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Simple upper and lower bounds on the distribution function of the
sum of two random variables are presented in terms of the marginal distribu-
tion functions of the variables. These bounds are then used to obtain upper
and lower bounds to the error probability of a coherent digital system in the
presence of intersymbol interference and additive gaussian mnoise. The
bounds are expressed in terms of the error probability obtained with a
finite pulse train, and the bounds to the marginal distribution function of
the residual pulse train. Since the difference between the upper and lower
bounds can be shoun to be a monotonically decreasing function of the
number of pulses in the finite pulse train, the bounds can be used to compute
the error probability of the system with arbitrarily small error. Also when
the system performance is evaluated by simulation techniques, the methods
presented in our paper can be utilized lo estimate the error caused by using
a finile pulse train approximation.

I. INTRODUCTION

In digital transmission systems the transfer characteristics of the
transmitting and receiving filters are far from ideal, and the real trans-
mission channel usually exhibits some form of time dispersion.' ** When
an ideal digital signal is passed through such filters or is transmitted
through such a channel, the successive pulses overlap; this form of
distortion is usually known as intersymbol interference. Intersymbol
interference may also result from the choice of nonoptimum sampling
instants, imperfect demodulating-carrier phase, improper pulse design,
ete. In addition the signal may be corrupted by thermal noise, co-
channel and adjacent channel interference, and other forms of noise
that may be present in the channel or in the system used to transmit
the information.

In digital transmission systems, one of the main performance char-
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acteristics is the probability of error; this probability of error can often
be expressed as a finite weighted sum of one or more distribution
functions.

Various authors have tried to evaluate this probability of error by a
variety of methods,? ** but this highly complex probability distribution
can seldom be exactly computed.

Simulation techniques that may be used to solve this and other similar
problems are never exact since one is constrained to use only a finite
number of pulses and no bounds to the truncation error have been
derived.*

Another method is an analysis by means of a worst-case or ‘“‘eye
pattern’” analysis. Since the probability of oceurrence of a worst sequence
may be very small, this analysis usually leads to very pessimistic results
and suboptimum system design.

Recently, some authors have derived’™® several different upper
bounds on the probability of error when the system is subject to both
intersymbol interference and additive gaussian noise. Some of these
bounds make use of the Chernoff inequality in their derivation, and
hence are often more useful than the worst-case bound.? However,
since these bounds, in certain cases, can be shown to be loose,'’ and
sinece no useful lower bounds have been derived, they are not as useful
in system design as the evaluation of the exact error rate of the system.

The third method consists in using the finite pulse train approxima-
tion and calculating the error probability either by the direct enumera-
tion of all possible sequences® or by the series expansion method."™""
The series expansion method, which involves the computation of the
moments of the intersymbol interference, is a convenient method but
is still inexact as no truncation error bounds due to the residual pulse
train have been derived. Note that in this method the number of terms
in the finite pulse train is gradually increased until the change in
probability of error is less than a given number e."'

In this paper we first present simple upper and lower bounds to the
distribution funection of the sum of two random wvariables zy and zp
in terms of their marginal distribution functions. If the spread or dis-
persion'® of the random variable z, is smaller than the spread of the

* In simulation techniques the number N of pulses are usually chosen so that the
computed probability of error stops changing by less than e when the number ¥ is
increased by 1. Noting that the series ) ,® 1/n diverges, and that the difference
between two successive partial sums of this series can be made less than any given
number ¢, one concludes that this technique of choosing N is mathematically un-
sound.
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random variable zy, one can show that these two bounds are fairly
close to each other and that one can evaluate the distribution function
of the sum of the variables in terms of the distribution function of zy
and the bounds on the distribution function of z .

We then use these bounds to obtain upper and lower bounds on the
error probability of a binary coherent digital system in the presence
of intersymbol interference and additive gaussian noise. Since the
difference between the upper and lower bounds can be shown to be a
monotone decreasing function of the number N of pulses in the finite
pulse train, the bounds can be used to compute the error probability
of the system with arbitrarily small error.

Also when the system performance is evaluated by simulation tech-
niques, the methods presented in our paper can be utilized to estimate
the error caused by using a finite pulse train approximation.

If the symbols are equally likely, we also show that another set of
upper and lower bounds can be derived for the probability of error of a
system subject to intersymbol interference and additive gaussian noise.

The usefulness of the bounds is illustrated by two examples.

II. DISTRIBUTION FUNCTION AND ITS EVALUATION

Let us assume that a random variable z is the sum of two random
variables zy and z5 ,

z =2y + Zp, (1)
and that we are interested in the distribution funection of z
F.a) = Prlz £ a] = Przy + 2 = al. (2)

In this section we shall also assume that zy and z, are statistically
independent random variables.

The probability of error of a large number of digital systems subject
to various forms of noise can often be expressed as a weighted sum of
F.(a)’s. If z is the sum of an infinite number of random variables, and
if zy represents its partial sum of the first N terms, we sometimes can
evaluate F,,(a), but F.(a) can seldom be computed exactly. In such a
case it is often advantageous to obtain upper and lower bounds to
F.(a) in terms of F,,(a) and some known parameters associated with
the random variable 2z, , the sum of the remaining terms in z. If the
difference between the two bounds is a strictly monotone-decreasing
funection of N, we can then calculate F.(a) with arbitrarily small error.

Without loss of generality we shall assume that the mean of z, is
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zero. From (2) we can write (see Fig. 1)

if the joint probability density function f,, ..(z, y) exists; and

r@ = [ [ ar,@ara = [ Fue -9 ar.o,

or

F@ = [ [ oo ) dzdy

Fz(a') = (Fz.v(a - yzn))sn -

3

4)

()

Let us now select an interval (— Al, Au) from the range of the random

variable z, .

where

and

From (4) we can write

Flo) =1, +1,+ I,

—Al
Il = f_ F'SN(a - y) dFZR(y)J

Au
Iz = j:Ai: Fzﬁ(a - ?}) szﬂ(y)r
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Fig. 1—Distribution funetion of 2 = 2y + zj.

(6)

@

(8)

(9)



ERROR BOUNDS IN DIGITAL SYSTEMS 3131
One can show (see Fig. 2) that

0

1A

Ls [ dr.0) = Fa(-a, (10)

0SS Fya— o) [ dF.0) = Fule = M)[1 = F.,(a0)
é Fz.v(a + Al){l - an(Au)Is (11)
Lz Faa— 80) [ o) = Fuula — 8)[F.y(8) — Fp(=AD),
e (12)
and
LS P+ a) [ dF,0) = Pafa+ ADIF.,(80) — F.,(~aD).
— (13)
Combining (6) with (10)-(13), we have
Foua — Su)(F,, (&) — F.o(~AD]
= Fz(a) = an(_Az) + Fz,v(a + AI)[]- - an(_Al)]
< FLu(=aD + F.(a + 8. (1)

In general it is not easy to compute F. ,(y). However we may be able
to bound F. ,(y) so that

0 < F.(—Al) =Prlzg = —Al] £ L, (-Al) =1, (15)
0=<1-—F,,(Au) = Prlzz > Au] = U, (Au) = 1, (16)
and
1= F, (Au) — F.,(—Al) = Pr[—Al < zp £ Ayj
21— L.,(—AD) — U,(dw) 2 0. (17)
If these bounds can be found, (14)—(17) can be made to yield
F..(a — Au)[l — L., (—Al) — U.,(&w)] = F.(a)
< F..(a + AD) + L., (—AD. (18)

These are the basiec bounds that we shall use in the rest of this paper.
If the mass of the distribution of zp is very much concentrated
around y = 0, our technique of computing F.(a) from (18) relies on
the assumption that we can find two numbers Au and Al such that
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Fig. 2a—Distribution function F.,(x). ) ) .
Fig. 2b—Distribution funetion F.,(y). The interval (—Al, Au) is contained in
the range of zg, and for all practical purposes the mass of 2 is contained in (—Al,
Au).

A K |al|, Al << |al, L.,(—Al) < F,,(a), U,,(Au) < F,,(a), and
F..(a — Au) =~ F.,(a + Al).

The difference D{Au, Al) between the upper and lower bounds can
be written as

D(Au, Al) = Prja — Au < zy = a + Al]
+ F, (@ — AL, (—Al) + U,.(Aw)] + L., (—al).  (19)

If Au and Al can be so chosen that they are strictly monotone-decreasing
funetions of N, Au — 0, Al — 0, as N — o, and if the bounds on the
distribution of z, are such that, for sufficiently large N, L,,.(— Al)
and U,,(Au) can be made smaller than any given number ¢ , we can
estimate F,(a) from (18) with arbitrarily small error.*

For any given N even though Au and Al can be chosen by optimizing
the bounds in (18), this optimization leads to very complex equations.
Hence we think that an algorithm should be developed to choose Au
and Al for any given zy and z; . The development of this algorithm
will be illustrated by an example in Section IV.

* We assume that Pr(ea — 0 <ay =a + 0] = 0.



ERROR BOUNDS IN DIGITAL SYSTEMS 3133

2.1 Lower Bound Evaluation with Convex F.,(a)

We shall now derive a simpler lower (upper) bound to F.(a) if F.,(a)
is a convex (concave) function and if z; is an even random variable,
or

F.(=1)=1-—F.\). (20)

From (20) one can show that the mean m of z is zero, and that its
probability density f.(t), if it exists, satisfies the equation .

f(=t) = 1.0). (21)

If 'z, is an even random variable, we shall set Au = Al in (18).

Let us now assume that z, is an even random variable and that F'. , (a)
is eonvex over the range (@ — Au, @ + Au) where (— Au, Au) is the
range of z, . Since 2z, is an even random variable

F.a) = (F..(@ = y.))ex = (Fas(@ + Yin))in (22)
or
F.a) = GF.\(a — y.x) + Foy(a + y.n))):n - (23)
Since F,,(a) is convex over the range (@ — Au, a + Au),"
3lF. (e — y..) + Fola + y..)] 2 F.y(a). (24)
From (23) and (24) we have
F.a) = F.,(a). (25)

Since this bound does not contain Auw and Al, it is simpler to calculate
than that given in (18). It is also tighter than the lower bound in (18).
In this case we then have

F.,(a) = F.(a) = F.i(a + Al) + L., (- Al). (26)

If F..(a) is concave over the domain (¢ — Al, @ + Au) and if 2z,
is an even random variable, we can similarly show that

F..(a) =z F.(a) =2 F.,(a — Au)[l — L.,(—Al) — U.,(aw)]. (27)

2.2 Evaluation of Another Upper Bound {o F.(a)

Often we find that z contains a gaussian random variable n and can
be written as

z=n4+ wy + z2p = 2y + 2z, v = n + wy, (28)

where n, wy, and zz are statistically independent random wvariables.
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We have already assumed that the mean of z is zero. Without loss
of generality we shall now assume that the mean of n is zero, and its
variance is o°.

From (28) one can show that

F. . (a) = %<erfc (—_0564'_2:@1_.;_)>w ) (29)
where
erfe (z) = :i—_ fm exp (—1°) dt. (30)

Hence we have'”""®

F,.(a) = % erfe ( \/ﬁ) \1/— exp [—a’/2¢°]

3 (- DHo(—a/oVB)1/eVD /R, (3)

where H,(z) is the kth order Hermite polynomial and u, is the kth
moment of wy ,

wo= [ ot dF.,). (32)
If the range (—, , Q) of wy is finite and if @ denotes the maximum

absolute value that can be attained by wy , we can show that

| eee | < meQ', k20,520, (33)

mo= [ 1ol dF.,@. (34

m, is called the kth absolute moment of wy .
If the first K moments are used in estimating F,,(a) from (31), the
truncation error 7'x is given by

T, - ;/-1-; exp (—a*/20%) i (= ' H, (= a/oVD)(1/ovE) u k1. (35)

Since it can be shown'® that
| H(8) | < b2*V/nlexp (#/2), b~ 1.086435, (36)
one can show from (35)-(36) that



ERROR BOUNDS IN DIGITAL SYSTEMS 3135

Mx Q/a
|T;\|<(b/\/27r)exp( a/4cr) (?_*(T{‘)”l\f——

From (31) and (37) one may observe that F,, (a) may be estimated
with as great an accuracy as desired if the range of w, is finite and if
the moments of wy are known.

If wy is an even random variable, we can also show that

piag—1 = 0, k=1 (38)

10,18

F..(a) = } erfc (—a/oV2) + \/— exp (—a’/24%)

- Z Hoyoi(—a/av2)(1/aV2) i/ (2k)!  (39)
b I-lzx (9/9')2
Vo P (T ok VR T D
1 — (2/0)*/ VK + 2)(2K + 3)]"
(2/0)*/[(2K + 2)(2K + 3)]'"* < 1. (40)

| Tox | <

By using the inequality™
| Howon(8) | £ 8] exp (7/2)(2k + 2)!/(k + 1)1, (41)

we can also show that

T | = 0L exp (—at/aa') 225 00 11— (/o) (K + 2017

(@/a)/(K+2) <1. (42

If z, is an even random variable, we have
F.(a) = Yerfe [(—a + Tuy + ¥:0)/V2])un.en
+ %(el‘fc {(_a' + Twy — yzn)/‘ﬂ/QDwH.zﬂ . (43)

Since one can show (see Appendix A) that

LTerfe (x + N) 4+ 3 erfe (x — N) = erfe (), =0, (44)
we can write
Fz(a‘) ; %<erfﬁ [(_a’ + Iu'.\')/a‘/é:i)w.v ’ —a + Twy g 0:

F..(a), —a+ x,, =0, V Tyy (45)
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Now from (28) we can write

F.a) = 5(uy.cn)wr.en s (46)
where
Nuy.2r — erfe (:El}: T, = (—'a’ + 2.y + ym)/‘f\/‘l
— 2 [ exp (= (st en/oVE) ds, 2 = (—a + Tu)/0VE.
\/ aa @
Since
exp [_(yzn/'ﬂ/é)z] = 1: v Yer (48)
we have
teran S = [ e 1= = s(V2/y. ) ds (49)
F.(a) = Y <fm exp [—5" — 3(V2/0)y.,) ds>”.m (50)
- ﬁ—r < [ e (=), (—sv2/0) ds>w , 1)
where
5,0 = [ exp () dF., () (52)

is the moment-generating function of the random variable 2z .
If we can find two numbers m, and o7 such that

&, (1) < exp [tmy + ot/2), V¢ (53)
one can show from (51) that

F.(a) < B..(a, mg , 03) = (1 — o2/0") 7" exp [m2/ ({206’ (1 — o&/d")}]
o[22 pimdmr =) | e o

The derivation of the upper bound in (54) is based on results given
in Ref. 20.
In this case we then have

F..(a) £ F.(a) = B.,(a, mp, oz),
—a+ T,y =0, a'j.l,?/u:r2 < 1, V Tuy - (55)
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Since the lower bound in (55) may not be valid if —a 4 z,, can be
nonpositive for some value of z,, , and if the maximum absolute value
of z., is a monotone-increasing function of N, we note that there is
an upper bound N, to N that can be used in estimating the lower
bound in (55). If this upper bound N ... < «, we may not be able to
estimate F,(a) from (55) with arbitrarily small error. However if
there is no finite upper bound to N such that —a <+ z,, is nonpositive
(system with an “open eye pattern”) and if | m, | and o7 are strictly
monotone-decreasing functions of N, it is clear that we can estimate
F.(a) from (55) with any desired accuracy.

11I. BOUNDS ON THE TAILS OF PROBABILITY DISTRIBUTIONS

To use the bounds given in (18), it is necessary to determine L, , (Al)
and U, ,(Au). There are several methods (including numerical methods)
of determining these parameters, and here we shall discuss two of them.

From Chebyshev-Bienayme bounds'®'*' we have
Prlzp < —Al] £ E‘:l"));: , (56)
Pr[zz > Au] < ((“AT))z , (57)
where
(nui'n I (y (58)
Hence we can set,
L,R('—O:) zn(a) (Hzn)xn (59)

Also in communieation problems, bounds of the Chernoff type have
been used on the tails of the probability distributions, and these Chernoff
bounds are often tighter than the Chebyshev-Bienayme bounds.”*"*'~*

One can show™ that

Przz £ —Al] £ exp (—\ Al{exp (—My..))
= exp (_)\ AI)‘I)HQ(_)\)J Az 0: (60)
Pr [z > Au] < exp (—\ Aw)®, . (7), A= 0. (61)

The parameter X is arbitrary and is chosen so as to optimize the bounds
in (60) and (61).
If we can find two funections ¢.,(—\) and ¥, () such that

0 = ‘I’:g(_)\) = ’I’:n(_)\)J Az 0; (62)
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and
0=a,00) 7.0, Az 0, (63)

and then optimize exp (—X Aly.,.(—)) and exp (—\ Auw)¥,,(A), we
can make

LG(_Al) = exp (_)\npt Al)\bzn(_}\upt)s (64)
and
U..(Au) = exp (—Aope AW, 5 (Nope)- (65)

The functions ¢, ,(—A) and ¥, ,()\) are often chosen so that (64) and
(65) have the desired functional forms for optimization.”"**** From
(52) one may note that it is not necessary to determine (explicitly)
®,,.(\) to get ¥, .(—X) and ¥, ,(A). Bounds can be used to determine
these functions. Also one may make use of the semi-invariant moment-
generating function of 25 in determining ¥, .(—\) and ¢, . (\).

If 2z is an even random variable, note also that

P..(—N) = ®.,(\), A20, (66)

and we can make
Yoo (N = ¥, (N, 220, (67)
Lop(—a) = U.,(e) = exp (—odop) Wag (Aap).- (68)

1V, ERROR BOUNDS WITH INTERSYMBOL INTERFERENCE AND ADDITIVE
GAUBSIAN NOISE

The methods presented in Section II are now applied to the analysis
of a binary coherent digital system subject to intersymbol interference
and additive gaussian noise. Various methods have been proposed to
evaluate this error probability.' ** They provide either an upper bound
to the error rate or error rate with a finite pulse train approximation.

Let us now assume that the signal at the input to the receiver detector
(see Fig. 3) ean be represented as

o0

y(t) = [E ap(t — IT) + n(t), (69)
where n(t) is a gaussian random variable with mean zero and variance ¢°.
We shall also assume that {a,} is a sequence of independent random
variables, and @, = =41 with equal probability.

If the zeroth transmitted symbol is @, = 1 and if it is detected by
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ADDITIVE GAUSSIAN NOISE

Takd(t-kT) ;\r.l?'?'PESR__._ CHANNEL RE?IF‘I'IEER Eakp(t—kT)‘#nﬂ'ﬂ
——*{ FiLTER clf) RiE)
Tif)

3—Slm‘fhﬁed block diagram of a coherent digital communication system.
C(f ), (f), and R(f) denote respectively the transfer functions of the channel, and
transmitting and receiving filters. T is the signaling interval.

sampling y(f) at t = #,, we can show that

y(to) = plta) + 22" aplle — IT) + nlt), (70)

where D’ does not include the term [ = 0. Assuming that the slicing
level of the system is zero, and that there are no other imperfections in
the system, we can show that the probability of error P, can be written as

=Prln+ 2 ap < —pol, (71)
where
pe = |plta —IT) |, (72)
and
n = nlty). (73)

Without loss of generality we shall now reorder sequence {p,} in
such a way that the terms of the sequence are nonincreasing with
increasing [, and let us denote this new sequence by {7.}. Hence we can
write |

P, = Pr [n + i ar, < —pu] (74)

or
P, = Prz < —po] = F.(—po), (75)
z2=n+ iakrk=z,\r+zn, (76)
z,‘.zn+*)‘:”akr,,, o =11,2,3,--- N}, @
Wy = 2y — N, (78)
Zr = D @y . (79)

kefne
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Sinee zy and 2z are statistically independent random variables, (18)
gives bounds to F,(—p,). Let us first determine F,,(a) where a =
—po + Auor a = —p, — Al. Methods given in Section 2.2 can be
used in determining F,,(a).* We would like to note here that (31)
must be used in determining F,,(e) when 41 and —1 do not occur
with equal probability.

The recurrence relation given in Ref. 10 to calculate the even order
moments p,,’s is to be used with care since the summation in the recur-
rence relation contains both positive and negative terms. In Appendix B
we give another recurrence relation to compute p,,’s (and py44’s, L = 0).
Since the new recurrence relation for u,,’s contains the summation of
positive terms only, we consider this method of computing p,,’s pref-
erable to that given in Ref. 10.

We used (31) and our new method for computing p,,’s to calculate
F.y(a).

We shall now determine L,,(— Al) and U,.(Au). Since 2 is an
even random variable, we will set Au = Al, L,.(—Au) = U, (Au).
Also one can show” that

®,,(\) = ]I cosh ar,

kefn©

IIA

2
expl:)\zh-l-%ZTf:I, A+ A =y, (80)

leA leA®

From (68) we have

{ {Au — ):n}“} 5
_‘—_—A—z , Au — T[gO;ACﬁV'
2 E'fz 4 (81)

Ae

U,.(Au) = e

Equation (18) now yields

[Au — ?'x]
F,(—po — Au{l — 2 expl— Z x ﬂ

Ac

[Au — D7)
< F.(—po) £ F..(—po + Au) + exp ——z—i%— . (82)

Ac

For any given N, an optimum Au can be chosen to minimize the
difference between the upper and lower bounds in (82). This is often

* Other methods (including simulation) can also be used in determining F.,(a).
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found to be difficult and tedious and relies heavily on the search methods
given in Ref. 7.
Here we assume that
A= .(Arr'r (83)

and we write
F.(=po — M1 — 2 exp {—(Au)’/26%}]
< F.(—po) £ F.o(—po + Au) + exp [—(&w)'/28%],  (84)
By = D 1. (85)

tve
Note that any number 82 = D, +* can be used in computing the
bounds in (84). This may be done to simplify computing >, #%.

The difference Dy(Au, Au) between the upper and lower bounds
can be written as

Dy(Au, Au) = Pr[—p, — Au < zy = —po + Aul
+ exp [—(Au)*/28z111 + 2F. (—py — Aw)}. (86)

Since B2 is a strictly monotone-decreasing funetion of N, Dy(Au, Au)
can be made smaller than any given number e. Hence we can calculate
F.(—p,) from (84).

Several different algorithms can be developed to compute F.(—p,).
One of our algorithms is as follows. Let us assume that we have to
caleulate F.(—p,) with a fractional error less than e, .

Since F.(—p,) = 1, we assume that there exists an N such that

| Fou(=pa) — F.p (=) | < &, (87)
where
e < 3o min [F, . (—po), F....(—po)}. (88)
For this N we ealculate 3 and choose Au so that
exp [—(Au)*/28;] = /3. (89)
We then calculate Dy(Au, Au) and compare it with
x, = el (—po — &)1 — 2 exp {—(Au)*/28z}]. (90)

We inerease N so that

Dy.(Au, Au) £ x N' = N. (91)

N
It is not neeessary to increase N in steps of one. The step size can be
chosen to suit particular examples.
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From (18) and (91) we can write

Ay (—po) £ F.(—po) £ By:(—po), (92)
Ax(—po) = Fuy(—po — Au)[1 — 2 exp {—(Aw)’/26%}],  (93)
Bu(—po) = F.,.(—po + Au) + exp {—(Au)/26%}, (94)
By (—po) — Ax(—po) = e Av (—po). (95)

It is evident from (92) and (95) that F.(—p.) is equal to Ay.(—po)
or By.(—p) with an error less ¢ .

We have programmed this algorithm on a digital computer and we
have been very successful in evaluating F,(—p,) from this algorithm.

4.1 Applications

Let us now assume that p(f) is obtained by passing a square pulse
through a single-pole RC-filter or that

p(t) = 0, t<0 (96)
p(#) = 1 — exp (—27W1), 0it=T, (97)
p(t) = exp [—2«W(t — T)] — exp [—2xW{], t=T. (98)

For this pulse we can write

po=1—exp (—2«Wt), 0=t =T, (99)
and
re = [1 — exp (—2xWT)] exp [—2«W {t, + (K — 1)T'}],
k=1 (100)

For 2WT = 0.5, and &% = T, we plot in Fig. 4 F.(—p,) with an
error less than 0.2 percent. In this figure we also plot N’, the number
of terms required in estimating F,(—po). F.y(—po) is calculated from
(31) with a truncation error of less than 0.01 percent.

Let us now consider the ideal bandlimited pulse p(t) where

_ sin nt/T
p() = T2TE (101)
Po = S‘fr‘;a, §=1tT <1, =0, (102)
Fay = —md k=1, (103)

lk — 8]’ =
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Fig. 4—Probability of error of binary coherent digital system with intersymbol
interference and additive gaussian noise. The received pulse is an exponential pulse,
and 2WT = 0.5, The upper bound By.(—po) is plotted in this figure and N was
increased in steps of one. [By:(—po) —F.(—po)l/F.(—ps) < 0.002. The truncation
error is less than 0.01 percent.

_ smmwd
Tor = 11';_-;[]{: T 6 kE=1. (104)

We shall assume that we take an even number of terms in wy in estimat-
iﬂg FZN(_pU)'
We have

2 Z 2
Br = m
I1=2N+1

= sin’rws 1 1
B k=§1 L [(k — &)’ + (k + 5)2]

2 12 2 N
< 27((11 + sz))z s [’g— - 1/12] =ah.  (105)

™

Since a2 is more easily computed than 87, we shall use az in (84).

For § = 0.05 we plot in Fig. 5, F,(—p,) with an error less than 50
percent when F,(—p,) = 2 X 107° and less than 100 percent when
F.(—po) < 2 X 107° In this figure we also plot N’ the number of
terms required in estimating F,(—p,). Since aj is a slowly decreasing
function of N, the number of terms required for estimating F,(—po)
is much larger than that in the earlier example.

Since zy contains a gaussian random variable and since zp is an even
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random variable, (55) can also be used to obtain upper and lower
bounds to F.(—p,). Equations (53) and (80) can be shown to yield

me = D11, (106)
A

o= St (107)
=

By choosing A° = {5, we obtain the bounds given in Ref. 20.

Here we would like to note that the relative merits of the two sets
of bounds cannot be compared as the bounds in (55) may not be appli-
cable when the system has a closed eye pattern. The lower bound in
(55) can be shown to be tighter than that in (18) but is not applicable
to a system with a noneven 2z . The random variable z is noneven
if +1 and —1 do not oceur with equal probability. From the point of
view of computation, tightness, and applicability, we think that specific
problems should determine the set of bounds best suited to them.

The extension of this analysis to m-ary coherent digital systems,
m > 2, and binary coherent phase-shift keyed systems is obvious from

NUMBER OF TERMS N'xi1073

_17 7 7 7 7 T 12 7476 718 8 8
10 T T T T T T

g 1072 AN

S \
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[ \
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@ \

o

o 10758 N,

o

o \
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1077 \\
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5 7 9 n 13 15 A 19
SIGNAL-TO-NOISE RATIO IN DECIBELS

Fig. 5—Probability of error of binary coherent digital system with intersymbol
interference and additive gaussian noise. The received pulse is an ideal bandlimited
pulse, and it is sampled at fo, £ = 0.05. The upper bound By (—po) is plotted in
this figure and N was increased in steps of 100. [By/(—po) —F.(—po)l/F:(—p0) <
0.5, Fo(—po) = 2 X 1075 [By:(—po)—F.(—po)l/FAA—p) < 1, Fo(—po) < 2 X
10—%, The truncation error 1s less than 0.1 percent.
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Zr

2
. // z

dP{S) Pr- zn+zR< a

.

Fig. 6—Distribution function F.(a) = Prlzy 4 2z < al.

Refs. 7 and 9. The analysis for higher-order phase-shift keyed systems

needs extensive modification and will be treated in a future publieation.

V. DISTRIBUTION FUNCTION F',(a) WITH ARBITRARY Zy AND 25

Consider two one-dimensional random variables zy and z; . The
joint probability distribution of zy and zj is a distribution in ®?, or a
two-dimensional distribution.

Now the probability distribution of z = zy + 2 is given by (see
Fig. 6)

F.(a) = Prey + 2z = al
- f dP(S),  (x,4)eQ if z+y=<a  (108)
q
and P(S) is the probability function of zy and z, .'* P(S) represents

the probability of the relation (z, y) C S.
Since dP(8S) = 0, note that (see Fig. 7)

1A

f aPS) < [ aP(S) + [ dP(S), @ y)e@ if z <a-+ AL
Q Qa

9

(x,)eQ if y

1A

(109)
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Fig. 7—Upper bound on distribution function F,(a).

N

Since
fa dP(S) = Pr ey < a + All = F.,(a + Al), (110)
f dP(S) = Pr [z < —All, (111)
Qs
F.a) = F,,(a + Al) + Pr [z, = —Al]. (112)

Also we have (see Fig. 8)
[aP®z [ ars)— [ aP®), @ e i 2sa-
Q Qs Q.

(@, We@ if y=aAu (113)

Since

fa dP(S) = Prey < a — Au] = F. (a — Au), (114)

fo dP(S) = Pr s = Aul, (115)

F.(a) = F.,(a — Au) — Pr [z = Aul. (116)
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From (112) and (116) we can write
F,,(a — Au) — Pr[zz = Au]
< F,(a) £ F,,(a+ Al) + Prlzx £ — Al (117)

Equation (117) is valid even when 2y and zj are statistically dependent
random variables.

If the distribution of z, is very much concentrated around some
point ¥ = ¥, , it was shown in Sections II and IV that F,(a) can be
evaluated with arbitrarily small error if zy and z; are statistically in-
dependent random variables and if we ean bound F,,(A). If zy and z,
are statistically dependent random variables, equation (117) shows
that the same techniques can be used to compute F,(a) if the distribu-
tion of 25 is very much concentrated around some point ¥ = ¥, .

VI. CONCLUSIONS

We have presented simple upper and lower bounds on the distribution
funection of the sum of two random variables in terms of the marginal
distribution functions of the variables.

We have also derived several other bounds when one of the random
variables is a gaussian random variable or when one of the distribution
functions is convex or conecave.

dF'(S) Pr[zgemﬂ/
Q

2

BN
—

s

AU I Au

7
dP(S) PI' zNSa Au

-

Fig. 8—Lower bound on distribution function F.(a).

IntZp=a
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These bounds are then applied to the error rate analysis of a binary
coherent, digital system subject to intersymbol interference and additive
gaussian noise. Since the difference between the upper and lower
bounds is a monotone decreasing function of the number of pulses in
the finite pulse train, the bounds can be used to compute the error
probability with arbitrarily small error. Application of these bounds
is illustrated by two examples. Relative merits of the bounds are also
briefly discussed.

Many other applications including the analysis of co-channel and
adjacent channel interference in communication systems will be evident
to the reader. Some such novel applications will be given in a future
publication.

APPENDIX A
Let us write
G(a) = 3 erfe (z + a) + 3 erfe (z — a). (118)
If x = 0, one can easily show that
1 erfe (o) + 3 erfe (—a) = 1 = erfe (x). (119)

We shall now assume that z # 0. Also since G(«) is an even function
of a, we shall consider @« = 0. From (31) and (118) we can write

G'(e) = \/— [exp {—(z — @)’} — exp {—(z + @)®}].  (120)

Note that G'(0) = 0 and that there are no other finite stationary
points of G(a), z # 0. Further one can show that

G'(a) > 0, x>0, a >0, (121)
G'(a) <0, z <0, a > 0. (122)

From (118), (121), and (122) we then have
s erfe (x + o) + 3 erfe (z — o) = erfe (z), z =0, (123)
terfe (x + ) + 3 erfe (z — ) = erfe (z), z 2 0. (124)

For the sake of completeness we would like to note here that erfe (z)
is a convex funection for z = 0 and is concave for x < (0. Hence we
can also show that

p erfe (x + a) + (1 — p) erfe (r — )
=erfe(z), t+az=0 z—a=20, 02p=1, (125)
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and
perfe (x + a) + (1 — p) erfe (x — a)

<erfc(x), 4+ a=<0, z—a=0, 0=2p=1 (126)
Observe that (125) is not sufficient to prove (123).

APPENDIX B

Let 7. denote the partial sum »_%_, £ where

N

wy = P&, (127)

i=1

and £,’s are statistically independent random variables. From (32) and
(127) we can write

pa = 20,) = 6.(N) (128)
where
0,(0) = (1), nz=1l () =1 (129)
Now
0.(k) = {m— + &I E>1, (130)
or
8,(k) = Z (’;)a,,(k — Daw,(k), Ek>1, (131)
where
ao(k) = (&™)  ak) =1, k=l (132)
Since
6.(1) = (m) = (&) = a.(1), (133)

and since we shall assume that all e, ,(k)’s are known or can be eval-
uated, we have a recurrence relation in (131) to compute u, .

Often £.’s are even random variables, and in this case we can show
that

More1 = 0) I % 01 (134)
M2n = an(AT y (135)

2n

G:n(k) = E (3;)&;:(19 - 1)a2n—2p(k)' (136)

=0
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The recurrence relation (136) contains only the sum of positive terms,
and hence can easily be used to compute u,,’s.

In Section IV, & = awre, porsr = 0,1 = 0 and ey, (k) = 13,7 = 0.
All even order moments of wy can therefore be easily caleulated from
(136).

In Refs. 18 and 25 methods have been developed to calculate u,, of
the random variable 8 where

K
o= > R, cos 6; (137)
i=1

and @;'s are independently distributed random variables uniformly
distributed over the range [0, 27). Most of these methods use an infinite
series expansion, and often the accuracy obtained from these methods
is questionable.*

Noting that we can set ¢; = R; cos 8;, pory = 0,1 = 0, and

az:(j) = ((R; cos Bi)2i>
or

(20)!
22f(i!)z ’

ax(j) = B} (138)

all even order moments y,,’s can be calculated by using (136) and (138).
This method of ealeulating w,,’s can be shown to be analogous to
that given in Ref. 26 and is preferable to that in Refs. 18 and 25.

REFERENCES

1. Lucky, R. W, Salz, J., and Weldon, E. J., Jr., Principles of Date Communication,
New York: McGraw-Hill Book Co., 1968, pp. 59-63.

2. Aaron, M. R., and Tufts, D. W., “Intersymbol Interference and Error Prob-
ability,” IEEE Trans. Inform. Theory, IT-12, January 1966, pp. 26-34.

3. Aein, J. M., and Hancock, J. C., “Reducing the Effects of Intersymbol Inter-
ference with Correlation Receivers,”” IEEE Trans. Inform. Theory, IT-9, July
1963, pp. 167-175.

4. Calandruno, L., Crippa, G., and Immovilli, G., “Intersymbol Interference in
Binary and Quaternary PSK and DCPSK Systems,”’ Alta Frequenza, 38,
May 1969, pp. 337-344.

5. Tufts, D. W., “Summary of Certain Intersymbol Interference Results,”” IEEE
Trans. Inform. Theory, IT-10, October 1964, p. 380.

6. Saltzberg, B. R., “Error Probabilities for Binary Signal Perturbed by Inter-
symbol Interference and Gaussian Noise,”” IEEE Trans. Com. Sys., CS-12,
March 1964, pp. 17-120.

7. Saltzberg, B. R., “Intersymbol Interference Error Bounds with Application to
Ideal Bandlimited Signaling,” IEEE Trans. Inform. Theory, IT-14, July
1968, pp. 563-568.

8. Lugannani, R., “Intersymbol Interference and Probability of Error in Digital
Sggtems,” IEEE Trans. Inform. Theory, IT-15, November 1970, pp. 686—
688.



10.

11.
12.

13.
14.
15.
16.
17.

18.

22,

24,

25.

26.

ERROR BOUNDS IN DIGITAL SYSTEMS 3151

. Prabhu, V. K., “Performance of Coherent Phase-Shift Keyed Systems with

Intersymbol Interference,’” IEEE Trans. Inform. Theory, IT-17, No. 4
(July 1971), pp. 418-431.

Ho, E. Y., and Yeh, Y. S., “A New Approach for Evaluating the Error Prob-
ability in the Presence of Intersymbol Interference and Additive Gaussian
Noise,”” B.S.T.J., 49, No. 9 (November 1970), pp. 2249-2266.

Celebiler, M. 1., and Shimbo, O., “Intersymbol Interference Considerations in
Digital Communieations,” ICC Record, June 1970, pp. 8.1-8.10.

Shimbo, O., and Celebiler, M. I, “The Probability of Error Due to Intersymbol
Interference and Gaussian Noise in Digital Communication Systems,”” IEEE
Trans. on Com. Tech., COM-19, No. 2 (April 1971), pp. 113-119.

Mullins, J. H., “A Computer Program Simulating the Two-Level Millimeter
Wave Waveguide Communication System,’” unpublished work.

Tu, P. J., “A Study of the System Impairments for the Two-Level FM-DCPSK
WT-4 Transmission System,’’ unpublished work.

Cramer, H., Mathematical Methods of Sialistics, Princeton University Press,
Princeton, N. J., 1957.

Wagner, H. M., Principles of Operations Research, Englewood Cliffs, N. J.:
Prentice-Hall, 1969, pp. 592-596.

Pagones, M. J., “Error Probability Upper Bound of a Coherently Detected
PSK Signal Corrupted by Interference and Gaussian Noise,”” unpublished
work.

V. K. Prabhu, “Error Rate Considerations for Coherent Phase-Shift Keyed
Systems with Co-Channel Interference,”” B.S.T.J., 48, No. 3 (March 1969),
pp. T43-767.

. Abramowitz, M., and Stegun, I. A., Handbook of Mathematical Funclions,
20.
21.

Washington, D. C.: National Bureau of Standards, 1967, p. 787,

Yeh, Y. S., and Ho, E. Y., “Improved Intersymbol Interference Error Bounds
in Digital Systems,” B.S.T.J., 50, No. 8 (October 1971), pp. 2585-2598.

Algazi, V. R., “Bounds on the Spectra of Angle-Modulated Waves,”’ IEEE Trans.

om. Tech., COM-16, No. 4 (August 1968), pp. 561-566.

Chernoff, H., “A Measure of Asymptotic Efficiency for Tests of a Hypothesis
Bu;ed on a Sum of Observations,”” Ann. Math, Stat., 23, April 1952, pp. 493-
507.

. Bennett, G., “On the Probability of Large Deviations from the Expectation

for Sums of Bounded, Independent, Random Variables,”” Biometrika, 50,
1963, pp. 528-535.

Prabhu, V. K., “Error-Probability Upper Bound for Coherently Detected PSK
Signals with Co-Channel Interference,” Elec. Letters, 4, August 1969, pp.
383-385.

Rosenbaum, A. 8., “Binary PSK Error Probabilities with Multiple Co-Channel
Interferences,” IEEE Trans. Com. Tech., COM-18, No. 3 (June 1970), pp.
241-253.

Goldman, J., “Moments of the Sum of Circularly Symmetric Random Variables,”
to be published.






