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Statistical Behavior of a Fading Signal
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A general analysis of the statistical behavior of the envelope of a fading
signal V(£)e™*'" 1s presented in this paper. The statistics include the
probability P(V < L) that the amplitude V (t) will fade below a specified
signal level L; the expected number N (L) of fades of V (t) below L per unit
time; and the average duration 1(L) of fades below L. The model for the
fading signal is a constant vector plus a random interfering vector which
represents the resultant of all the received extraneous signals and notse.
The theoretical results agree with three empirically observed power relation-
ships obtained in deep fades of nondiversity signals: P(V £ L) « L7,
N(L) « Land I(L) < L. The theoretical results are applicable to a wide
class of fading problems. The analysis includes the previous works of Rice,
Nakagamsi, Norton, Vogler, Mansfield, and Short as special cases.

I. INTRODUCTION

A general analysis of the statistical behavior of the envelope V (t)e™*‘"’
of a fading signal is presented in this paper. Our principal interests are
the probability, P(V =< L), that the amplitude V(f) will fade below a
specified signal level L* ; the expected number, N (L), of fades per unit
time below the specified level L; and the average duration, (L), of
fades below L. These statistics are all functions of the signal level L.

The theory presented herein has been developed to complement and
extend the empirical results developed by my colleagues at Bell Tele-
phone Laboratories'™ from their extensive experimental experience.
Published data of other workers have also been considered.

The previous theoretical works on the statistics of a fading signal
often assume a complex Gaussian model for the fading signal. The
theoretical support for this assumption is that, by the central limit
theorem, the real and the imaginary parts of the sum of a large number
of independent interfering signals will be approximately Gaussian.

* More precisely speaking, in a long time period containing a large number of
fades, the distribution P(V = L) represents the expected fraction of this long time
period that the signal amplitude V will fade below L.
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For tropospheric radio links, this model seems to be satisfactory.
However, for line-of-sight radio links, the results of a short pulse
experiment’ and the angle-of-arrival measurements®”''* indicate that
the number of interfering signals is usually fairly small. Ray tracing
theory also indicates that for typical line-of-sight radio links the number
of paths contributing to multipath propagation is unlikely to be large.
Furthermore, the theoretical results of the complex Gaussian model
do not agree well with the experimental data on the statistics of fading
signals of line-of-sight radio links, especially for certain overwater paths
with severe fading.

In this paper, we do not impose the restrictive assumptions of the
complex Gaussian model. Rather, we simply model the fading signal
Ve'® as a constant vector plus an interfering random vector; i.e.,

Ve =1+ Re” =1+ « + B, )

where R, 8, «, and 8 are the amplitude, phase, real part, and imaginary
part respectively of the interfering vector. The interfering vector is
described by the joint probability density function f(e, 8) and represents
the resultant of all the received extraneous signals, echoes, rays, and
noise. The analysis applies for R and 8 either dependent or independent;
6 uniformly or nonuniformly distributed; a and 8 either Gaussian or
nonGaussian, Thus, the results of this analysis may be applied to a
wide class of fading problems.

This paper treats the problem in three parts: The first is concerned
with the amplitude distribution of V. The second considers the number
of fades N(L) and the average fade duration I{(L). The final section
investigates several special topics including m-distributions, chi-
distributions, the Rayleigh distribution, Rice distribution, log-normal
distribution and the sum of # unit random vectors.

Appendix A is a list of symbols and their definitions.

II. SUMMARY OF RESULTS

(i) In spite of great variations in fading environment and test
conditions, the experimental data'™®''™'*'"*"" on P(V £ L),
N(L), and #(L) of most nondiversity* fading signals obey the
following three prevailing power laws of deep fades:

* The diversity signal is the output signal of a diversity combining system with
two or more input signals. A “nondiversity fading signal’’ is a fading signal that is
not a diversity signal.



FADING SIGNAL STATISTICS 3213

PVEL <L’ (2)
N(L) « L forsmall L. (3)
W) « LJ 4)

The theoretical analysis shows that if the probability density
function f(a, 8) of the resultant interfering vector, Re’’ = a + jB,
is a smooth function which is neither singular nor zero at the
deep fade point (@ = —1, 3 = 0), then the statistics P(V = L),
N(L), and {(L) of deep fades follow the three prevailing power
laws (2), (3), and (4). The easily satisfied condition, « >
f(—1,0) > 0, is sufficient to obtain these functional relationships.

(i7) The set of power laws (2), (3), and (4) apply for R and 8 either
independent or dependent, 8 either uniformly or nonuniformly
distributed, (or, @ and g either Gaussian or nonGaussian, either
independent or dependent) as long as f(a, 8) is smooth.

(717) If {(e, B) is singular at (a« = —1, 8 = 0), then the theory predicts
that for small L

P(V £ L) « L* l (5)
N@L) « L*' 1 >u> 1. (6)
W) « L )

The exceptional behavior (5) consistent with 4 = 1/2 has been
observed experimentally on certain overwater radio links with
severe fading. In this case, the resultant interfering vector
contains the strong water-reflected ray as a dominant compo-
nent. Therefore, the probability density function f(e, 8) has a
singularity at the position of the dominant component vector.*

() If f(«, B) has a zero at (a = — 1, § = 0) or is negligibly small
at (¢ = —1, 8 = 0), the theory predicts that for small L:

P(V£L)=L* [ (®)

NL) « 't p>1 9

L) = L (10)

The composite fading signals of diversity combining systems
obey the set of power laws (8), (9), and (10). For overland radio

* The complex Gaussian model, which assumes that f(a, 8) is a two-dimensional
normal density function, is unable to explain the exceptional behavior (5) and (6).
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links, the parameter u is equal to the order of diversity. In our
experiments, the nondiversity fading signal of a relatively short*
radio link with path length 15.87 miles has also shown the
exceptional behavior described by (8), (9), and (10).

(v) The theoretical results (4), (7), and (10) indicate that the power
law, I(L) « L, for the average fade duration is more universal
than those of P(V < L) and N(L). This prediction agrees with
available experimental data.

(v7) In general, the relationship between f(a, ) and the amplitude
distribution P(V < L) is not unique. As an example, this non-
uniqueness shows that specifying the Rayleigh distribution for
the amplitude of a fading signal does not necessarily imply that
o and B are Gaussian, nor does it necessarily imply a large
number of interfering signals.

~ * At 4-GHz operating frequency, the average path length of line-of-sight radio
links is about 27 miles.
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I. INTRODUCTION AND SUMMARY

In the study of fading signals due to multipath interference, the
experimental data on the cumulative amplitude distribution, P(V = L),
of deep fades are often plotted on a graph paper where the fade depth
is expressed in dB and the probability of fade is expressed on a log scale
as shown in Fig. 1. The consensus based on large amounts of experi-
mental data' """ is that the cumulative amplitude distribution
of most nondiversity fading signals in the deep-fade region can well be
represented by a straight line with a prevailing inverse slope of 10 dB
per decade of probability.

The equation which deseribes this typical distribution on Fig. 1 is

P(V<L)=¢l? for L,=ZL=0 (11)

where V is the envelope voltage of the random fading signal normalized
to its nonfaded signal level, L is any specified signal level, e is a param-
eter depending on fading environment, and L,, is the upper bound of
signal level below which the straight-line representation of P(V = L) on
Fig. 1 is valid.
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Fig. 1—Cumulative amplitude distributions of fading signals.

The empirical result (11) means that the amplitude distributions of
most nondiversity fading signals obey the following square law of deep
fades

PVL)«L, L,zZLz0 (12)

in spite of the great variations of fading environment and test condition.
However, there are some exceptional cases. The most profound excep-
tion occurs on certain overwater radio links with severe fading. In
these instances, the probability of fades, P(V = L), decreases very
slowly as the signal level L decreases and is characterized by an inverse
slope of 20 dB per decade of probability as shown in Fig. 1, implying
a power law

PV =L =1L (13)
in the deep-fade region.

Another kind of exception oceurs on certain radio links with relatively
little multipath fading. The probability of fades, P(V = L), decreases
very rapidly with L and is characterized by an inverse slope of 5 dB
per decade of probability as shown in Fig. 1. This kind of distribution
follows the power law

PV <L) =L' (14)
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in the deep-fade region. For example, at 4-GHz operating frequency,
the average path length of line-of-sight radio links is about 27 miles.
The behavior (14) has been observed to oceur on a relatively short path
with path length of 15.87 miles.

The theoretical amplitude distributions previously derived were based
on a complex Gaussian model and predict a square-law dependence,
P(V £ L) = L? in the deep-fade region. For example, the Nakagami
distributions,'® which include Hoyt distribution,'™'** Rice distribution,'
and Rayleigh distribution as special cases, all are square law in the
deep-fade region. The explicit expression of Nakagami distribution can
be found in Equation (4.6-28) of Reference 18. Figure 1 also includes
Rayleigh distribution (dashed line) for comparison with the experimental
data.

The small number of interfering signals in line-of-sight radio links
suggests that the assumption of a complex Gaussian model may be
unjustified. One of the main objectives of this paper is to determine the
weakest set of assumptions under which the square law (12) is obtained,
and the condition for which the exceptional case such as (13) or (14)
will oecur.

In summary:
(7) The theoretical model for the fading signal, Ve?, is a constant
unit vector plus a resultant interfering vector
Vei* =1+ Re'" =1+ a + j8.

The resultant interfering vector Re’® = « + j8, with joint
probability density funetion f(«, 8), represents the sum of all
the received extraneous signals, echoes, rays, and noise.

(#7) Aninfinite fade (i.e., V = 0) occurs whenevera = —1and 8 = 0.
At this point B = 1 and & = . Therefore, the behavior of
f(e, B) near the infinite fade point (@ = —1, 8 = 0) is closely

related to the power law of amplitude distribution P(V =< L)
in the deep-fade region.

(#77) For most radio links, the interfering signals and noise may be
considered random, so that the joint probability density function
f(a, B) of the resultant interfering vector is a smooth function
near the infinite fade point (@ = —1, 8 = 0). The analysis
shows that if f(a, ) is a smooth function which is neither
singular nor zero at (@ = —1, 8 = 0), then P(V = L) « L*for
small L. The simple condition « > f(—1, 0) > 0 is easily
satisfied by most radio links. The validity of this square law does
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not require that f(a, 8) be a normal density function. Therefore,
the number of interfering signals does not have to be large.

(i) The analysis shows that if f(a, 8) is not smooth, but is singular
at (@ = —1, 8 = 0), then for small L,

P(V £ L) = L*, 1>p=4.

A physical example for this case is the overwater radio link
where the water-reflected ray is almost as stable as the direct
ray. The resultant interfering vector in this case contains the
water-reflected ray which is “not very random.” In other words,
the joint probability density function f(e, 8) has a high peak
at the position of the dominant, stable component, and may be
considered singular at that point.

(v) If f(a, B) is zero or is negligibly small at the infinite fade point
(a = —1, 8 = 0), then the analysis shows that for small L

PV <L)« L* u>L

A physical example for this case is the short radio link where the
phase differences among the multipath propagations are all
small. Then the value of f(—1, 0) is negligibly small because
the phase, 6, of the resultant interfering vector is generally
small. Another example for this case is the composite signal of
the output of a diversity eombining system where the artificial
active combining device serves to create a zero of f(a, §) at
(@ =—1,8=0).

II. FADING SIGNAL MODEL

The received fading signal is modeled as a constant vector plus an
interfering random vector as shown in Fig. 2. The latter represents the
resultant of all the received extraneous signals, echoes, rays, and noise.
The received fading signal normalized to the magnitude of the constant
vector can be written as

V(e = 1+ R()e"”, (15)

where R(t) and 6(f) are the normalized magnitude and the phase of the
interfering random vector respectively; V(f) and ¢(t) are the normalized
magnitude and the phase of the received fading signal respectively.

Let z(f) and y(f) be the real part and the imaginary part of the com-
plex fading signal Ve'®, i.e.,

V(e = z(t) + jy(0); (16)
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and let «(f) and B(f) be the real part and the imaginary part of the
complex interfering random vector Re’’, i.e.,

R = a(t) + j8(0). (17)

V,¢, R, 8, x, y, « and B are all real random variables. The normalized
output power is

V2=14+2Rcos 8+ R* = (1 + a)® + 8" (18)

The relative phase, 8(t), between the interfering vector and the constant
veetor can be taken to have values from 0 to 2z because 8 and (8 & 2nr)
for any integer n are indistinguishable to the received signal at an
operating frequency.

A geometrical interpretation of equations (15) to (18) shows that
deep fades (i.e., small V) occur when K and 6 are near the infinite fade
point, (1, =), in the (R, 6) plane or equivalently when « and g are near
the infinite fade point, (—1, 0), in the («, 8) plane.

For line-of-sight radio links, notice that as far as the received signal
V{(t)e’*" is concerned, scintillation, atmospheric divergence, and earth
bulge effects may also be replaced by a mathematically equivalent
interfering signal R(t)e’’*" which when combined with the constant
vector gives the received fluctuating signal.

Therefore, the model described by equations (15) to (18) includes
many possible fading mechanisms which may oceur individually or
simultaneously on a fading environment,

Going one step further, this model also includes the situations where
no physical constant vector* exists because the mathematical decom-
position (15) is applicable to any arbitrary fading signal. For such
situations, the constant vector may represent the average signal level.
The fluctuation of the signal is considered to be caused by an equivalent
resultant interfering vector Re’.

For radio links subjected to multipath interference, the number of
incoming component waves is usually more than two. Thus the resultant
interfering vector Re’’ consists of more than one echo and should not be
interpreted as a simple physical echo. The main distinction is that the
magnitude and the time delay of a physical echo are not functions of
operating frequency whereas the magnitude R and the equivalent time
delay, ¢, = 8/w, of a resultant interfering vector consisting of more than
one echo, are functions of operating frequency (i.e., are dispersive).

* For beyond-the-horizon radio links, there is no direct radio path between the
transmitter and the receiver.
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Fig. 2—Fading signal model.

III. GENERAL FORMULATION OF AMPLITUDE DISTRIBUTION

Equation (18) shows that the probability that the random signal V
be faded below a specified signal level L is equal to the probability that
o and g fall'within the cireular region

1+« +6 =L’ (19)
in the (&, 8) plane as shown in Fig. 3. Let f(a, 8) be the joint probability
function of « and 8. Then P(V = L) is the integral of f(e, 8) over the
circular region (19); i.e.,

=L a=—1+VL3-g3

f(a, B) da dB. (20)

P(VgL)=j;

=—L Ya=—1-VL3-pg7

The statistical behavior of the interfering vector, Re’® = a + 48, is
sometimes described by the joint probability density function ¢(&, 6)
of the magnitude B and the phase @ of the interfering vector. A similar
derivation in terms of B and 6 yields

R=1+L f=x+0p
PV <L) = f f ¢(R, 6) d9 dR, 1)
R=1-L f=xr—0L
where
L (1+R - Lz)
6, = cos (W2R : (22)

Most of the following analysis is in terms of @ and 8. An equivalent
result in terms of B and 6 is given in Appendix B.

V2=(1+a)2+ﬁ"‘\ B

Re" ¢

Fig. 3—Fading signal model on (a, 8) plane.
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1V. PROBABILITY DENSITY FUNCTION OF INTERFERING VECTOR

Equation (18) indicates that the infinite fade (i.e., V = 0) occurs
when & = —1, 8 = 0. For most overland radio links, the interfering
signals and the noise vary continuously in a random manner, so that
the joint probability density function f(e, 8) of the resultant vector is
a smooth function. On the other hand, there are some paths for which
f(a, 8) may not be smooth, but singular. For example, for overwater
radio links, the water-reflected ray near the grazing angle is comparable
in magnitude and stability to the direct ray. Therefore, the resultant
interfering vector contains a dominant component and the probability
density function f(a, 8) has a sharp peak (i.e., singular) at this point.
If the heights of the antennas and the path length are such that the
average phase of the water-reflected ray is equal to =, then the singu-
larity of f(e, 8) occurs at the infinite fade point (¢ = —1, 8 = 0).

These discussions suggest that in the general analysis of deep fades,
one should consider not only the ease with smooth f(«, 8) but also the

case where f(a, 8) is singular at (@ = —1, 8 = 0). A general probability
density funetion f(a, 8), which is useful in our study, is*"

fla, 8) = [(1 + o) + 8°1“"-H(a, 8) (23)

= V2 Ha, §). (24)

where H (a, ) is an arbitrary smooth function. In the range 1 > p = 1/2,
the density function f(a, 8) has a singularity of order 2|[p — 1| at

(a = —1,8 = 0).

On the other hand, in the range « > u > 1, the density function
has a zero of order 2(x — 1) at (a = —1, 8 = 0). For convenience, we
shall call the parameter, g, the smoothness index of f(«, 8).

Since the possible singularity or zero of f(a, 8) at (@ = —1,8 = 0)
is taken care of by the factor [(1 + «)® + °]"”', we shall assume that

w > H(—1,0) > 0. (25)

Thus, the density function f(a, 8) given by equation (23) is neither
singular nor zero at (¢ = —1, § = 0) if, and only if, p = 1 because the
condition g = 1 implies f(a, 8) = H({e, ), and vice versa.

In equations (23) and (24), the smoothness index u can be either an

* The reason for the use of the factor (u — 1) instead of a simple power index in
equations (23) and (24) is for the convenience of notation in Section IV of Part 3
when we investigate the m-distributions.

T The cases where the singularity of f(e, 8) occurs at positions other than the
infinite fade point (@ = —1, 8 = 0) will not be analyzed in this paper. A brief
discussion is included in Section VII of this part.
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integer or a noninteger. The only restriction on u is that
=3 (26)

The reason for this constraint on p is that in Section V of Part 2 we
find that if x4 < 1/2, then the expected number of fades N (L) approaches
infinity as the fade depth L approaches zero. This seems to be non-
physical. Therefore, we require that p = 1/2.*

Since H(a, 8) is an arbitrary smooth function and u can range from
1/2 to «, then the probability density function f(a, 8), as given by
equation (23), includes a large variety of fading environments.

V. POWER SERIES REPRESENTATION OF AMPLITUDE DISTRIBUTION

We shall assume that H(«, 8) is sufficiently smooth so that the two-
dimensional Taylor series” expansion of H(a, 8} is applicable in the
neighborhood of @ = —1, and 8 = 0. Several situations, where the
Taylor series expansion of H(a, 8) is not applicable, will be discussed
in Section IX and Appendix C.

The Taylor series® expansion of H(a, 8) gives

H(ij 6) = ’g l:]‘::—' rfj C:Hn—r.r(_l, 0)(1 + a)n—rﬁv]

= r=0

= H(—1,0) + H, o(—1,00 + o) + H,,(=1,08  (27)

+ 51_, [Hz.o(_I; 0)(1 + Of)z + 2H2.0(_1; 0)(1 + 9‘)18 + Hu.z(_lr 0)52]
. (28)
where
al’l
H,_..(—1,0 = aaﬂ_ra—ﬁr H(a, 8) L (29)
=0
n n!
C; Torlm —)!° (30)

Substituting (27) and (23) into (20) for P(V = L) and carrying out the
integration (Appendix D) yields

P(V £ L) = 2 dyss . L**™™ (31)
s=0

* Notice that the unity total probability requires that the singularity of f(«, 8)
be integrable (i.e., » > 0). The constraint u = } does not violate this condition.
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= AL+ Y daal? (32)
where
g, = =10 , (33)
m
r S Hyepn(—1,0)

Gsr = G S+ & GHE - &)

S'=8(8—-1)(S —2)...321
The corresponding amplitude probability density function p(L) is

S=o0
p(L) = %P(V S0 = X @S+ 2 deT (35)

In the deep-fade region where L is small, the limiting forms of
PV £ L) and p(L) are

P(V < 1) —> "iH(—;l—Ou) i (36)
L—0
and
p(L) — 2¢H(—1, L™, (37

where g = 1/2. The power law of deep fades for the three different
cases (Z) p = 1, (44) 1 > p = 1/2, and (744) p > 1 with their physical

fading environments will be discussed in the following sections (VI, VII,
and VIIT respectively).

VI. PREVAILING SQUARE LAW OF DEEP FADES

Tor the nondiversity fading signals of most radio links, f(e, 8) is
neither singular nor zero at (@« = —1,8 = 0). Then p = 1 and f(a, 8) =
H(a, B). Equations (31) to (37) under this situation become

PV S L) = 3 disaal®™, (39)
=af(—1, 0" + d, L' + deL* + -+, (39)

f(a, B) = H(e, B), (40)

dZ = Wf(_lﬁ 0) = WH(_]-J 0): (41)

dyses = T is fzs—zv.Zy('"ls 0) , (42)

(8 + D12 = eH(S — !
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aES
fas—2v,2(—1,0) = P o (e, B) ) (43)
f=0
p(L) = 22 (28 + 2) dossal’®, (44)
S=0
P(V £ L) —>=j(—1, 0L, (45)
L-0
and
p(Ly —> 2xf(—1, 0)L. (46)
L—0
Equation (45) means that as long as f(e, 8) is neither singular nor zero
at (a = —1, 8 = 0), then the cumulative amplitude distribution in the
deep-fade region always obeys the square law
PV =2 L) = L Lp,z=L =0 (12)

Notice that this conclusion does not depend on any specific probability
density function f(a, 8) for the interfering vector as long as f(x, ) is
smooth and e > f(—1, 0) > 0. The conclusion applies for « and 3
either normal or not, either dependent* or independent, either with
Zero mean or with nonzero means. The magnitude E and the phase 6 of
the interfering vector can be either dependent* or independent and
# can be either uniformly or nonuniformly distributed. Therefore, this
conclusion covers a wide class of signal fading problems.

Apparently the simple condition, © > f(—1, 0) > 0, is appropriate to
the nondiversity fading signals of most radio links because the square law
of deep fades is representative of the experimental data.'™®''~'* 15710

Notice that the first terms of equations (39) and (45), wL* are the
area of the two-dimensional region on (e, 8) plane bounded by the
circle, L = (1 + a)® + 8°, in which ¥V =< L, as shown in Fig. 3.

The coefficient f(—1, 0) in equation (45) has been observed to depend
upon path length, operating frequency, path profile, and geographical
factors. From the experimental data of a large number of radio links,
it is possible to deduce an empirical formula of f{—1, 0) as a function of
these parameters.* 2%

In equation (12), the upper bound, L, , of signal level below which

* This conclusion does not hold if the correlation coefficient between « and g8 or
between E and @ is unity because the joint probability density f(a, 8) becomes
singular.

T 'This theoretical result also explains an experimental fact that the observed
amplitude distributions of atmospheric radio noise are also characterized by the
square law (12) in the small amplitude region.?
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the square law applies also depends upon fading environment. Our
experimental data show that L,, of most line-of-sight microwave radio
links is above 0.3 (i.e., above —10 dB).

If §(—1, 0) is negligibly small, so that the first term in the power
series (39) can be neglected, then the second term, d,L*, dominates,
with the result that the amplitude distribution follows the power law
P(V £ L) = L*. We have observed this behavior on a short radio link
in the signal range from —10 dB to —20 dB (ie., 0.3 = L = 0.1).
For fade depths deeper than —20 dB (i.e., 0.1 > L = 0) the quadratic
term of (39) again dominates; and the transition region between
P(V £ L) « L* and P(V < L) = L* occurs at about —20 dB for this
short path.

An obvious reason that f(—1, 0) is small for short radio links is that
the multipath length differences are mostly less than a half-wavelength.

VII. A DOMINANT COMPONENT INTERFERING SIGNAL

For this case, p is bounded by 1 > p = 1/2. By equation (36)

PV £1L) —>"H(;MI'O—)L*“

L—0

’ 1>“%%) (47)

and the corresponding power law of deep fades is
PV=L«=L" 1>pzh (48)

Since u is less than unity for this case, then as L — 0, the probability of
deep fades decreases more slowly than square law (12). Physically, this
means that the deep-fade problem for these links is more severe. The
experimental data of two oversea paths (shown as curve 2 in Fig. 16.5a
and as curve 1 in Fig. 16.5b of Reference 15) follow this power law (48)
of severe fading.

It is true, however, that some overwater radio links still obey the
square law (12) rather than (48).">"' The reason is that because of the
geometry of the radio link, the singularity in the density function
g(R, ) may occur, if it exists at all, at a position far away from the
infinite fade point (R = 1, 8 = x). Then in the neighborhood of the
infinite fade point (R = 1, 8 = =), the density function g(R, 8) (or
equivalently f(«, 8)) may still be a smooth function.

For overland paths, it is possible that an exceptionally calm and
stratified atmosphere would also create a stable, dominant interfering
signal over a sustained period. Then the joint probability density
function f(a, ) may also be singular at the position of this stable,
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dominant interfering signal. Therefore, the results of this section on the
power law of severe fading may also occur on an overland radio link.

VIII. DIVERSITY SYSTEMS

When pz > 1, the power law of deep fades is

P(V < I) Hﬁ(_TIL)L B> 1, (49)
PV =L« Lz", uw> 1. (50)

As L decreases, the probability of deep fades decreases faster than those
following the square law (12). Physically, this means the problem of
fading for this case is less severe than those following the square law (12).

The experimental data''*® of composite signals of the outputs of
diversity combining systems show that the amplitude distributions
of composite signals in the deep-fade region obey the power-law equa-
tion (50) rather than the square-law equation (12).

Since p > 1 implies f(a, 8) has a zero at the deep-fade point (« = —1,
B = 0), these results show that the artificial active combining devices
of diversity eombining systems serve to create a zeroat (« = —1,8 = 0)

of order 2(u — 1) of the density function f(a, 8) of the equivalent
interfering vector of the ocutput composite signal. The value of u depends
on the order of diversity. By comparing the power law (50) to the
experimental data'®® and the theoretical results on the diversity
systems, we find that for most overland paths, the value of p for the
composite signal is equal to the order of diversity. -

IX. ONE-ECHO MODEL

In the model described by equation (15) for the fading signal, if
there is only one echo and if the magnitude of this echo is a constant,
then R = A is a constant rather than a random variable. For this
idealized case, the joint probability density function ¢(R, 6) of R and 6
contains a delta function

(R, 8) = 5(R — A)W(6), (51)

where W (6) is the probability density function of the random relative
phase 6 between the echo Ae’® and the constant vector.

For convenience, we shall call this specialized model the one-echo
model. (In the literature, it is also known as the two-ray model.)

In the analysis, we shall assume that A < 1. The case where 4 > 1
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can be treated similarly simply by switching the roles of echo and the
constant vector.

Since the joint probability density function of the interfering vector
of the one-echo model does not belong to the class of f(e, 8) discussed
in Section IV of this part, the results of previous sections are not
directly applicable. Nevertheless, substituting the density function (51)
into the general formulation (21) for P(V < L) and integrating over R
(see Fig. 4) yields

PV s = _ﬁ W(6) ds, (52)

where

6, = cos™ (ngA'—L), A+ 4)=2Lz0—-4). (53

Since the behavior of W(8) in the neighborhood of # = = is important
for the analysis of deep fades, we shall assume that W(6) is smooth in
this neighborhood so that the Taylor series expansion of W (6) is appli-
cable. Then

w
W) = W) + W@ —m) + 20—+, (64

where

W.(r) = 48 ; n=123, - . (55)

=x

Substituting equation (54) into equation (52) and carrying out the
integration yields

L*=1+2R cos # +R% [Y:] ,,-R=A

Fig. 4—The range of phase, (x — 8,) = 0 = (r + 6), in which V £ L.
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® Wzs('ﬁ') [ o (1 + A2 _ L’.’)]25+1
P(V<L)—ZZ(2S+1)' cos” | T ,
A+4)=zL=2010-4). (56

If the magnitudes of the two vectors are equal, then A = 1, and equa-
tion (56) becomes

P(V L) = f .1 Waslm)_ [ o (1 - L)]s 22L320.

28 + 1! 2
Sinee o
cos (1 - L?z) = gin™" [L(l - {f)]i; (58)
(1 — L?z) ? L (59)

Then the behavior of P(V = L) given by equation (57) in the deep-fade
region is

P(V < L) —> 2W)L; (60)
p(L) —> 2W(x). (61)

This result shows that as long as the probability density function W (6)
of the random phase # is neither singular nor zero at § = m, then the
cumulative amplitude distribution of the one-echo model with R =
always obeys the power law

PV <L)« L (62)

in the deep-fade region no matter whether W(4) is uniform or not.
Equation (57) shows that the nonuniform part of W(6) contributes
only to the high-order terms of P(V < L) and does not affect the
behavior of P(V = L) in the deep fade region.

If the distribution of the random relative phase is uniform in (0, 27),
then

1
W) =5, (63)
War) =0, nz=1.

Equation (56) specialized to this case is

2 _ 2
PV <I)= %cos'l (I—%E—L)- (64)
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If A = 1, then equation (64) becomes

P(V £T) =1 cos™ (1 -5 (65)

=

As far as the deep-fade region is concerned, equation (57) can also
be written as

P(V £ L) =2W@L + 0L, n7>0; (66)

~op(L) = 2W(r) + 0(L), (67)

where 0(L") is a symbol to denote the component which goes to zero
at a rate equal to or faster than that of L" as L — 0.

Although the one-echo model of this section and the other two cases
discussed in Appendix C do not exhaust all the situations where H(«, 8)
is not analytic, the main objective is to show that the assumption of
Taylor series expansion of H(a, ) in Section V of this part is not
strictly necessary for the derivation of the power law of deep fades.

To unify the representations for all the cases considered in this paper,
we shall rewrite equations (66) and (67) as

P(V £ L) = 2W(m L™ + 0(L*™" (68)
and
p(L) = 2W@L* + 0oL™""), w=1% 2>0 (69

Then the amplitude distributions of deep fades of all the cases discussed
in Part 1 can be summarized as

P(V £ L) = d.L™ + 0(L**") (70)
and
p(L) = 2u do. L7 4 O(L*71Y), w=i p>0. (71)

If H(a, B) is continuous at (« = —1, 8 = 0), then d, = #H(—1, 0)/u.
If H(a, §) is discontinuous at (@ = —1, 8 = 0), thend, = 7H(—1,0)/u.
For a one-echo model, dy = 2W(r) and p = 1/2.
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Part 2. Expected Number of Fades and Average Fade Duration
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I. INTRODUCTION AND SUMMARY

In Part 1 we investigated the amplitude distribution of a fading
signal. In a long time period, the cumulative amplitude distribution
P(V = L) tells us the expected fraction of this time period that the
signal will fade below any specified signal level L. However, P(V = L)
does not tell us anything about the dynamic aspects of the fading
signal. For example, a large number of short fades and a small number
of long fades may have the same amplitude distribution.

Some communication systems may tolerate the short fades but not
the long fades. Furthermore, in the design of a diversity combining
device, a distortion equalizer, or an automatic gain controlling device
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to combat the fading problem, one needs information on the dynamic
behavior of the fading signal.

In Part 2 we present the results of our investigation on the expected
number N (L) per unit time that the signal V() fades below a given
signal level L; and the average duration #(L) of fades below L.

The analysis is based on the general integral formulation of N(L)
by Rice™ " and Vigants* and our results for P(V = L) in Part 1. Again,
we do not impose the restrictive assumption of the complex Gaussian
model so that the theoretical results may be applied to a wide class of
fading problems.

In the study of N(L) and i(L), the experimental data'™® for N(L)
or I(L) are often plotted on a log scale as shown in Figs. 5 and 6. It is
an experimental fact that the data for N(L) and I(L) can be well
represented by straight lines on this kind of graph paper for fade depth
deeper than —10 dB, as shown in Figs. 5 and 6. The slopes of these
straight lines are directly related to the power laws of N(L) and (L)
in the deep-fade region. The experimental observations of N(L) and
(L) are summarized below:

(7) The experimental data show that N(L) for most nondiversity
fading signals obeys the power law, N(L) « L, in the deep-fade
region.

(72) For a short radio link from Villa Rica to Palmetto, Georgia,
the N (L) of a nondiversity signal follows the cubic power law,
N(L) « L} in the deep-fade region.

104

103

102}—

EXPECTED NUMBER N(L) OF FADES

1 1 L | |
0 -10 -20 -30 —-40 —-50
SIGNAL LEVEL £ = (20 LOG;pL) IN dB

Fig. 5—Number of fades below signal level L.
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Fig. 6—Average duration of fades below signal level L.

(i77) The experimental data of N (L) of composite fading signals of

(iv)

most dual diversity systems also follows the cubic power law,
N(L) « L? in the deep-fade region.

The available experimental data on average fade duration #(L)
all obey the universal power law, {(L) « L, in the deep-fade
region. This includes the fading signals of nondiversity systems,
diversity systems, long radio links, and short radio links.

In summary:

(@)

(1)

(47)

Our theory indicates that if the joint probability density
function f(a, 8) of the resultant interfering vector, Re’’ = a + jg,
is a smooth funetion which is neither singular nor zero at the
infinite fade point (« = —1, 8 = 0), then for small L

N(L) ~ ra,f(—1, 0L « L,

where a, is a constant approximately equal to the average
positive derivative of the amplitude of the fading signal in the
deep-fade region.

If f(a, B) is singular or zero at (« = —1, 3 = 0) then

N(L) ~ «H(~1, 0)a,L*" « L*

for 4 = 1/2 and small L. The cubic power law, N(L) « L% of
dual diversity systems and short radio links ean be explained
by this result when p = 2, which means f(—1, 0) is zero or is
negligibly small.

The theory predicts that the average fade duration always obeys
the power law #(L) « L for small L no matter whether f(e, 8) is
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smooth, singular or zero at (« = —1, 8 = 0). This means the
power law, t(L) « L, is invariant with respect to variations of
fading environment and diversity combinations of fading signals.
This prediction agrees with the available experimental data.

(fv) The theoretical results on N (L) and ¢(L) for the one-echo model
are shown to be incompatible with the experimental data of
most overland microwave radio links. Therefore, the one-echo
model is not suitable for the study of the statistics of fading
signals of these radio links.

(v) For line-of-sight radio links at 4 GHz and 6 GHz, the average
positive derivative of the amplitude of the fading signal is esti-
mated to range from 2 X 107* to 4 X 107° times V., per second,
where V... is the signal level when there is no interference.

II. GENERAL FORMULATION FOR NUMBER OF FADES

The general expression for the expected number of fades per unit time
of a random signal V (£), below signal level L has been shown®'*** to be

NG = [, VoV, V) lyes 7, 2

where V = dV/dt, and p(V, V) is the joint probability density of
V and V. For the sake of completeness, a brief derivation of (72) is
included in Appendix E.

The joint probability density function p(V, V) can be written in
terms of conditional probability™ as

p(V, V) = pu(V | V)pa(V), (73)

where p,(V | V) is the conditional probability density of V under the
condition that the signal level is V; and p.(V) is the probability density
of V. Substituting (73) into (72) yields

Ve

NO =D [, VeV D) av. (74)
Let us define
P =2 [ VeV | Dav. 75)

The physical meaning of the definition (75) is that 7, (L) is the condi-
tional average positive derivative of V under the condition V = L.
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The factor 2 in (75) is based upon the assumption that p,(V | L) is
symmetric about V =0.

Since V(f) is a random fading signal, at a given signal level L, the
value of its time derivative V:is also random. In general, the conditional
average positive derivative V., (L) is a function of signal level L.

By using definition (75), equation (74) becomes

N(L) = 3V.(L)ps(L). (76)
Or, equivalently,

N(L) = 3V.(D) a—%P(V < 1), (77)

which indicates N (L) proportional to the conditional average positive
derivative of the fading signal and to the probability density of fades
atV = L.

III. GENERAL FORMULATION FOR AVERAGE FADE DURATION

In a long time interval, T, containing a large number of fades,* the
expeeted total length of time that the random signal V(¢) spends below
a specified signal level L is

t(L) = TP(V = L). (78)

The expected number of fades below L in this interval T is TN(L).
Therefore, the average duration of fades below L is

(L) P(V=IL)

KL = 7y =~ NG (79)
Substituting (77) into (79) yields
iy - L 2PV S 50)

V(D) 8
()aLP(VgL)

Equation (80) shows that the average fade duration is inversely pro-
portional to the conditional average positive derivative of the fading
signal at V = L.

* In our experiment on line-of-sight radio links, the typical time interval T' is
a whole summer of more than 100 days in which there are more than 500 fades
below —10 dB relative to the nonfaded signal level.
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IV. ASSUMPTION ON CONDITIONAL AVERAGE POSITIVE DERIVATIVE

Most existing theoretical work on N (L) assumes that V and V are
independent so that V+(L) becomes a constant which is independent of
signal level L. In this paper we include the situation for which V and 14
are dependent and assume that V. (L) can be expanded into a Taylor
series in the deep-fade region (i.e., small L); then

where

VoL) = a + aL + al’ + a;L’ + - -+, (81)
a = lim V.(L) = 7.(07), (82)
L0+
o, = :}3}1 515 V.(I), (83)
1 3 =
a4 = o 1!}'1:1 6L2 Vi(L), ete. (84)

The justification for this assumption is not trivial, and includes the
following considerations:

@
(i7)

The theoretical results based on this assumption agree with the
available experimental data.

For a complex Gaussian model, the conditional probability
density function p,(V | L) is known. Then with the help of the
work of Rice®™® ' the integration indicated in (75) for V. (L) can
be carried out in elosed form. These explicit expressions are
discussed in Section IIT of Part 3. The results of this model show
that if the power spectrum of the Gaussian noise is symmetric
with respect to the frequency of the sine wave (i.e., the constant
unit vector), then V.(L) = a, is a constant independent of L.
On the other hand, if the power spectrum of the Gaussian noise
is asymmetric with respect to the signal frequency, then V. (L)
is a function of L and the nonconstant terms in equation (81)
cannot be omitted.

The theoretical work of Clarke,” Ossanna,” and Gans™ on
mobile radio indicate that the power spectrum of the fading
signal is generally asymmetric with respect to the received
carrier frequency unless the straight line joining the base station
and the mobile antenna is perpendicular to the velocity of the
mobile and the antenna pattern is symmetric with respect to
this line. Therefore, the work on asymmetric power spectrum,
and hence nonconstant 7, (L), is not purely academie.
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(#33) It is known' that the correlation between any real random
variable €(f) at instant ¢ and its time derivative é(t + {) at
instant (¢ + ¢) vanishes if { = 0. This is often used to support
the assumption that V and V are independent and hence V. (L)
is a constant. However, we know that the vanishing of correla-
tion between V() and V(¢ + ¢} at { = 0 does not imply the
independency of V and V unless V is normally distributed.
Including high-order terms in equation (81) removes the assump-
tion of independency of V and V and enlarges the applicable
scope of this theory.

(&) In equations (82), (83), and (84) we define those coefficients of
the Taylor series as the limits of V.(L) and its L-derivatives
at L = 0" from the positive side. The reason is that V(t) is the
absolute value of a fluctuating complex signal; i.e.,

V) = |z + gyl =1[Ve?].

When the complex fluctuating signal V(f)e’**’ crosses zero, its
absolute value V{f) may have a cusp at V = 0 as shown in Fig. 7.
Therefore, the derivatives of V() may not be well defined
at V = 0. However, the limits of the derivatives at V = 0*
from the positive side are well defined.

(v) Fig. 7 also shows that although V' = 0 is a minimum of V(z),

on

—

+
5 \

I —t
b
o

S

=

b 1

+

8

Il

> t

Fig. 7—The amplitude V(t) may have a cusp at ¥ = 0 even though the complex
fading signal is a smooth time function. For convenience, the complex fading signal
is plotted as a real function in this example.
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V() = d/dt V() may not be zero at V = 0. Therefore, in
equation (81), the constant term a, = V.(0*) does not vanish
for most cases, and cannot be omitted from equation (81).

Y. POWER SERIES FORM OF N(L)

Substituting the power series (35) for (8/dL) P(V = L) of Part 1 and
the power series (81) for V., (L) into equation (77) yields

N(L) = #H(—1, 0)a,L*" + #H(—1, 0)a,L* + - -- (85)

In the deep-fade region, the leading term dominates the power series
(85). Therefore,

N(L) = «H(—1, 0)a,L**, for small L; (86)

s N(L) « L*', for small L. (87)

Equations (85) and (86) show that if a, ¢ 0 and if u < 1/2, then
N(L) — =« as L — 0. This seems to be nonphysical. Therefore, we

require that u = 1/2. This is the reason we impose this condition on the
order of singularity of f(e, 8) in Section IV of Part 1.*

5.1 Prevailing Power Law of Number of Deep Fades

For the nondiversity fading signals of most radio links, the probability
density funetion f(a, 8) of the resultant interfering signal is a smooth
function which is neither singular nor zero at (¢ = —1, 8 = 0). Then
g = 1and f(e, 8) = H(a, 8). Equations (85), (86), and (87) under this
condition become

N(L) = =f(—1, 0a,L + =f(—1, O)a,L?

+ [2a, ds + 7f(—1, O)a,]L* + - -- (85"
N(L) = 7f(—1, 0)a,L, forsmall L. (86")
N(L) « L, forsmall L. (87")

It is seen that as long as © > f(—1, 0) > 0, then the expected number
N(L) of deep fades always obeys the prevailing power law (86"). With
reference to Fig. 5, the straight lines corresponding to the power law (87")
have inverse slopes of 20 dB per decade.

* If we assume that a; = 0, then the only constraint on uis p > 0 due to the unit
total probability. However, assuming a0 = 0 implies that the time derivative of g
is always zero at V = 0. Such an assumption is unreasonable for multipath inter-
ference fading, but may be useful if the effects of random eircuit interruptions, such
as equipment failure, are included in the signal fading problem.



3238 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1971

Apparently, the simple condition is easily satisfied by the nondiversity
fading signals of most microwave radio links because the experimental'™
data of N (L) are mostly characterized by the inverse slope of 20 dB
per decade in the deep-fade region.

As I increases from zero towards unity, equation (85') indicates
that there may be a transition point beyond which high-order terms
become significant and the slope begins to deviate.

TFor most microwave radio links, the transition points of N(L) seem
to be well above —10 dB. However, our latest experimental data show
that the first transition point of N (L) of a relatively short path (path
length 15.87 miles, f = 4 GHz) is below —20 dB. The inverse slope
of N(L) in the region from —10 dB to —20 dB is approximately 20/3 dB
per decade of number of fades. This indicates that the third term
[2a, dy + ma.f(—1, 0)]L* dominates in the region 0.3 > L > 0.1 for
this path.

VI. AVERAGE DURATION OF DEEP FADES
Substituting the power series (31) of P(V = L) of Part 1 and the
power series (85) of N(L) into equation (79) yields

rH(—1, 0) I 4 d L2 b d L e

(L) = —+ ; - (88)
rH(—1, 0)a,L* ™" + ~H(—1, 0)a, L™ +

In the deep-fade region, equation (8S) becomes

(D) ~-L L forsmall I (89)
Mg

oo HL) = L, forsmall L. (90)

On Fig. 6, the straight lines corresponding to the power law (90) have
an inverse slope of 20 dB per decade of fade duration. The experimental
data'™® agree with this conclusion on the slope of {(L) when plotted
on Fig. 6.

VII. INVARIANCE OF POWER LAW OF AVERAGE FADE DURATION*

Equations (36), (87), and (90) show that in general P(V = L), N(L),
and I(L) obey the following set of power laws of deep fades:

_ *1In equation (26) of Ref. 32, Rice has already predicted that the power law
I(I) = L for small L may be applicable to cases more general than the complex
Gaussian model even though most of his work in Ref. 32 is devoted to the statistics
of a sine wave plus a narrowband Gaussian noise.
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PV<L) « L* l (91)
N(L) « L*'¢ for uw=3% andsmall L. (92)
{(L) < L J’ (93)

It is seen that the power laws of P(V < L) and N (L) depend on the
value of p which depends on whether f(«, 8) is smooth, singular, or zero
at (@ = —1, 8 = 0). On the other hand, the power law (93) for the
average fade duration is invariant with respect to p. Since the behavior
of f(a, 8), and hence the value of u, depends on fading environment,
we conclude that the power law (93) for the average fade duration is
insensitive to the fading environment in contrast to the power laws
of P(V = L) and N(L).

In equation (89), notice that ua, , and hence #(L), does depend on the
fading environment. However, it is the power law, {(L) « L, which is
insensitive to the fading environment.

Vigants,***® Crawford, Hogg, and Kummer'* have investigated the
effects of diversity on P(V £ L), N(L) and I(L). The theoretical results
and the experimental results of these authors show that in the deep-fade
region, the diversity drastically changes the power laws of P(V = L)
and N (L) but does not affect the power law {(L) « L. For example, the
results of Vigants are shown in Table I. From this table it is seen that
the power laws of P(V < L) and N (L) depend on the diversity combina-
tion of fading signals, whereas the power law, #(L) « L, of average fade
duration is invariant.

VIII. INCOMPATIBILITY BETWEEN ONE-ECHO MODEL AND OVERLAND RADIO
LINKS

_ Equations (60), (61), (91), (92), and (93) show that p(L), N(L), and
{(L) of the one-echo model (with equal magnitudes, A = 1) in the

TaBLE I—ErrFECcTS oF DIVERSITY OoN PowER Laws
oF DEEP FADES

Nondiversity Diversity
P(V £ L) L2 (1/gq) L*
N(L) cL (2c/q) L
L) (1/¢) L (1/2¢) L

Remark: In this table, the parameter, ¢, as defined by Vigants, is equal to ao
of this paper; and the parameter, g, as defined by Vigants, is equal to 2/=H(—1, 0)
of this paper.
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deep-fade region are

p(l) = L’ (94)
N(L) « L°¢ forsmall L. (95)
L) = LJ (96)

On the other hand, the long-term experimental data of a nondiversity
signal of most overland microwave radio links indicate that

p(l) =« L 97)
N(L) < L¢ forsmall L. (98)
(L) « LJ (99)

The experimental results (97) and (98) disagree with (94) and (95) of
the one-echo model.

In view of this disagreement, we may want to check the effect of the
assumption (81) of V.(L) on the theoretical results of the one-echo
model. Although we know that the constant term a, of (78) generally
does not vanish, yet we may deliberately set a, = 0 and see what kind
of theoretical results we get.

If we do so, the theoretical results of the one-echo model become

p(L) « L (100)
N(L) « L ¢ forsmall L. (101)
(L) « L“J' (102)

Under this modified assumption, p(L) and t(L) of the one-echo model
disagree with the experimental results (97) and (99). Similarly, forcing
the coefficients of other higher order terms of (81) to zero also yields
theoretical results which disagree with the experimental results. There-
fore, we conclude that the one-echo model is not suitable for the study
of the fading signals of most overland microwave radio links.

However, we emphasize that the experimental data mentioned in this
section are restricted to the long-term data of overland microwave radio
links. Therefore, the incompatibility of the one-echo model with these
data does not necessarily exclude the use of this model for the study of
other fading problems.
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IX. APPROXIMATE AVERAGE POSITIVE DERIVATIVE f/+ OF LINE-OF-SIGHT
MICROWAVE RADIO LINKS

For line-of-sight microwave radio links, let V.., be the signal level
when there is no interference, and V;,4(f) be the random fading signal
when the interference appears. In our analysis

y(o) = Yau® (103)
Vrel
is a normalized fading signal. )

By comparing the experimental data of #(L) and the theoretical
equation (89) for #(L), we can estimate the value of a, of the radio link.
The value of x in equation (89) can be determined from the experimental
data on the power laws (36) and (86) for P(V < L) and N (L) of the
same radio link.

Our experimental data of several line-of-sight microwave radio links
in Ohio and Georgia indicate that the value of a, ranges from 2 X 107°
to 4 X 107°, In the deep-fade region where L is small, equation (81)
shows that V,(L) = a, .

% 00 ~ay = 2X 1070 ~4X 100, (104)
Substituting (103) into (104) yields
d% VoD ~ @2 X107 ~4X 107 Ve (105)

Thus, the average positive derivative of the unnormalized fading signal,
V raa(t), of these microwave radio links ranges from 2 X 107° to 4 X 107°
times V.. per second.

These approximate values of average positive derivative are valid
only in the deep-fade region because they are deduced from the experi-
mental data of deep fades. The path length of these radio links ranges
from 15 miles to 36 miles. The operating frequencies are in 4-GHz
and 6-GHz bands.

X. GENERALIZED ASSUMPTION ON V. (L)

In Part 1, we indicated that the assumption of the Taylor series
expansion of H(a, B) is not strictly necessary for the validity of the
power law of P(V < L) deduced from the experimental data. In this
section, we point out that the assumption of the Taylor series expansion
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of V,(L) in Section IV of this part is also not strictly necessary for the
validity of the power laws of N(L) and #(L). From a theoretical view-
point, the assumption of ¥, (L) can be generalized to the following form:

VolL) =a +0L"), 2>0 (1086)

where 0(L") is a symbol to denote the component which goes to zero
at a rate equal to or faster than that of L" as L. — 0.

In assumption (106), we do not require the existence of the limits
in equations (83), (84), etc. Therefore, the assumption (106) is less
restrictive than the assumption (81). It can be shown that the power
laws of N(L) and #(L) of deep fades based on (106) are the same as
those based on (81). However, at the present time, we do not have any
practical evidence to necessitate the use of (106). Therefore, we merely
point out the possibility but do not explicitly carry out this generalized
analysis.
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I. INTRODUCTION AND SUMMARY

In Parts 1 and 2, the analysis was oriented towards an explanation
of the experimentally observed common behavior of a fading signal Ve'®.
The basic assumptions of the theoretical model are kept to a minimum
in order to include the widest possible variation in practical fading
environments. During the development of this general analysis, we have
gained a new insight into several topics related to fading signals as
investigated by previous authors.
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Part 3 of this paper is a collection of theoretical treatments of several
special topics relating our generalized analysis to the work of previous
authors. These topics include the sum of n unit vectors with random
phases; a sine wave plus Gaussian noise, m-distributions, chi-distribu-
tion, Rayleigh distribution, and log normal distribution.

In summary:

Q)

(#9)

D)

(1v)

In Section II of this part, the results of Part 1 are applied to
find the amplitude distribution of the sum of n unit vectors with
uniformly distributed random phases. For n = 3, the analysis
shows that the amplitude distribution always follows the square
law P(V £ L) = L? for small L. On the other hand, when
n = 2, the amplitude distribution follows the power law
PV = L) « [ for small L.

In Section ITI, we investigate the model of a sine wave plus a
narrowband Gaussian noise for the fading signal. By using the
closed-form solutions of Rice, it is shown that if the power
spectrum of the Gaussian noise is symmetric with respect to
the frequency of the sine wave, then the amplitude V and its
time derivative V are independent; and the conditional average
positive derivative V.(L) is a constant. On the other hand, if
the power spectrum is not symmetric, then V and V are de-
pendent; and the conditional average positive derivative V.(L)
is a funection of signal level V' = L.

As an example, the fading signal spectral density of a mobile
radio is generally not symmetnc with respect to the received
carrier frequency. Therefore, in the analv=51s of N(L) and (L),
it is not safe to assume that V and V are always independent.
In Section IV, we investigate the theoretical condition (147)
on the joint probability density function f(«, 8) of the interfering
vector such that the amplitude distribution of the fading signal
belongs to the family of m-distributions which includes normal
distribution, Rayleigh distribution, Maxwell distribution, and
all of chi-distributions as special cases.

It is also shown that the set of m-distributions behave like a
log normal distribution within a small range (148) of signal
level near its rms value. This result shows that in the interpre-
tation of the experimental data, one must be cautious in attempt-
ing to estimate the tails of the distribution by an extension from
the middle section of the distribution.

We find that in general, the integral transformation (20) from
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(e, B) into P(V = L) is not unique. Physically this means the
signals of fading environments with different f(a, 8) can have
the same amplitude distribution P(V = L). As an example, this
nonuniqueness shows that specifying a Rayleigh distribution
for P(V < L) does not necessarily imply that there are a large
number of interfering signals; nor does it necessarily imply that
the real and imaginary parts of the fading signal are normally
distributed with zero mean.

II. SUM OF 1 UNIT VECTORS WITH UNIFORM HANDOM PHASES

The amplitude distribution of the sum of two unit vectors with
uniformly distributed random relative phase has been shown in Sec-
tion IX of Part 1 to be, for0 = L £ 2,

P(V <1I) = icns_' (1 — %) , (107)
and
_ 9 oy o<yl 1
p(l) = 57 P(V = 1) = (108)

T6-97

In the deep-fade region where L is small, this amplitude distribution
obeys the power law

P(V <L)« L. (109)

The sum of n unit veetors with uniformly distributed random phases
has been investigated previously by many authors.*"**™* The mathe-
matics involved in obtaining the amplitude distribution for any arbitrary
n = 3 is fairly complicated. Computer numerical integration is needed
to show the distribution explicitly. In this section, we shall avoid the
complicated mathematics and shall apply the results of Part 1 to show
that the amplitude distribution for any arbitrary n = 3 in the deep-fade
region always follows the square law:

P(V = L) « L* for small L. (110)

The sum of n unit vectors with random phases can be written as

i=n

Ve = 3" (111)
1=1

[1 + feitagh)] ity (112)
=2
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= [1 + R, (113)

where
Re:‘ﬁ' - Zeiiﬂifﬂl). (114)
i=2

Rosenbaum® has indicated that if all the phases {6,}:Z7 of the unit
vectors are independently and uniformly distributed in (0, 2r), then
Vei® and Re'® have circular symmetric probability density functions; i.e.,
the amplitude and the phase are independent and the phase is uniformly
distributed in (0, 2).

It then follows that the random signal represented by equation (113)
for any arbitrary n = 3 is a special case of Appendix B. The case for
n = 2 is an exception because the joint probability density function
(R, 6) contains a delta function whereas the ¢(R, 6) in Appendix B is
assumed to be a smooth funection.

The sum of three unit vectors can be considered as a unit vector
suffering interference by a random vector R(t)e'’""” which is the sum of
the other two unit vectors. The amplitude distribution g(R) of E(f) is
given by equation (108) except for the replacement of the notation L
by R. Equation (108) implies

g(1) = = (115)
™3
Therefore, g(R) for this ease is a smooth function which is neither
singular nor zero at B = 1. Then equation (165) shows that
P(V < L) = $g()L* = T—‘l/g L« I (116)
The sum of n unit vectors, n = 3, can be considered as a unit vector
suffering interference for a random vector R(t)e’’*’ which is the sum of
the other (n — 1) unit vectors. It is obvious that g(1) # 0 simply
because each of the (n — 1) unit vectors has unity amplitude. Then,
the results (see Appendix B) imply

PV £ L) « L, forsmall Landn = 3. (117)

On a log-versus-dB graph paper, as shown in Fig. 1, the power law (109)
implies a straight line with an inverse slope of 20 dB per decade of
probability whereas the square law (117) implies a straight line with
the same inverse slope of 10 dB per decade of probability as that of
Rayleigh distribution.

Therefore, we conclude that for n = 2, the distribution of deep fades
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is characterized by the inverse slope of 20 dB per decade of probability
whereas for any n = 3, the distribution of deep fades is always charac-
terized by the inverse slope of 10 dB per decade of probability. This
conclusion agrees with the numerical results of Norton, et al., in Fig. 2
of Reference 33.

III. A SINE WAVE PLUS A GAUSSIAN NOISE

The statistical behavior of a sine wave plus narrowband Gaussian
random noise has been investigated in great detail by Riee.* *'** In this
section we shall apply our general analysis to this case to show the
consistency of our results with the work of Rice. Furthermore, we shall
also use the closed-form solution of N(L) and (L) obtained by Rice
to show that the conditional average positive derivative V. (L) can be
gither a constant or a function of signal level L, depending on whether
the power spectrum of the noise is symmetric or asymmetric with
respect to the frequency of the sine wave.

In this model, the interfering vector, Re’ = a + jB, represents the
envelope of a narrowband Gaussian noise; the constant vector represents
the sine wave with a constant amplitude and frequency f, . The joint
probability density funetion f(a, 8) is a two-dimensional normal density
funetion; i.e.,

1
fla, 8) = 5op- exp [—(e + B/2by], (118)
20,
where « and 8 are assumed to be independent normal random variables
with the same variance b, and zero mean.
The well known Rice distribution for the amplitude of this model is

p(l) = > P(V < I) = béln(%—L) exp (T—Lgb:ﬁ) o (119)

where I,(~) is the modified Bessel function of zero* order, and @ is
the magnitude of the sine wave. In our analysis, @ = 1 because all the
signals are normalized to the magnitude of the constant vector.

Rice™ has also shown that the joint probability density funection
p(V, V) for this model is

p(V, V) = (%)*% [ e {o—;g (B(V* — 2VQ cos ¢ + @)

+ (b,V 4 b,Qsin m} dé | (120)
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where ¢ is the phase of the resultant fading signal Ve'®; f, is the frequency
of the sine wave, w(f) is the power spectrum of the Gaussian noise, and

bn

ey [ Tw)f -y d, m=012 (21

B = bob, — b . (122)

3.1 Amplitude Distribution of Deep Fades

The normal density funetion (118) is obviously a smooth function
which is neither singular nor zero at the infinite fade point (a = —1,

= (). Then the results of Section VI of Part 1 predict that the ampli-
tude distribution of the fading signal in the deep-fade region is

P(V = L) =~ rf(—1, 0)L? (123)

~ _1 2
= p, &*P (260) L (124)

On the other hand, the limiting form of the Riee distribution for small L
is

o0 =L exp (L) (125)

1 _Q2 2
exp LP, for LK@ =1. (126)

PV =)= 2b, 2b,

Tt is seen that our result (124) agrees with the Rice distribution in the
deep-fade region.

The square law (124) implies that on a log-versus-dB graph paper,
the Rice distribution in the deep-fade region is always characterized
by the prevailing inverse slope of 10 dB per decade of probability. The
numerical results of Norton, et al., in Fig. 5 of Reference 33 agree
with this prediction.

3.2 Symmetric Power Spectrum and Constant V. (L)

If the power spectrum w(f) of the Gaussian noise is symmetric about
f., then b, = 0 and the integration of (120) under this condition yields

w1~ { g on [ ) 0 [252)

=p(V | V)pu(V) (128)
= p(V)pa(V), (129)
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where
_V (QK) [i;Q]
po(V) = by I, b, ) &P T (130)
is the Rice distribution for V;
—V*
. B4
ps(V) ‘\/Q‘n'b 20, ( )
is a normal density function for V; and
by = % — V2., when b, = 0. (132)
0

Equations (127) and (129) show that if the power spectrum is symmetric

about f, , then the envelope V and its time derivative V are independent,

and V is normally distributed. _
Substituting (131) and (132) into the definition (75) for V. (L) yields

= 2V
V.(L) = =—= = a, = constant. (133)

V2
Therefore, the conditional average positive derivative v, (L) for this
model is a constant if the power spectrum is symmetric about §, .
Substituting (130) and (133) into the general expression (76) for
N(L) yields

N(I) = \V/';W L IO(QL) exp [:%D—Qj] (134)
= Japu(D). (135)
Then
In the deep-fade region where L < Q = 1,
N(L) = \V/S_,rbi, exp [_3&?:] L (137)
~ ra,f(~1, 0)L, (138)
(L) =~ al L. (139)
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It is seen that equations (138) and (139) agree with equations (86°)
and (89) of Part 2.

3.3 Asymmetric Power Spectrum and Nonconstant V.. (L)

If the power spectrum w(f) is not symmetric about f, , then V and V
are dependent and b, # 0. The joint probability density function
p(V, V) for this case cannot be written as the product of the individual
probability density functions of V and V. For this case, Rice” has
obtained N (L) by substituting (120) into the general expression (72)
and carrying out the integration. This gives

Pz(L)\/iEO niu 1 (_bwz)n

V(@) T

.[I (QL) + %} IH.(QL):I , (140)

where I,(~) is the modified Bessel function of order n, and

N(L) =

. _ 0@’
T = Bb, (141)

Comparing equation (140) and the general expression (76) for N (L)
shows that

o2
2rby/ "2 1 (—bﬂ«ﬁ)"
!

ID(%) =82l \ QL

.[1 (QL) + b&t I,‘“(QL)] (142)

It is seen that when V and V are dependent, then the conditional
average positive derivative V,(L) is a function of signal level V = L.
_ The expected number of fades N(L) and the average fade duration
{(L) for this case in the deep-fade region are

N(L) = ra,f(—1, 0)L

~ Qo "Qz)'
= 2p, P ( 5, ) -

V(L) =

- 1
L) = CTO L,
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where
3

L 2B\ <
a, = lim V(L) = (;_b;) ,;,

Lot

(=" [1 I ]

(2"-n)? 2 + 1)

The work of Clarke,® Ossanna,* and Gans® on mobile radio indicates
that the power spectrum of the fading signal is generally not symmetric
with respect to the received carrier frequency unless the straight line
joining the base station and the mobile antenna is perpendicular to the
velocity of the mobile and the antenna pattern is symmetric with
respect to this straight line. Therefore, in the theoretical work of N(L)
and #(L), it is not safe to assume that V and V are always independent.

IV. M-DISTRIBUTIONS, CHI-DISTRIBUTIONS, AND RAYLEIGH DISTRIBUTION

In the study of the experimental data of amplitude distributions of
short-term high-frequency long-distance propagations, Nakagami®
found that the set of experimental data can well be described by a
family of m-distributions:*

o 2em" e ‘:—mLz]
p(L) - I‘(m)ﬂ’" L exp Q H] (143)

where € is the mean square value of the fading signal. The operating
frequency ranged from 10 MHz to 20 MHz and the path length from
1500 kilometers to 9000 kilometers. Nakagami indicated that these
results were obtained from short records of data from three to seven
minutes in length in order to avoid the effects of slow fading on the
distribution of rapid fading.

The various properties of the m-distributions have been investigated
in detail by Nakagami.” It is easily shown that the set of chi-distribu-
tions™ is n subset of m-distributions by setting 2m = any positive
integer in (143). This means the normal distribution, Rayleigh dis-
tribution, and Maxwell distribution are also special cases of m-distri-
butions when m = 1/2, 1, and 3/2 respectively. On Rayleigh paper,
all the m-distributions appear to be straight lines passing through the
common point of 50 percent at 0 dB, with different slopes which depend
on the value of m. The graphical representation of m-distributions can
be seen in Reference 39.

However, in Reference 39, one does not know the theoretical condi-
tion under which the amplitude distribution of a fading signal will

* To avoid possible confusion, we emphasize that the Nakagami distribution
mentioned in Section I of Part 1 is not the m-distribution discussed in this section.
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belong to this family of m-distributions. In this section we shall find
the condition on the joint probability density function f(e, B) of the
interfering veector such that the amplitude distribution P(V < L) will
belong to m-distributions.

Expanding the exponential function in equation (143) into a power

series gives
S=c0 8 _
p(L) = 1,( )9"' Z S,( ) LLESTAmL (144)

Comparing equation (144) and the general power series (35) for p(L)
shows that

u=m, (145)

(2S + 2!-'-) dagsz = _%E”—;)S. (146)
G

Substituting (34) into (146) gives

- HQS—Zv.zn('—l, 0) _ (_1)8 — o
2” E NS — ! (—Q)SH‘-I‘( ) , 8=01,2 (147)
P n

Thus, equations (145) and (147) are the general conditions on the
interfering veetor such that P(V =< L) is an m-distribution.

In Section V of Part 2 we showed that ¢ = 1/2 which impliesm = 1/2.
Nakagami®® has also found this condition on the parameter m by a
different approach. Since m can be any value = 1/2, equation (143)
represents an infinitely large family of distributions.

4.1 Log Normal Behavior of m-Distribution Near the RM S Value

The experimental data of optical propagation®™** and line-of-sight

radio links show that the distributions of the signal scintillation near
its average value are approximately log normal. Usually the accuracy
of experimental data is best in the middle section of the distribution
and deteriorates towards the tails. It is quite tempting to estimate the
tails of the distribution by an extension from the middle section. The
deviations of the experimental data at the tails are often attributed to
the experimental error.

However, de Wolf** and Deltz and Wright** have pointed out that
the use of the middle section of a log normal paper may not be a reliable
test of the log normal distribution. The differentiation between the log
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normal distribution and certain other distributions may be significant
only at the tails rather than the middle section of these distributions.

Nakagami® has pointed out that all the m-distributions behave like
a log normal distribution for the fading signal V(1) in the neighborhood
of its rms value o = +/Q. The explicit bounds on the signal level
within which this approximation holds are:

20 & 4.3 dB. (148)

L
IOgm 75 ‘

It is shown in Appendix F that the m-distribution within the signal
range (148) is approximately equal to

p(L) = [32?"’“(%) em] exp[—2m(ln L — In V@],  (149)

which is a log normal distribution for the signal level L.

Therefore, the m-distributions, including the normal distribution,
Rayleigh distribution, Maxwell distribution, and chi-distributions, all
behave like a log normal distribution within the signal range (148). This
result points out that in the interpretation of the experimental data,
one must examine the behavior of the data not only inside but also
outside of the range (148) in order to assert their distribution.

V. NONUNIQUE RELATION BETWEEN AMPLITUDE DISTRIBUTION AND f(a, 8)

From the general integral relation (20) between P(V = L) and
f(a, B), it is seen that any component of (e, B) that is antisymmetric
with respect to (1 4 a) and/or 8 will cancel out in the integration (20),
and contributes nothing to P(V = L). This means that there are many
different (e, B)’s, with the same symmetric* part and different anti-
symmetrie* part, which correspond to the same amplitude distribution
PV £ L).

Mathematically, this means the integral transformation (20) from
f(a, B) into P(V £ L) is not unique. Physically, this means the fading
signals in fading environments with different f(a, 8) can have the same
amplitude distribution.

Furthermore, even if we restrict f(a, 8) to functions symmetric with
respect to (1 + @) and B, the relation between f(«, §) and P(V £ L) is
still not unique. We shall demonstrate this nonunique relation specifi-
cally by using the results for the m-distributions previously discussed.
We notice that for each S, equation (147) is an algebraic equation

* With respect to (1 + «) and 8.
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for (S + 1) unknowns {His_s, 2,{(—1, 0)}"25 . It is then obvious that
there are infinitely many different sets of {Hag g, 2,(—1, 0)}%23 which
will satisfy equation (147) because there is only one equation for
(S + 1) unknowns. This nonuniqueness gives a great freedom for the
wide variations of the individual term, Hys 5, 5, (—1, 0), which is the
even-order partial derivative of H(a, 8) at (¢ = —1, 8 = 0). From the
Taylor series (27), it is seen that Hys s, »,(—1, 0) is the coefficient of
the even-order term (1 4+ «)*°7#8% which is symmetric with respect
to (1 4+ «) and 8. Therefore, the relation between (e, 8) and P(V £ L)
is not unique even if f(e, 8) is symmetric with respect to (1 4 «) and 3.

A more detailed discussion of this nonunique relation in polar co-

ordinates is given in Appendix G.

VI. PHYSICAL MODEL AND RAYLEIGH DISTRIBUTION

In this section, we shall show that specifying a Rayleigh distribution
for the amplitude of a complex fading signal Ve does not necessarily
imply that there is a large number of interfering signals; nor does it
necessarily imply that the real part and the imaginary part of the
fading signal are normal with zero mean.

Let x and y be the real part and the imaginary part respectively of
the complex fading signal Ve, and let F{z, y) be the joint probability
density function of z and y. Since V? = 2® + y* then the probability
of V = L is the probability of z and y falling within the circular region

=+ ¢ =LA (150)
Therefore, P(V < L) is the integration of F(x, y) over the circular
region (150); i.e.,

z=V L7 -y

y=L
PV <L) = f:_;, fﬁ_“_‘_ Flz, v) dx dy. (151)

6.1 Number of Interfering Signals

In the most common derivation of the Rayleigh distribution, the
fading signal is assumed to consist of a large number of random, inde-
pendent interfering signals,

Ve = 2B =z + jy. (152)
i=1

TFurthermore, it is assumed that none of the components {E,}iZ} pre-
dominates in the summation (152). Then by the central limit theorem,
one argues that as the number, n, of interfering signals approaches
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infinity, the real part x and the imaginary part y of the fading signal
Ve'* become independent normal random variables with the same
variance and zero mean. This implies that V and ¢ are independent and
¢ is uniformly distributed in (0, 2#). Under this condition, the distribu-
tion of the random amplitude V' is Rayleigh.

However, by an observation similar to those in Section V of Part 3
and Appendix G, we realize that the transformation (151) from F(z, y)
into P(V £ L) is not unique. Given an amplitude distribution P(V = L),
there correspond infinitely many different F(z, y)’s. In other words,
the independent normal distribution for x and y with the same variance
and zero mean is only a sufficient condition but is not a necessary
condition for the amplitude V to have a Rayleigh distribution. Since
¢ and y do not have to be normal, then the number n of the interfering
signals does not have to be large.

In Appendix G, we have shown that the relation between P(V < L)
and F(z, y) becomes unique if the following two additional conditions
are imposed;

(i) V and ¢ are independent, and
(i7) ¢ is uniformly distributed in (0, 2x).

For long radio links such as beyond-the-horizon radio links, the condi-
tions 7 and 77 seem to be applicable. However, for line-of-sight radio
links, our experience indicate that the phase ¢ has much higher tendency
of wide variation during the deep fade where V is small. This means
for short radio links, V and ¢ may not be independent and ¢ may not
be uniform. Therefore, in our general analysis we do not impose the
conditions 7 and 77.

6.2 Mean Values of x and y

In the integral relation (151) the antisymmetric part of F(zx, y)
contributes nothing to the amplitude distribution P(V = L), but does
affect the mean value of z and y. Then by adding a suitable* antisym-
metric function to F(z, y), the mean values of x and y can be changed
arbitrarily without affecting the amplitude distribution P(V = L) of
the fading signal Ve™.

In other words, given an amplitude distribution P(V = L) of a
complex fading signal Ve'®, the mean values and the higher moments

* The probability density function F(z, ) must be =0 for any x and y; therefore,
the symmetric part of F(x, y) must be = |antisymmetric part of F(z, y)| when the
antisymmetric part is negative.
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of 2 and y are not unique. (However, the moments of the amplitude
V are unique.)

Therefore, specifying a Rayleigh distribution for the amplitude 1
does not necessarily imply that the mean values of x and y are zero.
Physically if there is a direct path between the transmitter and the
receiver of a radio link, then the mean values of x and y may not be zero.
However, the results of this section show that the mere nonzero means
of  and y do not necessarily exclude the Rayleigh distribution for the
amplitude of the fading signal.
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List of Symbols and Their Definitions

A
o
a,

B
b,,m=0,1,2
Cy

cr

sz +2

f(a, B)
F(x, y)

fa
g(R)

gu(R2)
H(e, 8)
Hn.m(a? B)

H{(—-1,0)
H(—1,0)

I,(~)
L

m
n
N(L)
0(L")

P(V <L)

The constant amplitude of the echo in the one-echo
model.

The zero™ order term of the Taylor Series expansion
of V. (L) defined in equation (81).

The coefficient of the nth order term of the Taylor
series expansion V(L) defined in equation (81).

= byb, — b? as defined in equation (122).

Defined by equation (121).

The coefficient of the fourth order term L' of P(V = L)
in equations (161) and (163).

Defined by equation (30).

The coefficient of the power series representation of
P(V = L) defined in equations (31) and (34).

Joint probability density function of & and 3.

Joint probability density function of the real part x
and the imaginary part y of the fading signal.

The frequency of the sine wave.

The probability density funetion of the amplitude E of
the interfering vector.

The nth order derivative of g(R).

The smooth part of f(«, 8) as defined in equation (23).
The partial derivative of H(a, §) as defined in equa-
tion (29).

The value of H(e, B) at (@ = —1,8 = 0).

The average value of H(e, 8) at (@ = —1, 8 = 0) if
H(a, B) is discontinuous at this point.

Modified Bessel function of order n.

An arbitrarily specified signal level in the study of the
statisties P(V < L), N(L) and I(L).

An integer.

An integer.

Expected number of fades per unit time below the
specified signal level L.

A symbol to denote a function which goes to zero at a
rate equal to or faster than L" as L — 0 where n > 0.
Probability that the amplitude V of a fading signal
fades below a specified signal level L.



3258

p(L)

pa(V)
p(V, V)
p(V | L)

Q

(R, 6)
R

Re'’
r

S

t
i(L)
Vv

Vv

I./ £i®
V'I'mﬂ
Via(t)

Vro(

V(L)
W(6)
W..(6)

T
¥

o

r(~)

Y

n
0
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Probability density of the amplitude V at the specified
signal level L.

Probability density function of V. p,(V) = p(V).
Joint probability density funetion of V and V.
Conditional probability density of ¥ under the condi-
tion V = L.

The constant magnitude of the sine wave in the
specialized model of a sine wave plus a Gaussian noise.
In this paper, § = 1 because of the normalization of
the signal level.

Joint probability density function of £ and 6.

The amplitude of the resultant interfering vector Re'’
of the fading signal model.

The resultant complex interfering vector.

An integer.

An integer.

A variable representing time.

Average duration of fades below L.

The amplitude of the envelope of a complex fading
signal normalized to the nonfaded value V_; .

The time derivative of the normalized amplitude V of
the fading signal.

The envelope of the fading signal.

The rms value of the time derivative of V.

The unnormalized amplitude of the random fading
signal.

The nonfaded signal level when there is no interference.
Conditional average positive derivative of V as defined
in equation (75).

Probability density funetion of the random relative
phase 8 of one-echo model.

The nth order derivative of the probability density
function W(#8).

The real part of the fading signal Ve'®.

The imaginary part of the fading signal Ve'®.

The real part of the interfering vector Re’’.

The imaginary part of the interfering vector Re’.
Gamma funetion.

Defined by equation (141).

An arbitrary constant > 0.

The phase of the resultant interfering vector Re'.
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6: Defined by equation (53).

n (1 — p)/2 is the order of singularity of the joint prob-
ability density function f(a, 8) at (« = —1,8 = 0) as
defined in equation (23).

v An integer.

o(V, @) Joint probability density function of the amplitude V
and the phase ¢ of the fading signal.

a(V, ¢) A function of V and ¢ satisfying the homogeneous
integral equation (207).

¢ The phase of the envelope of the complex fading signal.

Q The mean square value of an m-distributed random
variable.

APPENDIX B

Amplitude Distribution In Polar Coordinates

Since the results of P(V < L) for p = 1 cover a large class of fading
problems and since the statistical behavior of the interfering vector is
sometimes described by the joint probability density function g(R, 6)
of the interfering vector, we shall also obtain the power series repre-
sentation of P(V = L) in terms of ¢(R, 8) when p = 1. By using the
relations:

a = R cos 6, (153)
8 = Rsin 0, (154)

and the Jacobian relation **between f(«, 8) and g(R, #) one can represent
the coefficients {dss..} of (42) in terms of g(R, 6). This gives

PV <L) =m, )L +d, L' +d, L' + - -- (155)
where

d, = mq(1, ) = =f(=1, 0), (156)

d4 = ‘%[9(1! ‘.'I') - ql."(lr Tr) + QLO(]-:?T) + Q'n‘z(]-, Tr)] etc's (157)

an+ m
In the deep-fade region,

P(V £ L) —> =q(1, ) L7, (159)
L—0
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and
p(L) —> 2rq(1, w)L. (160)
L—0

B.1 Circular Symmelric Probability Density Function

In this subsection, we consider a special case where the interfering
random vector, Re’, has a circular symmetric probability density
function ¢(R, 6); i.e., B and @ are independent and @ is uniformly dis-
tributed in (0, 2x). For this case, let g(R) be the probability density
function of the magnitude R of the interfering vector, then

PV S L) = ()L + CL + CP 4 -, (161)
a(R, 0) = g(B) -, (162)
€= 3500 — 0 + (] ete., (163)

0s1) = 2 9(R) |- - (164)

In the deep-fade region
PV = L)—> ()L (165)
L—0

These results are used in Part 3 where we discuss the relation between
our generalized analysis and the existing theoretical work.

APPENDIX C

Nonanalytic H(e, B)

In Section V of Part 1, the analysis is carried out based on the assump-
tion that H(e, 8) can be expanded into a two-dimensional Taylor series.
In this appendix, we shall investigate two cases where H(a, 8) cannot
be expanded into the two-dimensional Taylor series. The objective is
to show that from a theoretical viewpoint, the assumption of the Taylor
series expansion of H (e, ) is not strictly necessary for the validity of
the power laws of deep fades diseussed in this paper.

c.1 Continuous H(a, 8) With Unbounded Derivatives

If H(a, 8) is continuous at (@« = —1, 8 = 0) but its first-order partial
derivatives and/or its higher order partial derivatives are unbounded
at (@ = —1, 8 = 0), then H(«, 8) in the neighborhood of @ = —1 and
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B = 0 can be written as
H(a, 8) = H(—1,0) + 0{[(1 + &)® + 871"}, (166)
where 1 > 7 > 0, and
O[[(1 + «)® + £
is a symbol to denote the component which goes to zero at a rate equal
to or faster than that of
(A4 o) + 877 as [(1+ )+ 8]0

It is obvious that H(a, 8) given by (166) cannot be expanded into
Taylor series because the derivatives of H(a, B) are unbounded (i.e.,
singular) at (¢ = —1, 8 = 0).

Substituting equations (166) and (23) into the general formulation
(20) for P(V = L), and carrying out the integration yields

— WH(_I? O) LZP
i

PV = 1) + 0(L™™), (167)

p(L) = 2«H(—1, 0)L*" + 0(L*™"™"), (168)
where 0(L**") is a symbol to denote the high-order terms which go to
zero at a rate equal to or faster than that of L**" as I, — 0. Since n > 0,
then in the deep-fade region

r*, (169)

P(V £ L) —)M
L—0 H

which is the same as equation (36). Then the discussions and conclusions
in Sections VI, VII, and VIII of Part 1 on the power laws of deep fades
forpy = 1,1 > g = 1/2and g > 1 are readily applicable to the present
case even though the derivatives of H (e, 8) are unbounded at (e = —1,
g =0).
c.2 Discontinuous H (e, B)

Suppose H (e, 8) and its derivatives are bounded but are discontinuous
at 8 = 0 so that

lim H, ,.(«, B) # lim H, .(a, B8); (170)
B0~

PP
1e.,
H, (e, 0") = H, ,(,0)
n=0,12---, m=20,1,2,---. (171)
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Then on each side of 3 = 0, the one-sided Taylor series expansion of
H(a, 8) is applicable. One for 8 > 0 and another for 8 < 0. Substituting
these two Taylor series and equation (23) into the general formulation
(20) for P(V = L) and carrying out the integration, one can show that

PV < 1) —s L0 o (172)
L-a b
p(L) —L-;—O> 2rH(—1, 0)L**", (173)
where
H(-1,0) = }{H(—1,0) + H(—1,07)] (174)
is the average value of the discontinuous H(a, 8) at (« = —1, 8 = 0).

It is seen that equation (172) is also the same as equation (36) except
for the proper interpretation of H(—1, 0) when H(a, 8) is discontinuous
at (@« = —1, 8 = 0). Therefore, the discussions and conclusions of
Sections VI, VII, and VIII of Part 1 are also applicable to the present
case.

APPENDIX D

Integration for Power Series of Amplitude Distribution
Substituting (27) and (23) into (20) gives

POVED) = 54 SOl (~1,0L,,, (7

where

f=L a=-1+VL?-f?

L.=[ | [(1 + )" + 617U + )" " dad. (176)
f=-L Ya=—-1-VL3-83

From (176) it is seen that if either (n — r) or r is an odd integer, then

I._,.. vanishes because the integrand is antisymmetric. Therefore,

I._, . does not vanish only when both (» — r) and r are even integers.

Then let n = 28 and » = 2». Equation (176) becomes

VIi_g1

Iys- 20,20 f f [ +a)2 -+ ,32]#-1(1 _'_a)zs—zuﬁzuda dB
f=—L Ya=-1— \/Ll_ﬁz

_ 2P(S -V + %)F(y + %) 28+2u
=T eStars+n L )
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Combining (175) and (177) gives

8=00
P(V = L)= 3 L™
S=0

2 ORI =y + PIe + 3) ]
'[(28)! 2GS T or(s + 1) Mesena=10)

(178)
LZS +2;1, (179)

S=00

= dos42
=0

ta

where
2 E WIS — v+ NI +

_ 3) _
Ber gL @S e+ (L O (80

APPENDIX E

Dertvation for Expected Numbers of Fades

Suppose T = t, — 1, is the time interval in which we want to find the
expected number of times that the random fluctuating signal V(f)
crosses the signal level ¥V = L. This interval is divided into a large
number of smaller intervals of width At so short that each contains
no more than one level crossing. We first consider the expected number
of upward level erossings. The downward level crossings can be treated
similarly.

In an infinitesimal interval At, the conditions for an upward level
crossing of V (t) are

av(t)

V() = a0 > 0 (181)

V) at > [L — V()] >0 (182)

These two conditions are shown graphically in Fig. 8. On a V versus
V" plane, the region in which V and V satisfy conditions (181) and (182)
are shown as the shaded area in Fig. 9. The integration of the joint
probability density p(V, V) over this range will give the probability
that V() will have an upward level crossing in A¢,

P,(L) = fp [H_h p(V, V)dV dV (183)
~at [ Vp(V, V) dv. (184)
V=0 V=L
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o] L

V) *l
| !/“‘-—-v t)
S| <—— LEVEL L
[L—V(t)]>oi/
o |

e
| |

t t+ At

v(t)

f

Fig. 8—The conditions for an upward level crossing of V(t) in an interval At.

The expected number N,,(L) of upward level crossings per unit time is

Pu(L) _

NuD) = =4

f:” Va(V, V) J av. (185)

Similarly, the expected number of downward level crossings per unit
time is

V=0 ) . )
New® = [ 1V 100, | _av. (156)

The total expected number of level crossings per unit time is

N,(L) = NuD(L) + Ndown(L)

-[ v, V)( av. (187)

T

,/'—V =L

—-l\‘mtl:— v

Fig. 9—The region in which V and V satisfy the conditions for an upward level
crossing.
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The expected number of fades per unit time below V' = L is
N(L) = %N((L) = Nup(L) = Ndnwn(L)
Voo

=/ Vp(V,V) ’V= av. (188)

V=0

APPENDIX F

Log Normal Behavior of M-Distributions Near the RM S Value
Let

Z = 20 log,, (\/iﬁ) = 20[log,, L — log,, V€] (189)

be the signal level in dB with respect to its rms value v/ 0. Equation
(189) implies

A L
y=m (T/_ﬁ) , (190)
G- enl)
oL _ V2 (Z_) _L
oz~ M P\yu) T M (192)
where
M = 20 log,.e = 8.686 dB. (193)

Then the probability density functions of L and Z are related by the
Jacobian relation:*" "

w2 =2 | %% | = Lo, (199

Substituting the m-distribution (143) and equation (191) into (194)
yields the following probability density of Z:

Qm., L " —mL?
MZ) = 31(m) (ﬁ) exp[ Q ]

IR
= 3T (m) exp {ml:M exp \ 37 (195)
Substituting the following power series
27 =1 (2ZY
o () - £ (57) (196)
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into (195) gives

hZ) = [ﬂfﬁn‘m) e"“] exp {-—m[Z(%y + 2% (%)n]} (197)

If the signal level L is very close to its rms value /@, then

L
— - 1| K1, 198
l Va (198)
2Z L
for
| Z | <K M/2
= 4.3dB
Under this condition, we have
=1 (2Z\" zZ\
DRICORE O (200)
Then A(Z) in equation (197) becomes
me o E 2
hZ) = [me j| exp [—2m(M) :I , (201)

which is a normal distribution for Z. Substituting (190) and (201) into
(194) yields

P m

p(L) =~ [E%I%m) e"":l exp [—2m(In L — In V@), (202)

which is a log normal distribution for L. Therefore, within the range
|z | € M/2 = 4.3 dB, all the m-distributions for any m = 1/2 behave
like a log normal distribution given by (202).

APPENDIX G

Nonunique Relation Between P(V = L) and f(a, B)

In the definition of the fading signal model discussed in Section II
of Part 1, the four random variables V, ¢, &, and 8 are related by

14+a= Vcosd:}_ (203)
8= Vsing
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Let p(V, ¢) be the joint probability density function of the amplitude
V and the phase ¢ of the fading signal. By the Jacobian™" of the
transformation (203), it is easily shown that

o(V,8) = VU + a)’ + 8°f(a, B) = V(V cos¢, Vsing).  (204)

In this appendix we shall show that the relation between P(V = L)
and p(V, ¢) is not unique. This then implies that the relation between
P(V £ L) and f(e, 8) is also nonunique because of the simple algebraic
relation (204) between p(V, ¢) and f(e, 8).

In the study of the amplitude distribution P(V' = L) of a complex
fading signal Ve'*, it is often assumed that V and ¢ are independent
with ¢ uniformly distributed in (0, 2x). However, in the study of
interference, distortion, FM radio system, radio navigation system, etc.,
many authors™ ******** have investigated the distribution of the random
phase, ¢(f). These results show that the distribution of phase is not
always uniform. Furthermore, when the signal is weak (i.e., V is small),
the phase is more likely to vary over wider range. This means the random
variables V and ¢ are somewhat correlated. Therefore, V and ¢ generally
can be either dependent or independent and ¢ can be either uniformly or
nonuniformly distributed.

By definition, ™™ the probability density p(V) of V is the integration
of p(V, ¢) over the entire range of ¢; i.¢.,

b=2r
(V) = [ oV, 9) do. (205)

Furthermore, the cumulative amplitude distribution P(V = L) is the
integration of p(V) from V = 0 to V = L. Therefore,

V=L ¢=2x
povsn=[ [ av,edsar. (206)
=0 =0
Given a joint probability density function p(V, ¢), then P(V = L) can

be calculated by (206).

On the other hand, given an amplitude distribution P(V = L),
equation (206) is an integral equation to solve for p(V, ¢). An immediate
question arising in solving the integral equation (206) is the uniqueness
of the solution. A procedure to test the uniqueness of the solution is to
consider the following homogeneous equation

V=L pp=2x
0= fv f oV, 9 ds V. (207)

If the homogeneous equation (207) has a nontrivial solution, then the
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solution of (206) is not unique because, given any particular solution
pr(V, @) of (206), then

p(V,0) = pp(V, ¢) + co(V, ¢) (208)

is also a solution of (206) where ¢ is an arbitrary constant.*
It is obvious that all of the following functions

Un(vs ¢) = EH(V) sin (ﬂd’) + g-n(V) Cos (ﬂ¢); n = il: :|:2J :‘:31 T
(209)

are nontrivial solutions of the homogeneous equation (207) where
£.(V) and ¢,(V) are arbitrary functions of V. Notice that the nontrivial
solutions (209) contain both symmetric and antisymmetric functions
of ¢. Furthermore, any arbitrary linear combination of {e,(V, ¢)} is
also a solution of the homogeneous equation (207). By the experience
of Fourier series synthesis technique, we know that the linear combina-
tion of the set {e,(V, ¢)] is able to represent a very large class of either
simple or complicated funetions of V and ¢.

Therefore, given an amplitude distribution P(V =< L), the integral
equation (206) has infinitely many different solutions.

On the other hand, in equation (206), if one imposes the following
two additional conditions:

() V and ¢ are independent, and
(i7) ¢ is uniformly distributed in (0, 2m),

then
oV, d) = a-p(V) = =L P(V 2 1) (210)
! 2r 2x oL = LeV

is the only possible solution of (206).
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