filter in
the next sub-bank. This excessive variation at the boundary between
sub-banks can be eliminated to some extent by using increasingly
higher-order filters in the sub-banks. Alternatively, nonuniform resolu-
tion ean be obtained by using equal-bandwidth filters and adding
together groups of two or more of their outputs to achieve the desired
bandwidth. Such an approach would require increased computation
but would produce filter bank characteristics comparable to those in
Fig. 6.

V. CONCLUSION

We have discussed the analysis and design of digital filter banks
and have shown how the incorporation of a linearly increasing phase
shift in each bandpass filter can significantly improve the overall filter
bank characteristics. We also showed how the techniques can be used in
nonuniform bandwidth filter banks.

The examples which we gave were based on Bessel lowpass prototypes
which have impulse responses of desirable shape but rather poor am-
plitude response. Recent results in the design of finite duration impulse
response filters® offer attractive possibilities for filter bank design.
Such filters can have precisely linear phase and can be designed using
iterative techniques with constraints on both the impulse response
shape and the amplitude response. The use of such filters, together with
the basic principles discussed in this paper, should yield filter banks
with excellent, properties.

APPENDIX

Derivation of Magnitude and Phase Ripple Formulas

Assume an impulse response sequence

hin) = a, n=20

= a, n=mn,
=a; n=2n,
=0 elsewhere. (19)

The system function of this system is

H(E™T) = an + a7 + ape™ ™7 (20)
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The squared magnitude response is
|HE™“™) |* = a2 + (ay + a5) cos (on, )] + (s — e3)” sin® (wn,T),
(21)

and the phase response is

Iy iwTy] -1 (0; — ) sin (wn,T)
arg [H('"")] = tan [a2 @ o+ o) cos (MPT)] (22)

where a linear phase component —wn,T has been removed. Clearly,
both (21) and (22) are periodic functions of w with period 2=/n,T.
To determine the amplitude and phase ripple, we must locate the
maxima and minima of (21) and (22).

If we differentiate (21) with respect to w, we find that the maxima
and minima oceur for values of w satisfying

sin (wn,T) = 0 (23a)
(0‘1 + 053) (23[))

COos (um,,T) = —ay m
103

The second equation is satisfied by a real value of w if and only if
4la | |es| > s+ ||l (24)

In a good filter bank design, e, and a; will be positive and much smaller
than a, , and (24) will not be satisfied. Evaluating the second derivative
shows that in this case the maxima and minima of | H(e’*") | will
alternate and occur at values of w satisfying (23a);i.e., w = 0, 27/n,T,

+2x/n,T, --+ . In this case the amplitude ripple in dB is given by
R, = 20 log,, [Lﬂz*_'al—fasl} (25)
‘ 24 23] g [

If (22) is differentiated with respect to w, we find that the maxima
and minima oceur at values of w satisfying

cos wn,T = —("‘—J”") (26)
[22]

Equation (26) is satisfied by real values of w if |, + a3| < | @z |.

In this case the maxima and minima again alternate, and the peak-

to-peak phase ripple is

- o, — oy
R = 2tan [(ai P aa)Z)”z] @
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If |@, + as| > ||, the phase curve will be discontinuous with a
jump of 2r radians occurring at w = £v/n,T, £3x/n,T, --- .

REFERENCES

1.
2.

00 NS v

Flanagan, J. L., and Golden, R. M., “Phase Vocoder,”” B.8.T.J., 45, No. 9 (Novem-
ber 1966), pp. 1493-1509.

Flanagan, J. L., and Lummis, R. C., “Signal Processing to Reduce Multipath
Distortion in Small Rooms,” J. Acoust. Soc. Am., 47, No. 1 (June 1970), pp.
1475-1481.

. Jackson, L. B., Kaiser, J. F., and McDonald, H. 8., “An Approach to the Imple-

mentation of Digital Filters,”” IEEE Trans. Audio and Electroacoust., A U-16,
No. 3 (September 1968), pp. 413-421.

. Flanagan, J. L., Speech Analysis, Synthests and Perception, New York: Academic

Press, 1965.

. Golden, R. M., “Vocoder Filter Design: Practical Considerations,” J. Acoust.

Soc. Am., 43, (December 1967) pp. 803-810.
Gold, B., and Rader, C. M., Digital Processing of Signals, New York: McGraw-Hill
Book Co., 1969.

. Thiran, J. P., “Recursive Digital Filters with Maximally Flat Group Delay,”

IEEE Trans. Ckt. Theory, CT-18, No. 4 (November 1971).

. Rabiner, L. R., “Techniques for Designing Finite Duration Impulse Response

Digital Filters,”” TEEE Trans. Com. Tech., COM-19, No. 2 (April 1971), pp.
188-195.






