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A Telephone Traffic Model Based on Randomly Closing
Crosspoints, and Its Relationships to Other Models

By V. E. BENES

(Manuseript received December 23, 1970)

I. INTRODUCTION AND SUMMARY

In the theory of traffic in telephone connecting networks it is on one
hand a virtual necessity, for practical purposes, to compromise the true
complexity of the system under study and to introduce drastic simplify-
ing assumptions that allow some calculation to be done, and on the
other, it is perfectly feasible to pursue basic theoretical studies without
such compromise and simplification. For this reason, a spectrum of
several mathematical models for describing traffic in networks has been
developed in recent years.

These models range from “‘simple” ones that furnish an incomplete
description based on strong stochastic independence assumptions, to
“complicated”’ ones that exactly mirror network structure and routing.
Each grade of model has its uses: ‘‘simple’ ones for easy computation
and involved ones for general understanding,.

An example of a useful “simple” model is the probability linear
graph' suggested by C. Y. Lee in 1955, an outgrowth of earlier work by
L. E. Kittredge and E. C. Molina. At the other end of the scale, an
example of a “‘complicated” model is the Markov process” proposed by
the author in 1963 as an improvement of the “thermodynamic” model.”

We shall describe here another “simple” model, with a basic starting
point similar to that of Lee, and then show how a certain natural restric-
tion of this model yields in many cases precisely the thermodynamic
model. Our presentation thus clarifies the known relationships between
these models, and reveals some unsuspected ones; it strengthens our
understanding of them by showing how the apparently realistic “‘com-
plicated”” models can arise through natural and relatively minor mod-
fications of the “‘simple” ones.

Whereas Lee’s model assumes that a link { of the network is busy
or idle with a probability p, , all links being independent of each other,
we propose instead to assume that each (individual switch or) crosspoint
¢ is closed with some probability p. , again independently. This
basis for calculating probabilities has the virtue of assigning prob-
ability to every possible way of closing switches, physically meaningful
or not. We then modify the model by caleculating all probabilities
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conditional on the system’s being in a physically meaningful state.
This procedure in effect rids our calculations of the irrelevant states by
normalizing them out. The resulting new model we call the crosspoint
model. If, as is usually the case, every call goes through the same num-
ber of switches, then conditioning in this way brings in the partition
funetion® in a natural way, and the crosspoint model turns out to be
formally equivalent to the thermodynamic one; when the latter is in
turn modified so as to take realistic account of routing and calling rates,
it becomes the Markov process model.

We stress that the suggestion made here of a new model does not
really improve our capacity to calculate blocking, load-loss curves,
or other practical items. Primarily, it provides a new derivation of the
thermodynamic model from simple (and strong) first principles similar
to those used for the probability linear graph model of Lee.

II. LEE’S MODEL AND ITS EXTENSION

The probability linear graph model has been extensively discussed''*
in the literature, so we include only a resume of the method: to calculate
the congestion incurred by traffic between an inlet w and an outlet v,
attention is focused on the graph G defined by the permitted paths
through the network from u to v; G consists of all nodes and branches
through which some path from u to » passes. Given any ecomplete
specification of which branches of G are busy and which are idle (at a
particular juncture of network operation), it is possible to examine G
to see if there is a path from u to » no branch of which is busy. The
method now assigns a probability distribution to the possible occupancies
by postulating that a link { of G is busy with probability p, inde-
pendently of all other links. The congestion for % and v is then caleulated
as the probability that this distribution assigns to the event ‘“There
is no path from u to v composed of idle branches.”

We have described the probability linear graph model as assuming
something only about certain events having to do with the graph G
of paths for a particular call from u to », and not as providing a prob-
abilistic description of the busy or idle condition of all the links in the
network. However, it is entirely possible to extend the probabilistic
description, used in Lee’s model for links of G, to all the links in the
network. This extension is natural because if the deseription is believable
for one inlet-outlet pair, it should be so for all such pairs, and so for
all links. It will of course still give only an incomplete stochastic model,
since it says rather little about what crosspoints are closed, so that
in general it is not possible to tell what inlet is connected to what outlet.
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However, the extension does shed some light on the character and ac-
curacy of Lee’s model, as we note in the next paragraph, and it also
suggests the new model to be proposed.

The fashion in which this extended version of Lee’s model works is
clear: the states of the network, i.e., all the possible ways of closing
crosspoints, whether physically meaningful or not, are partitioned ac-
cording to the equivalence relation of “having the same links busy,”
and probabilities are assigned to these equivalence classes. In this
situation, it is unfortunately true that physically meaningful and
physically irrelevant (microscopic) states occur in the same equivalence
class. Were this not so, one could try to remove the effect of the ir-
relevant states® by insisting that all probabilities be taken conditional
on being in the set of relevant states. This set, however, does not have
probability assigned to it.

III. THE CROSSPOINT MODEL

There is, nevertheless, a basic modification of Lee’s approach in
which the normalization device for eliminating the “irrelevant’ states
can be used. The change to be made is this: whereas Lee’s model assigns
a probability p, of being busy to each link ¢, we propose to assign a
probabﬂlty p. of being closed to each crosspoint ¢, all independently
in both cases. The point is this: if it is known what crosspoints are
closed, then it is known what links are busy, but not vice versa. This
approach has the property of assigning probability to every state of
the network, physically meaningful or not.

In particular, the set of meaningful states is assigned probability.
Once this is true we can restrict attention to these states. We shall
eliminate the effect of the irrelevant states by simply normalizing them
out of the picture, i.e., by calculating all probabilities of interest condi-
tional on being in the set of meaningful states. The distribution of
probablhty (over the set S of physically meaningful states) obtained
in this way we shall call the “crosspoint” model, because the basic
events to which probability is assigned are closings or openings of cross-
points. In a similar vein, Lee’s model might be called the “link” model,
because the basic probabilities are assigned to the busy or idle condition
of links.

IV. PROPERTIES OF THE CROSSPOINT MODEL

Let S be the set of physically meaningful ways of closing crosspoints
and for z ¢ S let ¢c(z) be the number of switches or crosspoints closed
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in z. Let us suppose that all crosspoints have the same chance p of being
closed. (This is likely to be true if the network traffic is uniform and
if there is neither concentration nor expansion.) The basic unconditional
probability assigned to x is then

pc(z}(l . p)c—c(z) Te S

where C is the total number of crosspoints in the network. The prob-
ability of z conditional on being in the set S of physically meaningful
states is then zero if 2 ¢ S, and

pe(:l(l _ p)C—c(z)
Epc(v)(l _ p)c‘—c(u} !

vesS

for ze S,

or, with 4 = p/(1 — p),

This is of the familiar Maxwell-Boltzmann form, with the function
¢(+) playing the role of the energy. The reader familiar with the thermo-
dynamic model® will at once recognize the resemblance of the above
expression to the basic (equilibrium) state probabilities in that model,
which assigns a meaningful state z ¢ S a probability

Al:l

veS
with | ¥ | = number of calls in progress in state y, and X a positive
constant. As we have pointed out, this distribution is obtained by
maximizing the entropy functional subject to a fixed mean number
of calls in progress. Exactly the same arguments’ characterize the
distribution over S in the crosspoint model, as follows:

Theorem: The distribution {q., x € S} of probability over S which maz-
1mizes the eniropy functional

H(g = — 2;, g. log g.

subject to the constraini

2 ¢.c(@) = ¢,

eS8
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with ¢ a fired number >0, is given by
c(z)

vesS

where u > 0 is the constant determined uniquely by the equation

c=p % log nz; ue,

Thus the crosspoint model differs from the thermodynamic model
only in that the average number of closed crosspoints, rather than
that of calls in progress, is fixed while maximizing the entropy. In an
important class of cases the two models formally coincide, even. This
can be seen from the

Corollary: If every call goes through exactly s switches, then the stale
probabilities assigned by the crosspoint model with parameter p are exactly
the same as those assigned by the thermodynamic model with parameter

_ = (2.
AT (1 - p)
For evidently in this case c¢(z) = s | z|. The property that every call

goes through the same number of switches is possessed by virtually
all the connecting networks used in practice.
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