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An infinite trunk group split into a finite first-choice group and an
overflow group is studied. The equilibrium distribution, at an arbitrary
instant, of the number of busy trunks in the overflow is obtained for the
case of Poisson inpul and constant holding time. Some numerical com-
parisons of variances and distributions for exponential and constant
holding time are given. The variance of the overflow was found fo be always
the grealer for constant holding time, and in the case of one trunk in the
first-choice group this inequality is proven lo be true analyiically. In some
cases studied, the variances differ markedly—by as much as 50 percent.
Implications of these results for the traffic engineering of overflow groups
with nonexponential holding time are discussed.

I. INTRODUCTION

We consider an infinite trunk group which is split into a finite first-
choice group and an overflow group. Calls that find all trunks busy in
the first-choice group are placed on the overflow group. It is assumed
that the input is Poisson and that the system is in equilibrium. Under
these conditions the distributions of the number of calls in the total
group and of that in the first-choice group are known and, for a given
load, are independent of the holding-time distribution. For the case of
exponential holding time the distribution of the number of calls in
existence at an arbitrary instant in the overflow group is also known,
having been found by Kosten in 1937." The latter distribution, in
particular its second moment, is basic to the method of engineering
overflow groups, often called the ‘“‘equivalent random” method, pio-
neered by Wilkinson and Bretschneider. (See Ref. 2 for a deseription of
this method.) If this distribution were also independent of the holding-
time distribution, then the equivalent random method could be applied
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with uniform validity regardless of the underlying holding-time dis-
tribution.

It is indeed tempting to speculate that the overflow distribution has
this independence property, since the number of busy trunks in the
overflow group is the difference between two random variables: the
number of busy trunks in the total group and that in the first-choice
group, each of which is independent of the holding-time distribution.

Unfortunately the simple example of constant holding time studied
here proves that the overflow distribution does in fact depend on the
holding-time distribution. This result is reminiscent of that of Ténge
and Wikell,> who found that the blocking probability in a grading
depends on the form of the holding-time distribution. In the case of the
grading the differences between the blocking probabilities for constant
and exponential holding times are too small to be of practical signifie-
ance. In contrast, the differences between the respective overflow
distributions, as measured by the relative differences between variances,
can be quite large, running close to 50 percent in some cases.

Unpublished work by N. P. Archer indicates, nevertheless, that when
the equivalent random method is based on constant holding time, the
results of engineering a first-stage overflow group are essentially the
same as when the method is based on exponential holding time. That is,
for a given configuration of first-choice groups and Poisson offered
loads the equivalent random method, consistently applied, results in
the same size overflow group for a given loss probability whether the
holding time is taken to be constant or exponential. Thus the computing
aids—that is, algorithms, tables, and graphs used in the application of
the equivalent random method—which are based on exponential-
holding-time theory can be used without change, as a practical matter,
for the purpose of engineering a single overflow group even when the
holding time is eonstant. A word of caution, however, is in order. It
should be obvious that the substitution of an exponential for a constant
holding-time distribution must be done throughout the procedure, in
the calculation both of the overflow variances and of the size of the
equivalent group. If exponential theory is used for the overflow vari-
ances and constant theory for dimensioning the equivalent group, there
will be a bias toward too few trunks in the overflow group and the
service may be significantly worse than that aimed for. If the opposite
error is made and the overflow variances are based on a constant hold-
ing-time assumption while the exponential charts are used for estimating
the size of the equivalent group, the overflow group will be over-
engineered. The latter erroneous result will occur also if constant-
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holding-time overflow variances are estimated by actual measurements
of overflow traffic rather than, as is done presently, from theoretical
considerations only, and if consideration is not given to the effect of the
holding-time distribution on the overflow variance.

It is fortunate that the constant-holding-time case is tractable, since
constant holding-time represents an extreme point in the set of holding-
time distributions when these are ordered according to their coefficients
of variation. It is reasonable to conjecture, for example, that an overflow
variance for any holding-time distribution whose coeflicient of variation
is less than unity will differ less from that for exponential holding time
than does the overflow variance for constant holding time. Thus, if the
equivalent random method is applicable in the case of constant holding
time, it is a fortiori so when the coefficient of variation of the holding
time distribution is between zero and one. Furthermore, the fact that
a constant-holding-time equivalent random procedure yields results
which are almost indistinguishable from those for exponential holding
time lends support to the conjecture that in the application of the
procedure the form of the holding-time distribution may be ignored even
when its coefficient of variation is greater than unity.

Although the chief purpose of this study was to gain information
about the extent of the dependence of the parameters of overflow
distributions on holding-time distributions, the original motivation was
provided otherwise. In fact the present investigation was sparked by
the observation that the formula for the decomposition of the variance
of overflow traffic resulting from a superposition of independent Poisson
input streams offered to the same first-choice group, derived rigorously
by A. Descloux for exponential holding time in unpublished work, is
valid for any holding-time distribution. This formula is

Var (y;) = pi Var (y) + p.(1 — p)E(@), 1)
where
y; = the number of calls in the overflow belonging to the ith stream,
p: = the proportion of the offered load in the ith stream,
and

?}=Z.‘.Tj.'-

The question immediately arises whether the observation that (1) is
independent of the holding-time distribution has any application, since
it involves Var (y), which was known heretofore only for the exponential
case. To settle this question, a characterization of the overflow traffic
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in nonexponential cases is required. As it turns out, in the constant-
holding-time case not only the variance but also the distribution itself
may be found exactly.

Kosten’s formula for the probability of y trunks busy in the overflow
for an offered load of a erlangs offered to ¢ trunks may be written,
after some simplification, as

w® =% i (—_a)i ] 2
v y! = 4! c y-{-j-!-?:—l@li
SEriti-1Q

1

i=0

where (¢); = 1 and (¢); = c¢(c — 1) -+ (¢ — 1 + 1).
The corresponding formulas for the constant case are

—a ce+y c h
vy = T A DI C Y-t De—h+ D, y>0,
Zz_' (3)
and
e—a € (za)h 2¢ ail
Wo =3 { w2

[Z (h) - ( i 1)(26 —ht 1)]}- 4)

(A brief outline of the derivation of (3) and (4) is given in Section II.
Algebraic details of the derivations of these and subsequent formulas
are given in the Appendix.)

It might be remarked that the state probability formulas in the
constant case are the simpler for computational purposes, since they
involve only finite sums of positive terms.

With respect to complexity, the formulas for the moments are
another story. The means, of course, are equal and are given by

M, = aF, .(a) = a’”’ [Z a‘]_]. (5)

¢! = !

Although the variance is the second-order moment of direct interest,
the second factorial moment is equivalent for our purpose and will be
given here since it is simpler. For exponential service time this moment
may be written

§E’=a2[(c+1—ﬂ)fz%+c+l]-l' ©)

i=1
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(From this expression it is immediate that F{*’ = ¢ 4+ 1fora = ¢ + 1,
a fact that was found useful in checking computer programs.) For
constant holding time the second factorial moment is

L . 2e=2 _k—e¢ |
Fo= {az—ac-z(—czﬁ’[j(j-!-?,)—?tr]—i-e'“}: =
Z@i i=0 @ i k!
i=0 a'

min [k,c]
S (BNe 1= e — 2+ 3h)}- 0
h=[k—c]+ h
In all the numerical cases studied, it turns out that F, > F!{¥. In the
case ¢ = 1, the formulas are simple enough to allow an easy analytic
proof that this relationship is true uniformly in a. The fact that F, > F{*
implies that the correlation between the number of busy trunks in the
overflow group and that in the first-choice group is lower in the constant
than in the exponential case. This fact is perhaps less surprising to the
intuition than is the result that the overflow is more variable for constant
than for exponential holding time.

II. OUTLINE OF THE DERIVATION

Owing to the constancy of the holding time, taken here and below
to be of unit length, the calls present in the overflow group at an arbi-
trary instant, ¢, , are precisely those that overflowed during the preceding
time interval of length unity. The number of calls present in the first-
choice group at the instant {, — 1 is known to have the truncated
Poisson distribution (also known as Erlang’s first distribution). We
condition first on the number of calls present in the first-choice group
at {, — 1. Next, we condition on the number of arrivals during the
interval [t, — 1, t;), which, of course, has the ordinary Poisson distribu-
tion. We now observe that the hang-up or departure instants together
with the arrival instants, as conditioned, are mutually-independently,
uniformly distributed on the unit interval. This observation enables us
to complete the caleulation by an application of a ballot theorem.

Let
¢ = number of trunks in the first-choice group
a = offered load in erlangs
probability of 7 calls on the first-choice group at an arbitrary
instant
p; = probability of j arrivals during a unit of time; p; = e *a’/j!
w,, = probability of x calls on the first-choice group and y calls
on the overflow group at an arbitrary instant

Il

™
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Il

probability of y calls on the overflow group at an arbitrary
instant

probability of y overflows during a unit interval at whose
initial instant there are 7 calls on the first-choice group and
during which j new calls arrive.

w.,

Il

f(y; 1, 9)

Then we may write
Wi = Ps ):D =.f(0; ¢, z) (8)

and

€

Wy = Pery O miW;i, x4y,  y>0; 9)

i=c—zx

and, with a reversal of the order of summation, we have

W = Ej‘"‘i ZP;KO;"'; 7, (10)
and
wy, = XDw 2 plwiid), v >0. (11)

The distribution of the number of calls on the first-choice group at an
arbitrary instant is independent of the holding-time distribution and
is given by

i = (al/l')[hio (a‘h/h!)]lr 1= 0! T, 6 (12)

while the remaining service times of these ¢ calls are independently and
identically distributed aceording to the equilibrium excess distribution;
that is, the remaining service time of each call has the distribution
function

F(t) = fﬂ! (1 — H(w)) du (13)

where H(u) is the service-time distribution function (with unit mean).
The last two results have been published by several authors; an ele-
mentary proof has been given by L. Takées," whose paper includes a
bibliography on the problem.

The implication of (13) in the present case is that the remaining
service times of the calls initially on the first-choice trunks are inde-
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pendently uniformly distributed on the unit interval. Furthermore, it is
well-known that when the number of Poisson arrivals during a fixed
time interval is given, the individual arrival instants are independently
uniformly distributed over this interval. Hence any specific sequence
of the 7 departures and j arrivals during the interval [{, — 1, {;) has the
same probability, namely 1/("}7).

The quantity f(0; 7, j) is the probability that a sequence of arrivals
and departures has the property that at all times the excess of the
accumulated arrivals over the accumulated departures is strictly less
than one more than the initial number of idle trunks, i.e., less than
¢ — 7 4+ 1. Thus the problem of ealculating f(0; 7, j) can be recognized
as a ‘“ballot” problem. Successive arrivals and departures are called
“events,” and we denote by «, and 8, , respectively, the accumulated
number of arrivals and departures at the rth event. With this notation,

f0;4,) = Pria, <B +c—i+1, r=1--,74+j}. (14)

The required probability is given as a solution to exercise 3 of Chapter 1
of Ref. 5. We have, with the usual conventions concerning binomial

coefficients,
b_ts)
f(O;z',f)=1—("';:1), ise (15)
c—1+1
=0, j>e.
Similarly,
fy;4,9) = Prie, < B +ec—i4+y+1Lr=1,---,i+j]
—Pria, <B +tc—ityr=1--,i+j, y>0 (16)

and thus for j < ¢ + y,

f(y;e',;o=(‘”“£+”)—(‘:‘iiy+l)- (17)

( c+y ) ( c+y+1 )

c—1+y c—i1+y+1

We are particularly interested in the marginal overflow state probabili-
ties, namely the quantities denoted w., and w., . These may be put into

a form suitable for numerical calculation by substituting the values of
the expressions =, , p; , and f(y; 7, j) into (10) and (11). The final results,
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obtained after a small amount of manipulation, are shown as (3) and (4).
(See Appendix.)

III. MOMENTS

The results (3) and (4) are considerably simpler than their analogs
for exponential holding time, shown in (2), which was obtained from
equation (38) of Ref. 1. It does not follow, however, that the moments
of the distribution defined by (3) and (4) are simpler in form than those
for exponential holding time. In fact, although in principle each of the
moments can be written as a finite sum, it seems to be a rather tedious
task to obtain closed-form expressions for them. Since only the first
two moments of overflow distributions are presently of practical interest,
we shall confine our attention to the two lowest-order moments for the
case of constant holding time.

The mean of the distribution {w.,;y = 0, 1, ---} is obviously the
same as that for exponential holding time. Nevertheless, a direct
calculation of the mean from the expression for the state probabilities
is useful as a check on the accuracy of the algebraic manipulation
indicated previously. That is, as a check, the equation

S-S (5] a9

v=1 C! =0

should be shown to be an identity, as indeed it is. (See Appendix.)

The calculation of the second factorial moment was done by direct
summation. The details are given in the Appendix.

It was remarked above that a simple proof that F, > F{* can be
given for ¢ = 1. To do this, we observe that by substituting ¢ = 1
into (7) we obtain

F, la* — a® + 2a — 2 + 2¢7°}. (19)

_ 1
T 14a
By substituting ¢ = 1 into (6), we obtain
3

By _ G |
2 ’_2+a (20)

Thus we must prove

@ —ad+2—2+ 2" a* )
1+ a 2+ a

(€2))
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After eross-multiplying and simplifying, there results, equivalently,

24+ ae*>2—a (22)
or
a
Lot
e > - 2’ (23)
1+5

which is true for a positive (take logarithms).

IV. NUMERICAL RESULTS

A comparison of the overflow variances from first-choice trunk group
sizes ranging from 1 to 100 is shown in Table I. These numbers were
calculated on the basis of (6) and (7). The starred entries, for low offered
loads and high values of ¢, were caleulated separately because of a
loss of accuracy in (7) at these values. It should be noted that (3),
having no subtractions, does not suffer from loss of accuracy from this
cause and hence was used to obtain the variance by direct numerical
summadtion,

The distributions of tails for several trunk-group sizes and offered
loads are shown in Figs. 1 and 2. It should be observed that even when
the variances differ noticeably, as for example for ¢ = a, where in both
cases shown the variance difference is greater than 20 percent, the tails
distributions are very close at all probabilities of practical interest.

Since the (almost indistinguishable) curves for ¢ = 10, @ = 20 are
truncated at a high probability level, it may be well to point out that
they differ negligibly even at low values. Thus the probability of
exceeding 25 busy trunks in the overflow is 0.0096 for exponential
and 0.0109 for constant holding time. A negligible difference in the state
probability distributions, as seen in the ease of ¢ = 10, @ = 20, was also
seen in other cases for which @ = 2¢ and ¢ > 10. For ¢ = 20 and a = 40,
however, a comparison could not be made because of a complete loss
of accuracy in (2). Since the relative difference in the variances is even
less in this case than for ¢ small, it is reasonable to conjecture that (3)
provides an excellent approximation to (2) in this case. This suggests
that (3) is useful as an approximation to (2) for a > ¢, precisely in the
range where (2) is unsatisfactory for numerical ecomputations.



3204 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1971

TaABLE I—COMPARISON OF VARIANCES OF OVERFLOW FOR (CONSTANT
Howiping TiME anD ExronEnTIAL HOoLDING TIME

Mean Exp Var Const Var (VD/VE)
[ a M1 VE VD VE/M1  VD/MI1 -1
1 0.40 0.1143 0.1279 0.1331 1.1190 1.1647 0.0408
0.60 0.2250 0.2575 0.2704 1.1442 1.2017 0.0503
0.80 0.3556 0.4120 0.4351 1.1587 1.2236 0.0560
1.00 0.5000 0.5833 0.6179  1.1667 1.2358 0.0592
1.20 0.6545 0.7661 0.8127 1.1705 1.2416 0.0607
1.40 0.8167 0.9568 1.0152 1.1716 1.2431 0.0611
1.60 0.9846 1.1529% 1.2228 1.1709 1.2419 0.0606
1.80 1.1571 1.35629 1.4334 1.1692 1.2387 0.0595
2.00 1.3333 1.55656 1.6458 1.1667 1.2343 0.0580
2 0.80 0.1208 0.1478 0.1595 1.2240 1.3211 0.0794
1.20  0.2959 0.3778 0.4132 1.2767 1 .3966 0.0939
1.60  0.5278 10.6873 0.7562 1.3021 1.4327 0.1003
2.00  0.8000 1.0489 1.1555 1.3111 1.4443 0.1016
2.40  1.1006 1.4425 1.5864 1.3106 1.4413 0.0997
2.80 1.4218 1 .8551 2.0330 1.3048 1.4299 0.0959
3.20  1.7579 2.,2784 2.4858  1.2961 1.4140 0.0910
3.60 2.1054 2.7075 2.0392  1.2860 1.3960 0.0856
4.00  2.4615 3.1392 3.3902 1.2753 1.3773 0.0800
b 2.00 0.0734 0.1040 0.1198 1.4176 1.6319 0.1512
3.00  0.3302 0.5186 0.6078 1.5707 1.8409 0.1720
4.00  0.7963 1.3013 1.5284 1.6342 1.9194 0.1745
5.00 1.4243 2.3332 2.7210 1.6381 1.9104 0.1662
6.00 2.1624 3 .4864 4.0166 1.6123 1.8575 0.1521
7.00  2.9730 4 .6819 5.3164 1.5748 1.7882 0.1355
8.00 3.8321 5.8806 6.5798  1.5346 1.7170 0.1189
9.00 4.7242 7.0661 7.7970  1.4957 1.6504 0.1034
10.00  5.63495 8.2327 8.9712 1.4598 1.5908 0.0897
10 4.00 0.0212 0.0320 0.0399 1.5485 1.8816 0.2151
6.00 0.2589 0.4872 0.6044 1.8821 2.3349 0.2406
8.00 0.9733 1.9857 2.4530  2.0402 2.5203 0.2354
10.00 2.1458 4.3624 5.2907  2.0330 2.4656 0.2128
12.00 3.6231 7.0710 8.3540 1.9516 2.3058 0.1815
14.00 5.2820 9.7876  11.2465 1.8530 2.1202 0.1491
16.00 7.0490 12.4046 13 .8965 1.7598 1.9714 0.1203
18.00 8.8826 14,0080 16.3499 1.6783 1.8407 0.0967
20.00 10.7592 17.3130 18 .6671 1.6091 1.7350 0.0782
20 8.00 0.0013 0.0021 0.0027 1.6141 2.1127 0.3089
12.00 0.1175 (.2584 0.3401 2,1986 2.8935 0.3161
16.00 1.0306 2.7028 3.5055  2.6226 3.4015 0.2970
20.00 3.1778 8.2920 10.3872  2.6093 3.2686 0.2527
24.00 6.1700 14 8143 17.7126  2.4010 2 8708 0.1956
28.00  9.5977 20.9311 23.9282 2 .1808 2.4931 0.1432
32.00 13.2464 26.4675  29.2087 1.9981 2.2050 0.1036
36.00 17.0146 31.5567  33.9567 1.8547 1.9957 0.0761
40,00 20.8522 36.3397  38.4213 1.7427 1.8426 0.0573
50 20.00 0.0000 0.0000 0.0000% 1.6452 2.2408* 0.3403*
30.00  0.0066 0.0161 0.0230 2.4215 3.4727 0.4341
40.00 0.7476 2.7343 3.7810 3.6573 5.0574 0.3828
50.00 5.2393 19.7746  25.5769  3.7743 4 8817 0.2934
60.00 12,9671 40,9397  48.5749  3.1572 3.7460 0.1865
70.00 21.9661 57.8384 64,1752 2.6331 2.9216 0.1096
80.00 31 .4446 71.6558 76,4680 2.2788 2.4318 0.0672
90.00 41.1339 83.8760 87.5797 2.0391 2,121 0.0442
100.00 50.9303 05.2624  98.2036 1.8704 1.9282 0.0309
100 60.00 0.0000 0.0001 0.0001* 2.4634 3.6885*  (.4973*
80.00 . 1.4158 2.0681 4.4331 6.4758 0.4608
100 .00 38.5958  50.7901 5.0985 6.7094 0.3160
120 .00 89.6717 103.9455 3.8073 4 4134 0.1592
140.00 123 6750 133.0991  2.9325 3.1559 0.0762
160 .00 149 .8224 156.0855  2.4345 2.5363 0.0418
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Fig. 1—Tails distributions, ¢ = 10.
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APPENDIX

A.1 Formulas for the Overflow State Probabilities

The probability of zero calls in the overflow group is given by (10),
which, after substitution of the values of =; and p; , becomes

c L < i
wa = 2 3 8105, ). (24)

=0 a’_ i
0
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For brevity, let

h

- Ea]" 9

Then, replacing f(0; , ) by its value as given in (15), we may write

’l'.’t" c+1
— 141

()]
|

wo—f(a)z — 7 1\
L2

c L giti il j!
=MN§&?D‘@+j—¢+mw+nJ'(w

Setting 7 + j = h and multiplying the numerator and denominator
of each term by Al,

0 = f(a)[z h' E,‘,’p(h — !

i=0

h! h!
+ kgl h! '-h . ('L' h—9! (h—(C+ 1)+ 1)!)} (27)

-0 g+ EHELE () -e-nen( )]
(28)

Use of (25) now yields (4).

The probability of y calls in the overflow group is given by (11).
We first simplify f(y; 7, 7), as given by (17). We have

N ! 7!
Wit ) = 5=+ ol + 9!

i ! _
Y E e E D I

Thus, from (11),

- dfil wg[ i! 4! }
va= X o L T FTI Gt et !

5n
i1 5! ] "
TE+i-C+y+r Dl +y+ D! (30)

c c+y e 1
v.=10 5 3 o (erimerareTa

= 1 ]- 31)
G+i—(C+y+e+y+ D!
Setting h = 7 + j — (¢ + ¥), reversing the order of summation, and
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factoring yields

h+e+y

wu=f(ﬂ)§§h7ﬁ_j+—m(c+y+l—h), (32)

ety

f(ﬂ)(—+7+—1),2h,2¢+y+l—h), (33)
and (3) follows.

A2 Proof That (18) Is an Idenlity

Let the mean of the overflow distribution be denoted by M.
From (3),

M@ = S S et eyt 6

M/f(a) = g%(c—j+l)g(c+y+l)ﬁ‘;_—m

+u

—g%(c +1)Zm (35)

c+y+1

): ),(C J-I-l)Zm (36)

After changing the indices in the subtracted sums by replacing
jbyj + 1 and y by y — 1, we obtain

+y

M/f(a) = ): ,(c i+ Z(GJ”),

c+y

;i, c—3j) Z (—1) “@1 5 6D

Simplification yields

+v

M/f(a) = Z Z(C+J).+ Z],( ) Z(HJ), (3%)

r-ﬂ v

Putting & = y + ¢ and adding and subtracting terms, we have

M/f(a) = E _[Z(h c)h,# ;(h—c)g—]
+i%(c—j)[i%— ) %] (39)

i=0
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We notice that the finite series vanish and the infinite series combine
to give

TR oL SLA b I

= 7 i=0 j! h=o N! c!

Replacing f(a) by its explicit expression, we have

M= (Z "'—)ﬁ (41)

ct = 1!

A.3 Derivation of the Formula for the Second Factorial Moment of the
Constant-Holding-Time Overflow Distribution

From (3),

D S ]

e

Z—(c+y+1—:)(c—:+l) (42)

r=D
c+y

Fy,/f(a) = Z’(C—J+1)Zy(y—1)(c+y+l)m

ety

1 a
—E _ 0—J+1)Ey(y 1)(6—?—2,—4_@' (43)

i=0

Again replacing j by 7 + 1 and y by ¥ — 1 in the subtracted sums
in (43), we obtain
cty

F./f(a) = Z Tl (c -+ 1 E yly — 1 m_!

- fe- ) Nu-Du -9y @
Fa/f@ = 5% 3 utw — 1)@{3ﬁ

ety

2 %e-d Zu-Dghy W

:l='[)

Letting & = ¢ + y and adding and subtracting terms allows us to write

h

Fo/f(@) = Zf,—{i h—oh—c—1
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€

- > h—c)(h—c—l)}+2§‘%’(a—ﬂ

h=0

{E(h—c—lh Eh,(h 1)} (46)

e i

Fa/f(a) = i [h(h — 1) — 2he + clc + 1)1% >

o+ gZ[J’w—C(c-I-l)]% Ea—,
— 3 [20h — 20+ 1 %i‘,“—,
—iﬂj:; c— h)c+1+h

+2§%(¢—ﬂ§z—!(c+1—h). (47)

After substituting & for & + j in the finite sums and substituting ¢* for
its series expansion, we obtain

F,/fla) = e"{[?a(c + 1) —a® —ele + 1]

Z +[2a — 2a(e + 1)] }

i=0 1] .

2¢—1 k min [k,¢]

k
+ Z e ”‘Z] (h)(c + 1 — h)(e — 2k + 3h). (48)

It turns out that the second sum vanishes for &k = 2¢ — 1, and thus
after deleting the vanishing term and writing the coefficient of ¢* as a
polynomial in a, we have

e+2 e+l
a

F2/f(a)_e{c' (C—l)r
= S0 — D - 2+ D)+l + 1)1}
2¢=2 _k min |k,e]
+ > Z ()(c+1—h)(c—zk+3h) (49)

o k! h=[k—r

Finally, after substituting the value of f(a), given by (25), transposing
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the limits of summation in the first sum on the right-hand side, and
some minor simplification, we obtain (7).
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