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Spectral Density of a Nonlinear
Function of a Gaussian Process

By SCOTTY NEAL
(Manuseript received September 10, 1970)

We dertve an expression which can be used in a relatively straight-
forward manner to obtain either the autocorrelation function or the speciral
density of any ‘“‘reasonable” function of any stationary gaussian process.
The expression s used to study the spectral density of a sinusoidal wave
which is phase modulated by a hard-limited gaussian process.

I. INTRODUCTION

A band-limited gaussian process having a rectangular power spec-
trum is assumed for some purposes to be an adequate approximation
for several classes of modulating signals encountered in phase modu-
lation (PM) systems.! However, in an actual implementation of a PM
system, the modulating signal passes through circuitry which saturates
when the signal rises above a fixed level. This clipping (i.e., limiting)
level is usually adjusted fairly high (nominally at four times the rms
of the modulating signal) and then ignored in any subsequent analysis
of the system. Consequently, the objective of this study is to deter-
mine the qualitative effeet of hard-limiting the modulating signal in
a PM system.

From a mathematical viewpoint, we can obtain an understanding
of the preceding question by investigating the following problem:
Find the spectral density of a sinusoidal wave which is phase modu-
lated by a function g(X,) of the stationary gaussian process X, Of
course, this version of the problem can also be viewed as finding the
spectral density of a (composite) nonlinear function of a gaussian
process; a problem originally studied by 8. O. Rice? D. Middleton®
and W. R. Bennett.* In fact, we do use their approach (representing
the nonlinearity in terms of a transform) to derive an expression
which is essentially the starting point of our analysis. However, using
our relation avoids some of the complexity associated with the trans-
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form method. A derivation of the expression is given in Appendix A.

The notation and general results are presented in Section II along
with two examples. In the third section, we obtain specific results for
the hard-limiting case.

II. SPECTRAL DENSITY OF A PM WAVE MODULATED BY A NONLINEAR
FUNCTION OF A GAUSSIAN PROCESS

Let W(t) denote a constant-amplitude sinusoidal wave which is
phase modulated by a real-valued function g(X,) of the stationary
gaussian process X;. That is,

W(t) = A cos (ot + g(X,) + 9) (1)

where A is the wave amplitude, f. = w,/27 is the carrier frequency,
and @ is a random variable with probability density funetion

21_7:- for 0 = 8 < 2,
‘ffa(e) = (2)
0, otherwise.
To obtain the spectral density for W (t), it is convenient to express
the wave in terms of complex variables as®

W) = Re {W(t)) @)
wheret
W(t) = A exp [j(wt + O]V (), )
and
V() = exp [jg(X )] (5)

Since X, is stationary and 6 is uniformly distributed, both W(¢) and
V(t) are wide-sense stationary.” Moreover, the spectral density S.(f)
of W(t) is given by
S.(f) = 38.(f — fo) + Su(—f = I (6)
where 8,(f) is the spectral density of V(¢)."
If we define RB,(r) = (V({t + 7)V(#)), the Wiener-Khintchine theorem
implies that

S.(f) = f : R.(r) exp [—j2rfr] dr. )

* We use Re (z) and Im (z) to denote respectively the real and imaginary parts
of the complex variable z. The symbol Z denotes the complex conjugate of z.
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So, assume that X;,, and X, are gaussian with joint probability
density function

@ | 7) = 1 o (_xf — Oz,x. + xﬁ)
PO T VI P\ 2 - )
—o < Z; < o, (8)

where R,(r) = (X;:.Xs), I* = R,(0) and r = R.(r)/T2 It follows
that

RO = [ [ ewlio@) - sep@ , o) doday. @

In Appendix A, we show that if G(z) is of exponential order and
of bounded variation on bounded intervals,’ then

j:” j:’” G(xn)(rT(ESp(:cl , Xo) dx, dxy, = i ar, |r l =1, (10)

where
PZn 2
n!

a, = ’

f_ : G(:v)( ;;n p(:r)) dx

and

! 1 z
p(a) = Vo exp \ =5

is the probability density for X;. Setting G(x) = exp[jg(x)],

R(r) = 30" (11)

n=0
where?

2n 2

C, = (12)

n!

[ e tio| Zepw) | ax

Recall that the Hermite polynomial of degree n, H,(x), satisfies the
relation
dﬂ
dx"

t We define such functions to be “reasonable.”

t Since |exp [jg(z)]| = 1 for all finite g(z), it follows that equations (11) and
(12) are vahd for all funetions g(x) which are of bounded variation on finite

intervals. This should include most functions which one might encounter in
engineering applications.

exp (—2%) = (—1)"H,(z) exp (—z%).
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Consequently,

C. = (13)

I U Y A ( z
an.' j:w exp [Jg(x)]Hn \/Q 11
Since the coefficients {C,} are independent of R.(r), an infinite

series representation for the spectral density S,(f) can be obtained
from equations (7) and (11). To obtain the series, let

S0 = [ R.r) exp (—i2af) dr (14)

and define S,(f) to be the n-fold convolution of S,(f) with itself; i.e.,
S.(f) = S._.(f) * 8,(f) for n = 2. It follows that

S.) = Co (1) + Zc B0 —w<i<w. @9

Using equations (13) and (15), one can see that the carrier power
is given by

= | {exp [jg(X)] I*. (16)

2.1 Examples

To obtain a better understanding of the preceding results, we present
two examples. The first example uses g(z) = z (and serves as a partial
check on our results since this ease is well known®). The second
example assumes extreme clipping,

b for = >0,
g(x) =
—b for z <0,

and serves as a preview for the hard-limiting case presented in
Section IIT.

2.1.1 Phase Modulation

For this example, g(z) = z for all z. Consequently, from equation (13)
we have, forn = 0,

C. = 5o ’ \/L; i exp (jv2 Tx)H,(z) exp (—2°) dz (17)
Thus,
Cou = 5;;,(—125)—' W/l’_r fa " cos (V8 To)H,u(@) exp (—2) dz |, (18)
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(112)2n
(2n)! "’
(see Ref. 6, Section 7.388-3).

In a similar fashion C.,y; = exp(—I?)(r?)z*+1/(2n + 1)!, which
implies that

Cy. = exp (—T%) (19)

2n
C, = exp (—T7 % for n 2 0. (20)

Now, substitute equation (20) into equation (11) to obtain the well-
known result?

R,(r) = exp [-T*(1 — 7)]. (21)

2.1.2 Phase Modulation by an Eztreme-Limited Gaussian Process
For this case,

g(:r:)={ b if x>0, 22)
—-b if z<0.

Using equation (22) in equation (13), one obtains
exp (jb) f “H (i)p(x) dz
PUBL ) A\VB T

+ exp (—jb) f_: H,,(\/-Txr-)p(:c) dz

Cn

= 2l
2

o (23)

which reduces to

On= (2. @ ow (- as) @0

and
(sin (b))* 2 [® 2 !
Copsy = 5% (7; j; H,,..(z) exp (—2°) dI) y (25)
for n = 0. Since
f i exp (—y)H.(y) dy = H,_,(0) for n = 1, (26)
we have
Co = (cos (b))? (27)

Csp =0 for n=1, (28)
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and

___Gin@®) (2 ’
C2n+1 - 22n+1(2n + 1)! (V‘J_th(O)) " (29)

Using the fact that Hy(0) = 1 and H,,(0) = (—1)"2"[1-3 -+ (2n — 1)]
for n = 1, we see that

¢, = 2 (sin )"

and

2, 0,135 (20— 1)
Canir = - (sin (b)) Fal@n + 1) for n = 1. (30)

Substituting equations (27), (28) and (30) into equation (11) and
recalling the series éxpansion for Arcsin z, one obtains

R.(x) = (cos (B))" + (sin (B)* % Assin (ﬁ%) , (31)

for —@ <7 < .

Notice that the carrier power, Co= (cos (b))*, vanishes if b=mn/2+Fkmr,
k= 0,1, -, while all the power goes into the carrier whenever b = k,
k=0,1, - .Ifb # kn, the continuous part of the spectrum is simply a
scaled version of the spectrum for an amplitude-modulated wave when
the modulator is an extreme-limited gaussian process. This problem was
studied by J. H. VanVleck.’

III. PHASE MODULATION BY A HARD-LIMITED GAUSSIAN PROCESS

A problem of interest arises when the function g represents an ideal
hard-limiter; i.e.,

b for z > b,
g(z) = z for |z| =D, (32)
—b for < —b,
for some b = 0.

3.1 Carrier Power
Noting equations (13) and (16), one can see that the carrier power
is given by
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C — ; ’ $_2 d
b = Vol ) cos (z) exp o) 0%

2 L] x2 2
71‘2‘/; exp \ —5= dx | -

Defining « = b/T" (the relative clipping level), we have

C, = (\i—r _/:Nz cos (V2 T'z) exp (—z°) dz + cos (b) erfe (\/-)) (33)

where

erf (2) = exp (=% dt (34)

\/_
is the error function® and erfe (z) = 1 — erf(z).

A more useful expression for Cy, can be obtained in terms of the
error function with complex argument. Apparently,

\/i; faa,ﬁ cos (V2 Tz) exp (—2°) dx
a/VE
- {\/W fv exp (—jv2 Tz — &%) d.r}, (35)
= exp ( 1—.2) Re {\l/w f_:z exp (—(z + j%)z) dx} ) (36)
= % exp (—%2) Re {erf (\—% + j%) — erf (55 +3 5‘2)} , (37
= exp (—I;) Re {erf (% + J;%)} -’ (38)
Consequently,

C, = (exp (—%2) Re {ert ( \ﬁ))} + cos (b) erfe (\/i))z (39)

can be calculated numerically® However, we can obtain a better
analytical understanding of the carrier power by expressing the
integral in equation (36) as

t To make the last step, we used the relations® )
erf (—z) = —erf (z) and erf (2) = erf (2).
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exp (—%2){11@ \% f:/ﬁ exp (—(’L + j%)z) d.r}

Pz a/VZ+i(T/V2)
= exp (— 5 ) Re {f exp (—32) dZ}- (40)

(r/va

Since exp (—z°) is an entire function, the integral in equation (40) is
independent of the path taken from j(T'/V2) to a/V2 + j(T/V2). It
is useful to use a contour consisting of three straight line-segments: the
first from j(I'/VZ) to 0 (on the imaginary axis), the second from 0 to
a/VZ (on the real axis) and the last from «/V2 to a/VZ + j(T'/V2).

Integrating along these lines, it is straightforward to show that

2 a/VI+i(T/VE)
L R if —28d
exp (=5 e Nl exp (—#") dz
= exp ( E) erf (—a*)
TN 2 V2
2

+ exp (ﬁgj) ﬁ ./:NE sin (V2 ay) -exp (—(F? - gf)) dy (41)

Combining equations (33) and (41) yields

G = (‘”‘p (‘%) orf (%) + cos (b) erfe (%)

+ exp (—g—) \/iv_r fDPNE sin (V2 ay) exp (—(E‘; - yz)) dy)z- (42)

When T < 1 (low-index case), the last term inside the brackets is
negligible so that

C, ~ (exp (——%) erf (%) + cos (b) erfe (%)) when T <« 1. (43)

=

It is interesting to observe that erf (a/V2) is the probability that X,
is inside the clipping levels [—b, b] [and erfe (a/V2) is the probability
that X, is outside the clipping levels]. Hence, we can reason that
exp (— I'*/2) is the average de voltage associated with V' (f) when X, is
inside the clipping levels while cos (b) is the average voltage when X,
is outside the limits. [One can see from equation (16) that the carrier
power Cp = | (V(#)) ]

Pursuing these thoughts further, one might conclude that the
integral in equation (42) represents a high-order correction (to the
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preceding approximation) associated with transitions of X; across the
clipping thresholds. When T is small, these transitions are rapid and
the correction (i.e., the integral) is small. However, as T increases, the
transitions are slower (at least when X, is bandlimited) and the
integral in equation (42) can increase in magnitude for certain values
of a. Moreover,

B T/V2 _ 1"2 )
— sin (V2 ay) exp (—(— - y)) dy
Vil z

. T
~ sin (b)F(\—@) when T >> V2,

where F(z) = 2/V/7 [% exp | — %] dt is Dawson’s function.®
Consequently it follows that w hen 1" > V2 (i.e., the high-index case),

) ~ (exp ( I;z) erf( ) + cos (b) erfe ( )

+ sin (b) exp (—%)F(%))E (44)

Thus, when « is not too large,

Co ~ (cm (b) erfe ( ) —+ sin (b) exp ( az)F(;%))Q- (45)

The quantity inside the brackets is a sinusoidal function of «. Hence,
there are various values of « (for fixed I') which will completely null
the earrier power €, while other clipping levels give rise to a relative
maximum carrier power.

Using

(V1)) = exp ( I‘?:) Re {eif( + /5)} + cos (b) erfe (\/_)

we computed exp (T%/2)(V({)} as a funetion of « for several values of T
Some of the results are displayed in Fig. 1. (Since the dynamic range of
this function is so large, we used a linear scale between —1 and 1 on the
ordinate axis and a logarithmic scale otherwise.)

The general features of the three functions are as indicated above.
Since (V(t)) = 1 whenever o = 0, each curve starts at exp (T%/2)
fora = 0. For T £ 1 (not shown in Fig. 1) the curve decreased mono-
tonically to one. For I' = 2, this relative average remains positive but
oscillates slightly before converging to unity. However, for the high-
index case, the relative mean is similar to a damped sinusoid (as dis-
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108

104

102

Fig. 1—Relative mean of V(t) as a function of relative clipping level. « is
the ratio of the clipping level b to the rms modulation-index T.

cussed above). This extreme oscillation about zero apparently occurs
for T' = 3. Notice that the value of @ required for the relative mean
(and therefore the carrier power) to stabilize increases as T' increases.
Hence, for high-index modulation, setting « & 4 does not necessarily
guarantee that the carrier power is unaffected by the clipping.

3.2 Continuous Part of the Spectrum

Numerical techniques are required to obtain the continuous part of
the spectrum. However, one can see from equations (23) and (31)
that the coefficients {C,)} in the series are independent of RE,(r) and
need only be computed once for any particular configuration of the
hard limiter (and choice of T'}). Consequently, it seems worthwhile to
derive an algorithm for efficient computation of {C,}.

Noting equations (11), (12) and (13), one can see that

R = 3 (B2, (46)
where

C. = " | v(n) 2 (47)

n!
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and

iv(n) = f_ i exp [—:ig(x)](% p(z)) dx. (48)
Consequently,
(1)

[ e (~io) dpte) + exp (=0 [ dnta) + exp () [ dnGa),

exp (—%2) Re (erfc (—5—5 + j%)) (49)

Next, for n = 2 we have

Py = [ e (i) a i p@) + exp (=) [ a2 p@)

rem@ [ (L)

Integrating the above expression by parts, we have

) = 5 [ e (S o) d (50)

Reecall that

i o (~3m) = (G55 ) oo (55)

so that integrating equation (50) by parts obtains

T A A )}
(61)

Of course, H,(—z) = (—1)"H,(z), which implies that the exact
determination of equation (51) depends on whether n is even or odd.
It is straightforward to show that

v(2n) = v(2n — 1)

+ (—1)"sin (b) % exp (—;ﬁ)(m)lﬂn(ﬁ) (52)

and
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¥(2n + 1) = »(2n) — (=1)" cos (b) —= \/— exp ( a)(\f r)zﬂH’"* (‘3‘2)

forn = 1.
It is known that®

Hyx) =1, Hi(x) = 2z
and
H,..(z) = 2zH,(x) — 2nH, () (53)

for n = 1, so that in principle, the sequence {C,} ean be computed
by using equations (47), (52) and (53). However, in practice the dif-
ference-equations (52) and (53) are unstable and care must be taken
in their implementation. We found it best to use the following approach:

Let [z] denote the largest integer not exceeding z and let nll =
n!/20/21[n/2] 1. [So that (2n — 1)!! = 1-3-5--+(2n — 1).] Now, one
can use equations (52) and (53) to obtain stable algorithms for

I'v(n)

tn) = _zwﬂ [7—2”] !

which are used to compute

C, = ti(n)tz(n).

I"v(n)

and t,(n) = i

3.3 Numerical Results

To obtain insight into the effect of hard-limiting, we assume that X;
is bandlimited with a rectangular power spectrum. That is to say

2 8In 20 Wr

R.(n) = T ——- for |7] < . (54)
In this case,®
8,(f/W) = Co () + 537 ;1 C.F.(f/W), (55)
for —oo < f < 0. The functions Fn(A) are defined as follows:®
() = {T, —1<A< 1, 56)
0, otherwise,

and forn = 2,
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wey (BLER )T
F.N = {nr 2 (—1F PNCEsY , 0= |\ <n, (57

k=0

0, otherwise,

where M (n, A) = [n + |A|/2]. We use [z] to denote the integer part
of x.

As M (n, A) increases, it becomes increasingly difficult to accurately
sum the alternating series displayed in equation (57). Since

6\ 3\°
P~ () el - %) 9
(see Ref. 9), we used the asymptotic approximation (58) whenever
F.(\) was required for n = 15. The threshold 15 was determined
empirically. We attempted to keep our numerical estimates of the
various spectra accurate to one percent relative error.

We considered three cases: low modulation-index (I' = 0.1), mod-
erately high index (I' = 1) and high index (I" = 5). The results are
displayed in Figs. 2 through 4. In each case, we have computed the
effect of changes in the relative clipping level & = b/T.

3.3.1 Low Modulation-Index

When I' < 1, it is evident from Fig. 2 and equation (55) that the
principal part of the spectrum is well approximated by

fev s + 55 mam, o 111< W,

S.(f/W) =~ (59)

0, otherwise.

Using results from the preceding section, we can show that when
I <1,C, ~ I"exp (=T (erf (a/ v2))’. Hence, for I' < 1,

S.00/W)
<es + (e (5)) T2 ED rgm, 111<w, g

0, otherwise.

That is to say, in the low-index case (I' < 1), hard-limiting causes
the principal part of the spectrum to be scaled down by the multiplica-
tive factor (erf (a/V2))

Figure 2 illustrates the actual behavior [as opposed to the approxi-
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Fig. 2—Spectrum of low-index PM wave (T' = 0.1) for various relative clipping
levels. « is the ratio of the clipping level b to the rms modulation-index T

mation (60)] of S,(f/W) for f > W. Notice that the tails of the spec-
trum are raised considerably as the relative clipping level « decreases.
This phenomenon is noticeable even for « = 4 (ie., clipping at a
four-sigma level). The increase in high-frequency content is appar-
ently caused by the introduction of points at which the derivative of
W (t) is discontinuous.

3.3.2 Moderately High Modulation-Index

The results for T = 1 are displayed in Fig. 3. The qualitative results
are similar to those observed for T' = 0.1; i.e., the principal part of the
spectrum tends to decrease and the tails increase, as the relative
clipping level « decreases. However, notice that for a particular value
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of @, the frequency f/W at which the tails of the spectrum begin to
rise is somewhat larger for T = 1 than for T = 0.1.

3.3.3 High Modulation-Index

When I' = 5, the behavior of (V(¢)) as a function of « is quite dif-
ferent from that observed for T' < 1 (see Fig. 1). In fact, small changes
in « can change the discrete component of the spectrum, Co, = (V{1))?
from a relative maximum to zero. Consequently, we originally suspected
that the continuous part of the spectrum might change significantly
as the discrete component changed from a relatively large value to
zero. To check this point, four values of o were selected for testing;

10 : 1o-6
azb
r
1 —1077
\\ a=4
~
\\
10" B
\._‘_.\
UNCLIPPED
= (-2 I
\B‘ ) 10
-~
n
3
J 1073 ' 10-10
w 8
1074 g =
\\
~
1075 AN
~
~
~
-
\‘\
\"-u
1078 |
8 10

Fig. 3—Specirum of waves having moderately high modulation-index (T' = 1)
for various relative clipping-levels. « is the ratio of the clipping level b to the
rms modulation-index T.
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two at points of relative maxima for C; and two where C, was nearly
zero. The results are displayed in Figs. 4a and b.

From Figure 4a, we see that the qualitative behavior of S,(f/W)
for high modulation-index (I' = 5) differs significantly from that
observed for ' < 1. However, whether or not C, vanishes does not
seem to affect the general characteristics of the continuous part of the
spectrum. Generally speaking as « decreases, the portion of the spectrum
for 0 < f/W < 1 tends to increase while the part for 1 < f/W < 10
tends to decrease. Notice that a discontinuity is introduced at f/W = 1,
a characteristic of lower modulation-index. Of course, limiting reduces
the variance of the modulating signal X, , so that the discontinuity
at f/W = 1 is not surprising.

To examine the behavior of the tails of the spectra, look at Figure 4b.
As in the other cases, decreasing « raises the tails of the spectrum,
although the effect is considerably less than that observed for I' = 1.
In fact, for @ > 3, we observed very little difference between the clipped
and unclipped cases.

3.4 Comments

Computation of the spectrum for large values of f/W, using the
infinite series approach, is expensive since many terms are required.
Moreover, aceurate computation of C, and F, , for large n, is difficult
(if not impossible) because of numerical problems. Consequently, a
good estimate of the spectrum for large f/W would be very desirable.
Unfortunately, we do not have such an approximation. However, it
is possible to estimate the relative frequency f/W at which the tails of
the spectrum for a clipped modulator will begin to depart from the
unclipped case.

More precisely, consider equations (48) and (49) which constitute
an algorithm for the computation of »(n). Since the tails of the spec-
trum of W (t) can rise only when »(n) increases as a function of n,
we need to examine y(n) for large n.

For large n, we know that®

H,.(x) = (—1)"2"(2n — 1)! exp (3:2/2){cos (Vin + L z) + 0(%;)}

(61)
and

Hyi(z) = (=220 — DIIV2n + 1
exp (xz/Q){sin (Vin + 32) + 0(,%)} 62)
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Hence, for large n we have the approximation

»(2n) ~»(2n — 1) — 2T sin (b)\E cos (@V'2n — 3/2)
-exp ("Z_z) ﬁ (Zkl:; 1) , (63)

k=1

W2 + 1) A »(2n) + cos (b)\/% sin (@V/2n + 3/2)
exp (_g) \/2n2+ LT (2:;1; 1)_ 64)

4 r k=1

It is evident that the sequence u, = [[;-, [(2k — 1))T']is a decreasing
funetion of » for n < n, = [I* + 3/2] and is an increasing function
for n > n,. For any finite a, x, will ultimately exceed exp (a’/4) and
the forcing function for »(2n) will begin to grow without bound. It
follows that »(2n) will exhibit instability when n is so large that p, >
exp (e*/4). This will certainly be true when (2n — 1)/T* 2 exp (ai/4)
or for

n = I exp (&*/4) + 1]. (65)

An inspection of Figs. (2), (3) and (4) shows that equation (65) gives
a good indication (at least for those ecases considered) of the value
of f/W where the tails of the clipped spectra begin a significant depar-
ture from the unelipped case. Equations (63) and (64) also indicate that
for large n, »(n) will oscillate as it increases in magnitude. Consequently,
it appears that it will be difficult to get tight bounds on S,(f/W) for
large f/W. It is interesting that the carrier power is most significantly
altered by the hard-limiting when I' >> 1 while the effect (of hard-
limiting)-on the tails of the spectrum decreases as T' increases.

IV. CONCLUSIONS

In principle, equation (68) can be used to obtain either the auto-
correlation function or the spectral density of any “reasonable” func-
tion of a stationary gaussian process. We made use of the identity to
study the spectral density of a sinusoidal wave which is phase-
modulated by a hard-limited gaussian process.

The main disadvantage of this approach (i.e., using an infinite series
solution) is that numerical techniques are usually required to obtain
a solution. Consequently, estimates of the tails of spectra (of interest
for PM systems having high modulation-index) are difficult and
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expensive to compute accurately. However, when no better alternative
is available, our approach can be used to obtain numerical results in
a relatively straightforward manner.
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APPENDIX

A Relation

Let X; denote a stationary gaussian process with probability
density funetion

1 ( a’ )
pl) = 5 exp | —5m w <x< @, (66)
The joint probability density function for X, , and X, is

( ) = 1 ox [_:cf — 2rx,x, + xﬁ]
N e ST (I R

where
R() = (XX, T =R(0) and r="0
for —o < 7 < =,

If G(z) is an exponentially bounded complex-valued function of the
real variable z (i.e., there are real numbers » and » such that |G(z)| =
vexp (u|z|) for —= < x < «) and if G(x) is of bounded variation
on finite intervals, then we shall show that

[ i [ : G TP , o) o, ds
- £ ®O [ o6 Lp) e |

(68)

A.1 Comments

All the improper integrals displayed in this Appendix are defined
in the sense of principal value. For example, equation (68) is more
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precisely expressed as

T, T

lim ) " ) G@p(, , ) dz, dz,
- n):m(Rﬁ‘!’))" lim f i G(x)(;;ﬂ p(z)) dx (69)

Since G(x) is exponentially bounded and integrable over (— 7, T)
for all T = 0, it follows that the integrals in equation (69) exist and
are bounded. Consequently, the improper integrals in equation (68)
also exist. Moreover, one can show that

lim " G(z)G(z)p(z, , x,) dz, = f_ ) G(2.)G(@)p(@, , 2,) dz,

Ty—0 v —

uniformly for — e < 2, < «.

It follows that the double limit in equation (69) can be expressed
as an iterated limit and further that the improper integral in equation
(68) can be evaluated as an iterated improper double integral.

A.2 Proof of Identity

We first establish equation (68) for all functions G(x) which are of
bounded variation and satisfy

j@ | Gx) | dx < =.

In this case (following Rice,?> Middleton® and Bennett*), G'(x) has a
Fourier transform

56 = [ 6G) exp (—joa) da (70)

such that for almost all z, — « < x < o0,

6@ = o= [ 8 exp (a) do. (1)

Using equation (71), we can write

f_ : f_ : G(x))G(z)p(a; , x) dz, dx,

(R, (=
oz, , x2) dz, dzy . (72)
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Since G (z) is of exponential order, one can show that all combinations
of the integrals in the right-hand side of equation (72) converge uni-
formly so that we are justified in interchanging the order of integra-
tion to obtain

f_: f_ : G(z))G(z)p(2: , T) d2, dz,

= [ [ sge
( j'w f” p(x, , z2) exp [jlw,z1 + w,z5)] d2, dzz) dw, dwy . (73)
Using the fact that

f_ f_ p(z, , z5) exp [jlw2; + w.,)] dz, dz,

I\E
= exp {—-2— (0} + 2rew, + w:)}

(see Ref. 5, pp. 30-35), and recalling that Y2, z"/n! converges uni-
formly to exp (z) for —® < z < =, we obtain the following from
equation (73):

f_:: f_: G(z,)G(z2)p(x, , 2) dz, dzs

- S RO " Goyrgo) exp (-5 o) do)

n=0 n!

{2 [ Goorsten oxo (-5 o) don)- (74)

An application of Parseval’s theorem yields

L[ o e (-5 o) do = [T a-o(Er@) e o

and a similar expression for ¢ and G. Using equation (75) in equation
(74), we obtain equation (68).
Now, we only assume that G(z) is exponentially bounded and of
bounded variation on finite intervals. For k = 1, 2, - - , define
6.(@) = {G(a:), for -k gz sk,

0, otherwise.
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It follows that G (z) is of bounded variation and that [2, | Gi(z) | dz < =
fork = 1,2, --- so that the above results imply that

f_: f_ : Gu@)Gilz)p(e: , 22) d, das

= (R.()"
=E(7f!))

n=0

2

(76)

j: : Gk(x)(; - p(x)) dx

T
fork=1,2 ..

We know that
70 = s (1) ) e (5m)
d P T g\ var/ \var) P\ T o
[H,(2) is the Hermite polynomial of degree n], so that the series in
equation (76) can be expressed as

Si(r) = f) Ao T (77)

n=0

where

__1
Gnk = ool

] 2
1 f G.(vV2 Tz)H,(z) exp (—2°) dz | - (78)
Vo '
Making use of the inequality®

2
| Ho(z) | < & exp (’;—)2"’2 Vnl,  Ea 1.086435,
and the assumption

|G@) [ svexp(u|z]), —o <z< e,

we can see that

-] 2

02 a,, < (—zgvtf exp wv2 I' — :c’)d:c) < o,
Vi h

for all n and all k. Hence, when | 7 | < 1, Weierstrass’ M -test implies that

the series S.(r) converges uniformly for &k = 1, 2, --- . Consequently,

we have

lim j: f Gk(xl)Gk(zﬁ)p(ml ) T2) dz, dz,

o0 R,(‘T n 2
= 3 ) (79)

n=0

lim f_ : Gk(x)(dd—; p(x)) de

k—0

for all 7 such that R.(r)/T* # =+1;ie. for |r| < 1.
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One can also show that

lim f_ j: Gr(2,)Gr(x2)p(x, , 22) dy dT2

k—o0

- i [ : GG, , z2) dz, dzs,  (80)
and that
lim i G,,(x)(% 'p(a:)) dr= | : G(x)(adxi,. 'p(a:)) . @)

Substituting equations (80) and (81) into equation (79) yields the
identity (68) for all = such that R,(7)/I* # 1.
We saw above that our identity can also be expressed as

ff fm G(x)G(z)p(z, , o) dx, dxy = i ar", |r| <1, (82)

where
2

% f Z G(V2 TH)H.(@) exp (—a®) dz | - (83)

a, = 1
o 2%l

Since the left-hand side of equation (82) exists for r = =1 and since
a, = 0 for all n, it follows that equation (82) is also valid for r = =+1.
(The proof of this result is a Tauberian theorem. For example, see

Ref. 10, page 427, exercise 13-34.)
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