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The control of linear time-invariant systems is one of the most basic
problems of modern automatic control theory. Although “optimal con-
trollers” which minimize certain costs associated with control can be
determined, in most applications “simple controllers” suffice, and are
often more desirable. The criteria by which these simple controllers
are designed are closely related to the problem of assigning the
eigenvalues of the fundamental matrix (i.e., the poles of the system)
to arbitrary but specified locations. This paper presents an approach
to the design of such control systems. Our approach does not involve
computing complicated canonical forms, as do some previous methods,
and at the same time generalizes easily to multi-input-output systems.
A simple solution of the problem of designing feedback control systems
with a minimum number of dynamic elements is also presented.

I. INTRODUCTION

In recent years there has been a considerable amount of interest in
the problem of designing controllers for linear systems. Although
most of the theoretical interest has centered around optimal control
approaches, it is generally known that in most standard control sys-
tems, simple and usually nonoptimal controllers suffice. One of the
oldest problems of control theory is that of stabilizing a linear control
system by using feedback (see Fig. 1). Although this problem has
been solved in the single input-output case by many people, one of the
first clear statements was that by D. G. Luenberger.! In the case of
multiple input-outputs, elegant solutions are of recent origin (see Ref.
2). Almost all of the published solutions resort to eanonical forms,
and in the multiple input-output case are not convenient to work

* A talk based on this paper was presented at the Second Assilomar Con-
ference on Circuits and System Theory, 1968.

1063



1064 THE BELL SYSTEM TECHNICAI JOURNAL, MARCH 1971

INPUT ———'—“——‘I OUTPUT
u PLANT X OR y

z THE SYSTEM
TO BE CONTROLLED

FEEDBACK
SYSTEM

I

Fig. 1—Model of controller.

with. Also, in almost all cases, since the system is often described in
terms of variables that are of direct interest, a transformation to
canonical form is inconvenient.

In this memo we present a solution of the problem including the
problem of designing controllers of minimal dynamic order (ie., a
controller using the, least number of dynamic elements). The present
solution does not resort to the use of canonical forms for the design.
This approach also helps to systematically exploit the additional
freedom that is obtainable due to the multiplicity of the inputs and
outputs. In fact there is no previous solution known to the author
which solves the problem of designing “minimal order” observers
without resorting to complicated canonical forms.

We begin by introducing certain preliminaries and establishing the
notation, and then solving the problem of designing controllers and
observers in Sections 111 and IV. In Section V, the problem of design-
ing controllers of low dynamic order is solved.

After this paper was written, the author became aware of the paper
by W. M. Wonham.®* Wonham derives Lemma 1 in the following sec-
tion. The proof given in Wonham however uses the theory of minimal
polynomials, as compared to the proof given in the following section
which uses only the concept of linear spaces. Wonham himself has
commented in his paper that an abstract proof of his results would
be very worthwhile. The author feels that the proof given in the
following section is an abstract version. The results of Sections III
through V are not to be found in Wonham’s paper.

II. LINEAR TIME-INVARIANT SYSTEMS AND THE PROBLEM OF CONTROL

The following definitions contain certain undefined but generally
understood concepts such as dynamical system, etc. For a more
detailed discussion of these ideas, the reader is referred to Ref. 4.
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2.1 Linear Time-Invariant System

A linear time-invariant system = is a dynamical system governed
by the following equation.

() = Fz() + Gu(t), 1
y(t) = Hzx(t), 2)

where z(t) ¢ E" is the state of £ and u(f) € E™ and y(t) ¢ E” are the
inputs and outputs of Z respectively. F, G, and H aren X n,n X m
and p X n matrices respectively, and are independent of time (.

A ‘“system” hereinafter shall denote a linear time-invariant system
for brevity.

2.1.1 Cyclic System '

Z is cyclic if there exists x ¢ E" such that the matrix [z Fzx - -+ F" ']
is nonsingular.

2.1.2 Complete Controllability

Z is completely controllable if the rank of [G FG --- F*'G] is n.
See Ref. 4 for details.

2.1.3 Complete Observability

Z is completely observable if the rank of [H' F'H' --- F'"'H] is n.
Finally Z is ordinary if

() Z is eyclie; and
(#7) Z is completely controllable and observable.

Most systems ordinarily dealt with are eyclic, because, as will be
shown in this section, the condition of not being cyclic is caused by
having two identical subsystems embedded in one system and yet
completely decoupled from each other. Hence it is a singular situation
in the sense that whenever a system is completely reachable and com-
pletely observable, a slight amount of feedback can make the system
cyclic (see Ref. 5).

It is very interesting to note that most theorems to be given in this
paper are dependent on a simple and basic property of linear spaces.
This property is stated as the following lemma.

Lemma 1: Let 9;, 1 = 1 --- n, be n distinct linear subspaces of a
linear space. Let £ be a linear space contained in the set union of 4, ,
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=1+ n. Then
£ C g, for someje {l,2, - n}, 3)
where < denoles ‘“‘contained in’’.

Proof: The proof will be based on the principle of finite induction.
The lemma is obviously true for n = 1. Now suppose the lemma is
true for all n < n, ; i.e., suppose that, given d; ,2=1,2, --- ,n < Mo,
then £ C \UJ.:. 9; implies that £ C 4, for some j = n. It will then be
proved that the lemma is true for n = no , which will complete the
proof of the lemma by finite induction.

Assume £ is not contained in the set union of any m (m < m,) of
the g,’s, for if it is so contained, then the lemma trivially holds (from
previous paragraph). Therefore there exists n, vectors z. such that

r;ef, r;ed; and Z:¢9; if 77 (4)
Consider now any two of these n, vectors z, , x; and
z; + azx;, EN ace R. (5)
(The set of real numbers).
Since £ is linear, z; + az; ¢ £ V a; also, since £ & Uiz 95
z; + az, e 9, forsome s(a)e(l,2, -, m}. (6)

However, since there are only a finite number of 4,’s while a can assume
any values from the uncountably infinite set R, there exists an ‘‘s”
such that for at least two distinct values of @, namely «, and e, ,

z; + eyx; and 2 + ax; e d, .

But this implies that
(e, — ay)x; & g, since 4, is linear; (7

ie.,

z; ¢ d, since a, ¥ a, and 4, are linear. (8)

Therefore s = j by (4), i.e., z; + a.z; & 9; , whence z; e 9, since z; e 9;
and 4, is linear. Once again using (4), z; e 9; = 1 = j which contradicts
equation (5). Q.E.D.

Note: As can easily be seen, Lemma 1 does not hold in general for
an uncountable union of linear spaces.

Definition: A square matrix F has simple structure if and only if for



LINEAR TIME-INVARIANT SYSTEMS 1067

each eigenvalue \; , of F there exists one and only one eigenvector e; .
(In other words, F' is simple if no two uncoupled Jorden blocks in the
canonical form have the same eigenvalue.)

Note: All the eigenvectors are assumed to be normalized such that
the first nonzero component is +1.

Lemma 2: The statement that the system Z 1s cyclic implies that the
square matrix F in equation (1) has simple structure.

Proof: Suppose there exists two eigenvectors e, and e, of F corre-
sponding to the eigenvalue A\. Then 3 two eigenvectors, d; and d, of
the matrix F’ corresponding to X, where F' is the conjugate transpose
of F. Let z be any vector in E". Then suppose y is the projection of z
in R(d, , d,), the subspace spanned by d, and d, . Let

ze R(d, ,d,) suchthat (z,9)* =0, z=0. 9)

Then since ((z — ¥), 2) = 0 because z ¢ R(d,, d,), it follows that
(z, 2) = 0 by equation (9) and since z ¢ R(d,, ds2), 2 = aud, + aud, .

Therefore

(z, Fr.'L') ((Ct[d1 + azdz); F’I‘),

Xr((ﬂhdl -+ a2d2), ﬂ’);

l

Nz, r)=0 VvV r.
Therefore the proof is complete. Q.E.D.

Definition: A subspace £ of E" is an invariant subspace of F if
zeL = Fzeg. 9,(F) denotes an s-dimensional invariant subspace of F.

Lemma 8: The statement that Z is ordinary implies that 3 an a ¢ E
and 8 e E¥, such that

p([F : Ga]) = p([F’" : H'B]) = n™.

Proof: Notice that the number of invariant subspaces of F are finite,
since the number of one-dimensional invariant subspaces are finite. [This
follows from the familiar structure of invariant subspaces, see equa-
tion (6).] Suppose x ¢ R((), the space spanned by the columns of G and

po([F : x]) = s(z) < n.

* (2, ) is inner product of z and y.
1 The matrix [F : A] will in general denote the matrix [4 FA .- F™14],
and p([F : A]) denotes the rank of [F : A].
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Therefore z ¢ ®(G) belongs to some 9,(F), s < n. Therefore, from
Lemma 1 ®(@) C 4,(F) for some s < n, which contradicts p([F:G]) = n.
Therefore 3 an « e E™, such that p([F : Ga]) = n. Similarly the other
case. Q.E.D.

The above lemma shows that 3 a single input-output system corre-
sponding to every ordinary system, such that the controllability and
observability of the new system is implied by that of the old system
with multiple inputs and outputs. Lemma 4 shows that the weighting
vectors « and 8 could almost be any vector in E™ and E” respectively.

Lemma 4: The statement that = is ordinary, that « ¢ E™ and B ¢ E,
implies that p([F : Ga]) = p([F' : H'8]) = n almost surely.*

Proof: Notice the determinant of [F : Ge] is a polynomial in a, and
by Lemma 3 we have shown is nonzero for at least one a. If the distribu-
tion of & does not allow nonzero probability to any surface of dimension
< m then :

Probability that p([F : Ga]) = nis1. Q.E.D.

The stability of 3, and the transient response of 3 are generally
characterized by the eigenvalues of F, which in turn are given by the
characteristic polynomial x(F). Hence loosely by dynamics of 3 we
mean the characteristic polynomial or the eigenvalues of F.

Given that a system 3 models a “plant” to be controlled the problem
that we will consider is that of designing another system 3; such that
the resultant “closed loop” system has arbitrary dynamics.

III. THE DESIGN OF CONTROLLERS

In order to motivate the nature of the problem in Section IV, we
shall first solve the so-called control problem which essentially is a
simplified version of the problem postulated in Section II. The H
matrix in equation (2) is now assumed to be the “n” dimensional
identity denoted by I, in other words, the complete state of = is
available for measurement. In this case, we show that we need only
feed back a certain linear function of the state “z” to achieve any
given dynamics for the closed loop system.

The problem formally reduces to the following.

Given a plant 3 described by equations (1) and (2) with H in (2)

*a and 8 are chosen from any joint distribution in E™ and E® respectively,
which does not assign nonzero probability to a surface of dimension less than
m and p, respectively.
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replaced by I,, it is required to find an m X n matrix K referred
to in the following as the feedback gain such that the resultant system
has the prescribed characteristic polynomial (10)

P S D (10)

i=1

Let the characteristic polynomial x (F) be
x(F) = s+ 2 as"". (11)
i=1
Then from Fig. 2 the problem reduces to finding K such that

x(F — GK) = s" + i*y.-s"“ (12)

i=1

since the new differential equation is 2 = (F — GK)x 4+ Gu. The’
solution is contained in the following theorem.

Theorem 1: If a system Z is cyclic and completely controllable then
with vy, , Y2, - -+ , ¥a T€al constants,

m x(F — GK) = §" + 2 vs™ (13)
i=1
for any K of rank one satisfying

Y = a; +tr (GK) (14)

Yo = @p + Guiy tr (GK) + -+ - + tr (F"7'GK).

(2) Moreover there exists at least one K satisfying equation (14).
Proof: The new characteristic polynomial with feedback is

x(F — GK) = det (sI — F + GK),

() s %]; L

SIS

Fig. 2—Feedback control when the state is known.
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ie.,
= det [(sI — F)(I + (sI — F)"'GK)], (15)
= x(F) det (I + (sI — F)"'GK).
Since K is of rank one, it follows that (s — F)7*GK has rank one;
therefore
det (I + (sI — F)'GK) = 1 + tr (sI — F)"'GK (16)
where tr (A) denotes the sum of the diagonal elements of A. Therefore
from equation (15)

x(F = GK) = x(F)[1 + tr (sI — F)7'GK], 17)
le.,
x(F — GK) = x(F) + tr [x(F)(sI — F)"'GK] (18)
which since

(BI _ F)—l — EF‘S_(H”

i=0
outside an appropriate region in the complex plane (see Ref. 6),
becomes
x(F — GK) = x(F) + tr [x(F) > [F‘s“““’GK]]- - (19
i=0
Now using the Cayley-Hamilton theorem (see Ref. 6), i.e., using the
fact that

F'+ 2 aF""=0. (20)

and equating coefficients of equation (19), we have that the coefficient:
of s on R. H. 8. of equation (19) is (using a, £ v, = 1)

=0, ji>mn; (21)

vi=a; +a;,  trGK + -+ +tr F/'GK, =n2>j>1; (22

=0, j<0. (23)
Therefore

Y1 = a, + t;r GK,
1:2=a2+a1trGK+trFGK, (24)

Yo =@, + --- + tr F"'GK.
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This proves that if there exists K of rank 1 such that equation (14) is
satisfied, then K satisfies equation (24), and that if K satisfies equa-
tion (24), then equation (12) is satisfied.

Let :

[71,_._,7“]9___7, (25)

A
[alj Tt laﬂ-j:

where / denotes the transpose. We have, rewriting equation (24),

1 0 --- 0 tr GK
v =a+ 1.11 1 --- 0 trFF#K 26)
. al -
Qpy @uop + - a1 tr F"'GK
Let
1 0 -0 0]
a, 1 -0 0
AL : (27
Guz Qug - 1
(@t @z -- - @y 1]
Notice here that A= always exists and can be evaluated easily.
tr GK
wICK = 470 — o). e
tr F"'GK

Now we assume K = ok’ (a« and k are m X 1 and n X 1 matrices
respectively), such that K is of rank 1 then equation (28) becomes

tr Gak’

tr F(.}’ak A — ) 29)

tr F"_lGak’J
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Since tr FiGok’ = o/ G’F''k, equation (29) becomes
a'G’

COF' Ny - 4y = ). (30)

o/ G'F™

But from Lemma 4 it is clear that p([F Ga]) = n for almost all a.
Therefore it follows that equation (30) has a unique solution for almost
any e, and this completes the proof.

Therefore from the proof of the above theorem, it is easy to see
how we can find the required gain matrix. Equation (28) is linear in
the elements of K. The freedom in the multi input-output case is
essentially one of picking «. Almost any solution of equation (28)
which has rank 1 will do the job. Notice that restricting K to be of
rank 1 also helps to reduce the number of amplifiers to implement
the system, for K then can be realized by (m + n — 1) amplifiers
instead of (mn).

IV. DESIGN OF OBSERVERS

In Section III we saw how a gain matrix K could be computed for
the system T with H = I, . However when H # I, , the state ‘n’ of Z
is not directly observable and an observer to estimate the state has to be
designed. It will become clear that Theorem 1 gives the solution to this
problem also. The solution consists of designing a linear system Z,
which is constructed in such a way that its state £ can easily be ob-
served, and such that the state of Z, tends to the state of 2 as “‘rapidly
as desired.” (The meaning will become clear in the following.)

The system Z, will consist of a model of Z driven by an input which
is equal to the sum of the inputs to a weighted error term which is the
difference between the state of £ and that of Z, .

Let Z, be defined by

#=Fi+ LH(z — %) + Gu. (31).
Let the error £ £ z — £. Then equations (1) and (31) imply
# = F& — LHZ. (32)

Now we would like £ to decrease to zero according to some dynamics
in the sense that x(F — LH) should be some prescribed polynomial.
It is obvious that once again the problem is to find an L such that
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x(F — LH) is a prescribed polynomial which by Theorem 1 again is
easily done by solving

v, = a, + tr LH,

7'2=a2+a1trLH+---—|—trLHF, (33)

v =@y + @G, tr LH + -+ + tr HF"},

where y; are the coefficients of the preseribed polynomial. Hence now
the complete solution can be stated as follows.

Step 1: By solving equation (33), construct an observer with dy-
namics such that it is sufficiently fast compared with the plant.

Step 2: By solving equation (26), construct the controller as in
Section III to have the required closed loop dynamies.

Step 3: Cascade the observer and the controller as in Fig. 3.
We can show that the characteristic polynomial of the entire closed
loop system of Fig. 3 is actually x(F — GK)x(F — LH).

Fig. 3—The structure of a complete “controller.”
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The differential equation for the complete system of Fig. 3 is as

follows.

Since the characteristic equation is unaltered by a nonsingular trans-
formation of the state [z/, £']', consider the transformation 7' denoted by

;)

Obviously T is nonsingular and

T’:F —-GK }T_,=F—GK GK:!
LH F— GK + LH | 0 F-LH

whose characteristic polynomial is clearly
x(F — GK)x(F — LH).

V. DESIGN OF OBSERVERS OF MINIMAL ORDER

In Section IV, the design of observers was discussed and it was seen
that the observer is a system of the same order as 3, namely »n. If it is
assumed that H has full rank (this assumption is obviously no loss
of generality), it is clear that the knowledge of Hx gives measurements
on part of the state immediately; for

= Hx (34)
gives the projection of x on the row space of H. Hence it seems that
one should be able to find the other component in the complement of
the row space of H by making use of a dynamical system of order
(n — p) (H: p X n). This was first proved by Luenberger in 1964
in the single input/output case' and was proved in the multlple input/
output case by the same author in 1966.2

In the following section, a simple proof of this proposition is given
and a different method for constructing the observer is derlved
Let the given system be, as before:

& = Fzr + Gu,

¥y = Hz.
Let H be of full rank. It can be assumed that H is of the form

(35)
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H=I,,0, p<mn (36)
gsince a nonsingular transformation of the state of equation (35) can
always be found such that equation (36) holds. Hence, if

r = H’” : (37)
Iz n — p
and
F — |: 11 F121|'P , (38)
Foy Fopaln —p
G = {G‘}p (39)
G, In — p.
Then

& = Fur, + Fax, + G,

3.:2 = lezt 4 Fzgxg + G2u.

Now the design procedure will be deseribed in the form of two theorems
for clarity.

Theorem 2: If (H, F) is completely observable, then [Fis, Faa] s
completely observable.

(40)

Proof: The assertion of the theorem is in some sense intuitively
clear, since ¥y = x; does not give any direet information about z» . The
only information about . is obtained from equation (40). That is,

Fox, = & — Fur, — Gy, (41)

which implies that F;», Fa. should be completely observable in order
that (H, F) be completely observable.

The proof of the theorem is immediate, since (H, F) completely
observable implies that the rank

pl(H', F'H’, --- , F"'H")] = n,
i.e., using the partition of F indicated in equation (38),
- -

1 0
Fy, F,

p F31+F12F21 FFiy + FioFy = n. (42)
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[In the following a row of a partitioned matrix will mean the “block”
row; for example, the first row of the matrix in equation (42) is
[I 0], the second row is [Fyy Fis], ete:]

The rank of the matrix in equation (42) is unaltered by adding to
any row linear combination of other rows. Hence

1 o ]
) F12
pl| - FiaFa =mn. (43)
4 F]Emﬁ_l_].l

The third row of the matrix in equation (43) is the third row of the 01&
matrix — F3, (first row) — F,, (second row), etc. Equation (43) im-
plies that, irrespective of what the first column of the matrix in equa-
tion (43) is,

0
F
p 2ll=@-p, (44)
W
which by the Cayley-Hamilton theorem implies that one need only
include terms up to F,,F3;7"" which gives
p([Fiz , FiFis , , Fis "7'F)) = (n — p). (45)

Theorem 3: There exists an ‘“observer’” of dimension (n — p) for Z
of Theorem 2.

Proof: Consider the “partitioned” system presented in Theorem 3.

From Section IV it is clear that since (F,, , Fa,) is completely ob-
servable we can find an L such that (F,; — LF,;) has arbitrary eigen-
values. Hence if Z, is defined by

-'1._32 = Fpfs + LFu(xz — %) + Gu + Faxz, y (46)
then £ = z, — %, implies
5'3 = (-7"32 - :1-_72) = (Fzz - LFlz)fz . (47)

Therefore by choosing L appropriately, we can make #; — 0 as fast
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as we want. The only problem is observing (z, — &) in equation (46),
that can be solved as follows. Using equation (40), equation (46) re-
duces to

&y = (Fy — LF\2)% — LF,x, — LGiu + Gau + Fax + Li, . (48)

All the terms on the R. H. S. of equation (48)'except Lz, can be ob-
served. In order to eliminate the need for getting L, we replace it by
(F3s — LFy2)Lzx, , ie., if

562 = (ng - LFlz)fg - LF“J:I - LGIH

+ Gou + Faz, + (Fae — LF12)L331 . (49)
Then it can be shown by integration by parts that

E = £, + exp (Fzz - LF12)t
(#(0) + LF,,2,(0) + LGu(0) — Gau(0) + Lay(t).  (50)

Therefore by appropriately choosing initial conditions for the system
described by ethatlon (49) we can make

T, = £ + La(t) (51)

hence the proof is complete. Note that even if the initial conditions
for equation (41) were not set, the error term, namely,

F — &9 — La,({) = 0 asfast as exp (Fa — LF)t.

The proof of the theorem, though complete above, is easier to see in the
form of figures.

Equation (48 says that the observer is of the form presented in
Fig. 4.

Theorem 3 implies that Fig. 4 is equivalent to Fig. 5, namely, the
input #, shifted over to the right of (n — p) dimensional integrator.

From the above theorems the following method evolves for the
construction of minimal-order observers.

Step 1: Construct by the method of §3 an L such that Fz — LF,,
is stable and has the required dynamics.

Step 2: Use the output z, in the configuration presented in Fig. 5
to get [x! , #;] which gives the required estimate.

VI. EXAMPLE

In order to illustrate the methods presented in this paper, we solve
a simple example of a control problem.
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e (o]

X,
Fig. 4—Minimal order observer with rate information.
The problem is to stabilize the control system
N 1 3 2|z, 1 0
Uy
.'tg = 0 1 2 Ty + 2 0 ]
Uz
:ﬁg 0 01 I3 1 1
w| [z| [1 o o™
= = g |* (52)
Y2 X, 010 o

It is readily seen that the characteristic polynomial of this system is

8 —3"+3s—1, or (s —1)7% (53)
which shows that the system is unstable.

It is desired to design a controller which observes the output ¥ and
computes a linear feedback law such that the plant (52) behaves as a

&y

Fig. 5—Minimal order observer without rate information.
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system with characteristic polynomial

(s 4+ 1)°=0. (54)

Proceeding as in Sections III and IV, suppose (z;, 22, z3) were avail-
able; then the feedback control gain matrix say

{kll kl? J kla] _é K (55)
kZl k22 k!ﬂ
can be computed from equation (24) which gives
Kot |
121 001 iz 6
9 4 1 221k13=18- (56)
10 6 1 10 4 1 Fea 38
koo
,kza_

Almost any solution (56), subject to the condition that rank of K =
1, will do. For the purpose of this discussion a particular solution,

namely _
{2/3 4/3 4/3J 57)
2/3 4/3 4/3
will be considered.
Now since x5 is not actually available, an estimate will be computed
and the error will be required to diminish as fast as exp(—2t), at the

same time using only one integrator in the feedback loop. From
equation (52) it follows that

T3 = Ty + U + Uz, (58)
[ﬂ _ {1 3}[35.} + {21% N [1 0]:.-,2. 59)
& 0 1]l ZJ 2 0 ju,

The expressions in equations (58) and (59) ean be compared to the
more general treatment of Section III by noting that

F =[:1 3]: F12={:2:};
01 2

F,, = [1], Fyy = [0 0].

(60)
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Then
2
Fzz —_ LF]2 = ]. —_ [Ll Lg][ ir = _'2. (61)
2
One solution for L is
L,=L, = 2. (62)
The analogue of equation (23) is
. 2‘|
;= 45 + (3/2 3/2) J(Ia — &) + U + U (63)
2

that is, the solution of equation (46) obviously tends to x; as fast as
exp(—2¢) for from equation (52)

a
dt
In order to construct the observer, in equation (63), x3 has to be
replaced by z;, z» which are directly measurable. Proceeding just as

in §3, equation (46) becomes

8y = —26, + [3/2 3/2]{[‘“] - Ll 3}[‘”‘7 - [1 0}“‘} Foutu.
Ty 01 IEJ 2 0 Us

(65)

Therefore
#=—28 — 3/22, — 6z, — 9/2u, + 3/2(&, + &) + Uy + uy . (66)

(X3 — £5) = —2(zs — £4). (64)

The only quantity that is not available on the right-hand side of equa-
tion (66) is (&, + #.), but appealing to Theorem 4 it follows that if

fy = —28, — 3/2x, — 61y — 9/2u, — 3(@, + x) +uy +u; (67
£, = T + 3/2(551 + z,) (68)

and the error tends to zero as exp (—2f) [it can be made zero by setting
the initial condition on the integrator simulating equation (62) to
£5(0) — 3(z,(0) + 22(0))].

Hence #; + 2(x, + x,) which can also be gotten as in Fig. 5 tends
to x; as exp (—2f). Therefore the controller design is complete. The
analog computer realization is shown in Fig. 6.
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Fig. 6—Example of a controlled system.
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