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Device Implications of the Theory
of Cylindrical Magnetic Domains*
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(Manuseript received October 7, 1970)

This paper applies the theory of cylindrical magnetic domains' to
cylindrical domain devices. The stability conditions are examined as
bounds to the region of possible device operation and it is found that
the plate thickness, h = 41, and the domain diameter, d = 8l, where
is the ratio of the wall energy per unit area to 4w times the saturation
magnetization squared, are preferred values. When the effects of wall
coercivity and mobility are examined, it is found that the preferred
plate thickness and domain diameter are even more strongly preferred,
that the wall motion coercivity should be less than one percent of 4
times the saturation magnetization, and that a domain coercivity and
mobility may be defined. Consideration of the Néel temperature and
the desired absolute domain size in addition to the static stability
conditions shows that domain materials having some antiferromagnetic
character and induced uniarial anisotropy are preferred. Where appro-
priate, domain methods for measuring material parameters are
described.

I. INTRODUCTION

The application of cylindrical magnetic domains or “bubbles” to
memory and logic devices has recently received considerable atten-
tion.2* Such domain devices may operate in a continuum of modes
ranging from the wall motion coereivity dominated mode to the “hard
bubble” mode. In the coercivity dominated mode, applied fields deter-
mine the domain configuration which is then maintained by coercivity.
In the hard bubble mode the coercivity must be sufficiently low that
the domains have a well-defined size and shape permitting the move-

* Portions of this article were presented at the “Fifteenth Annual Conference on
Magnetism and Magnetic Materials” Philadelphia, Pennsylvania, on Nov. 20,
1969. (See Ref. 2.)
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ment of individual domains as distinct entities. A previous paper
developed the theory of static stability of eylindrical domains in
materials having zero coercivity.! The present work applies this theory
to the determination of the ﬁeferred conditions for construction of
devices operating in the hard bubble mode. It is found that specifying
an operating domain diameter determines preferred values for the
plate thickness, magnetization, anisotropy constant and the maximum
allowable value of the wall motion coercivity.

Figure 1 shows the model for the domain structure from which the
static stability theory was developed. The coordinate system and
symbols used here are the same as in Ref. 1 except for the addition
of a few symbols such as p,, the wall mobility; H,, the wall motion
coercivity; vy the domain velocity; and Ag, the variation in wall
energy. The model represents a single isolated domain in a plate of
magnetic material of uniform thickness, h, and an infinite extent in
the plane, r; = . Everywhere within the material the magnetization
has a uniform (saturation) magnitude, M, directed along the upward
plate normal (the z direction) within the domain and along the down-
ward plate normal elsewhere within the material. The domain wall is
assumed to have negligible width and the domain wall energy density,
ow, 18 initially taken to be independent of both wall orientation and
curvature. The domain wall is cylindrical in the sense that it every-
where contains a line parallel to the plate normal. Under these assump-
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Fig. 1—Domain configuration and coordinate system.
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tions only the component of the spatially uniform applied field which
lies along the plate normal will interact with the domain so that only
this component is considered. This component is denoted by H and is
taken positive when directed upward, the direction tending to collapse
the domain.

The assumptions implicit in this domain model are not all inde-
pendent. The interrelation of the assumptions and the dependence of
the assumptions on the domain geometry and the material parameters
are discussed on pp. 3312-3318 of Ref. 1. The validity of the assump-
tions will not be discussed further here except to note that in order
for domains of the type to be considered here to exist, domain nuclea-
tion and wall-width considerations require roughly that

K. > 2rM? (1)

where K, is the uniaxial anisotropy constant, and that the validity of
the approximations generally improves as K, is increased above this
minimum value.

The domain radius funection, r,(#), which is expanded in the series

7(0) = 1o + Ary + i Ar, cos [n(8 — 6, — A6,)], )

describes the domain shape in the plane. The Ar, and A6, describe a
variation in domain size and shape from a circular domain of radius
r,(8) = ro and the 6, deseribe the direction of the variation. (The A6,
have significance only for second variations.) Since only near circular
domains are of interest here, the condition

[ro| > |Ar,| + Z_:n |Ar,| (3)

is imposed to assure that the radius is single valued and smooth.

The first and second variations of the total domain energy with
respect to the Ar, and Af, determine the domain equilibrium and
stability conditions. The total domain energy,

E:r = EIV+EH+EMJ (4)

is the sum of three terms. The wall energy, Ey, is the produect of the
wall energy density and the wall area. The applied field interaction
energy, By, is proportional to the product of the domain volume and
the external field interaction energy. The last term, Ey, is the internal
magnetostatic energy of the domain. The energy variation has the
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form
o= 5[ (52, o+ (), o]
+5 i:, i; [(a_f:ﬁ:,,)u Ary A + Q(af:Ea;m)o Ar, AG,,
+ (5o, a0 a0 + 0 ®

where in the energy derivatives the independent variables, the Ar,
and A#@, , have been written as », and 6, for compactness, the zero sub-
seript indicates that the derivatives are to be evaluated for a strictly
circular domain, r,(6) = r, , and O; indicates terms of order three or
higher. The first derivatives are the negative of the generalized forces,
— (8K /dr,), and — (3E 1/88.,), being respectively the radial and angular
generalized forces of rotational periodicity n. The second derivatives
form the stiffness matrix of the system with (8°E,/dr, dr,), being the
(n, m) element of the radial submatrix and (8°E./dr, 90.)e and
(0°E /6, 86,), being the corresponding elements of the mixed and
angular submatrices respectively. In Ref. 1 the derivatives of the
total energy with respect to the Ar, and A#, were obtained by differ-
entiating the integrals which form the terms of equation (4) and evaluat-
ing the resulting integrals for the case of a strictly circular domain.

In the present work it is convenient to write the energy variation
expression in a normalized form in which: energy is measured in units of
4(2xM?)(wh®), the equilibrium condition has been used to eliminate
the applied field from the second variations (the stiffness matrix is of
interest here only for a domain in equilibrium), the first- and second-
order variations which are identically zero and deleted, and the non-
zero generalized forces and stifiness matrix elements are written as
functions of dimensionless variables, the applied field measured in
units of the magnetization, H/47wM, , and ratios of the plate thickness, k,
the domain diameter, d = 2r, , and the characteristic length of the
material,

I = o,/4xM? . (6)

This normal form of the energy variation is [Ref. 1, equation (68)]

'__.A_EL_._-_ Iil_+é H _F(g):l_%
42r M (h® ~ Lh " h4xM, VAR
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where F and the S, are called the force and stability functions respec-
tively and are written in terms of the complete elliptic integral of
the first kind,

/2

K(m) = f (1 — msin® 6) db, ®)

L]

the complete elliptic integral of the second kind,

E(m) = j;ﬁz (1 — msin® 0)} do (9

and the L, functions which are auxiliary functions introduced for
convenience,

Ly(x) = 0 | (10a)
Li@) = 4 + D'E(1 + 2)™) — 2z + VK@ + =)™)] (10b)

Lon(@) = §n—1+_i [4n(2z + DL.(z) — @n — 1)L._,(z)

— 16nzz 4+ DX KQ+ 2], n=1l. (10c)
The force and stability functions are
F@) = 2200 + 2B + 277 - 1), (1
8u(@) = F@) — = = F), (12)
=~ PG — LO), (12b)
and
8ue) = =3t 5 LG — L@™) — L0 + LO),

n=2  (13)
Figure 3 of Ref. 1 plots F(d/Rh) and S,(d/h) for d/h = 6 and n = 10.
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Appendices A and B of Ref. 1 give methods of computation and series
expansions of these functions while Section IV discusses the physical
interpretation of the terms in the energy variation expansion [equa-
tion (5) here].

Section II of this paper discusses the domain size and stability
implications of the energy variation expansion (7). This discussion
yields the conditions for the existence of cylindrical domains in the
total absence of dissipative processes and these existence conditions in
turn place several restrictions upon device design. The section con-
cludes with a discussion of domain size and domain ellipticity in the
presence of anisotropic wall energy. Section III considers the effects
of dissipative processes (wall motion coercivity and mobility) on
domain existence and movement, the relation of domain mobility to
wall mobility, and the limiting conditions under which the hard bubble
mode may be achieved. Section IV combines the results obtained here
and in Ref. 1 to obtain several relations between material parameters
and device performance.

II. CYLINDRICAL DOMAIN SIZE, SHAPE AND STABILITY AT EQUILIBRIUM

This section examines the domain equilibrium and stability condi-
tions and some of their implications.

2.1 The Equilitbrium Condition

The domain is in equilibrium when all of the first-order variations
of the total energy with respect to the Ar, and A4, are zero. In the
variation expansion (7), all the first-order energy variations except
the variation with respect to Ar, (representing a variation in domain
size with no variation in shape) are identically zero. Since the domain
is initially assumed to be a circular cylinder and there are no forces
tending to deform it, the domain is in equilibrium when it is a circular
cylinder having a diameter which is a solution to the normalized force
equation,

I , d H d
BT hEr, F(h) =0 (14)

The (normalized) generalized forces appearing in this equation have

a one to one correspondence with the terms of the energy sum (4):
the first term being produced by the wall energy, the second by the
applied field, and the third by the internal magnetostatic energy. The
normalized wall force, —i/h = —o,/4rM2h always tends to collapse
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the domain (¢, and h are positive) and is independent of domain di-
ameter. Each of the normalized generalized forces may be converted
to an equivalent field by multiplying by h4=M,/d. The equivalent
wall field is o.,/2r,M, so that the wall field is proportional to the product
of the wall energy and the wall curvature. The normalized applied field
force, — (d/h)(H/4xM,), tends to collapse the domain for positive
applied fields and its magnitude is proportional to the domain diam-
eter. In this case the equivalent field is the applied field, . The normal-
ized internal magnetostatic force is 4+ F(d/h). The force function, F, is
positive with positive first derivative and negative second derivative
at all points. It approaches d/h for small domain diameters and
7~ In | 4e*d/h | for large domain diameters (In Ref. 1 see equation (138)
and Fig. 3). Since F is positive, the internal magnetostatic force always
tends to expand the domain. The internal magnetostatic force and the
wall force are thus oppositely directed. Therefore equilibrium is at-
tained for any given diameter by adjusting the applied field to a value
which compensates for the difference in magnitude of these two forces,
the sign of the field depending on which force is dominant. The equiva-
lent field for the case of the internal magnetostatic force, 4w,
-(h/d)F(d/h), is the z averaged z component of the internal demagnetiz-
ing field or the internal magnetostatic scalar potential difference be-
tween the top and the bottom of the plate divided by the plate thick-
ness." This field approaches 473, for small domain diameters and
4M,(h/d) In | 4¢*d/h | for large domain diameters.

Solutions to the equilibrium problem may be discussed either in
terms of the equivalent fields as was done by A. H. Bobeck® or in
terms of the generalized force equation (14) with the preferred method
depending on the specific application. In the present case, the generalized
force equation will be used since the general properties of the solutions
of the equilibrium problem may be easily obtained by straight line
constructions on a plot of F.

Figure 2 shows examples of such constructions (along with stability
constructions which will be explained later). The equilibrium con-
struction consists of first locating the point on the vertical axis whose
ordinate is [/h, then drawing a straight line through this point whose
numerical slope is H/4rM, . The line so constructed thus represents the
first two terms in equation (14) so that its intersections with F' (if any)
are the equilibrium points. The dashed line asymptotic to the force
function at the origin has numerical slope one and therefore provides
a reference for estimating the magnitude of applied fields. In each of the
construetions of IFig. 2, I/h is 0.3 and this point on the vertical axis is
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MAGNETOSTATIC FORCE-STABILITY

Fig. 2—Construction of solutions to the force equation for I/h = 03, d = do,
d = daand d = 2h.

denoted by W. The symbol W was used since [/h is the wall energy
per unit area in units of twice the magnetostatic self-energy per unit
surface area of an infinite plate of uniform thickness, h, when it is
uniformly magnetized in a direction perpendicular to the surface of the
plate.

For the first example, econsider the line “W®’' for which I/h = 0.3,
H/4xM, = 0. This line has one intersection with F at ©(d/h = 0.378).
Since the slope of F is everywhere positive, there will in general be
only one intersection with the construction line for any zero or negative
value of H/4rM, independent of the magnitude of {/h. That this
single solution is unstable may be appreciated by considering small
variations in the solution diameter from its value at ®: Increasing the
diameter of the domain from the diameter at © inereases the magnitude
of the internal magnetostatic force term while the other terms remain
constant. The total force tending to expand the domain thus increases
from zero as the domain expands from the solution diameter. The domain
is thus unstable with respect to expansion. An entirely similar argu-
ment shows that the domain is unstable with respect to collapse. It is
easily seen in general that for a fixed solution diameter the solution
will become more unstable (the destabilizing foree inereasing faster with
increasing diameter) as the field is made more negative. Stable solu-
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tions to the equilibrium problem exist only for fields aiding the wall
field in tending to collapse the domain although one unstable solution
exists for any magnitude of negative applied field.

Because of the logarithmic behavior of the force function at large
domain diameters, a radially stable solution to the force equation will
appear (in addition to the radially unstable solution) when a vanish-
ingly small positive bias field is applied. (Radial stability is determined
in the same way as in the preceding paragraph. The existence of radial
stability does not assure total domain stability as will be seen.) Since
the F function has a negative second derivative everywhere, there can
be no solutions in addition to a single radially unstable and a single
radially stable solution. This situation is illustrated by the line W8
in Fig. 2. The line represents [/h = 0.3, H/4=M, = 0.254 for which
the unstable solution, denoted by al, oceurs at d/h = 0.767 and the
stable solution, denoted by 8, occurs at d/h = 2.000. Bobeck’ has ob-
served experimentally the unstable solution under static conditions
which permit the existence of the stable solution. This was done by
applying a short duration bias field pulse which reduced the domain
diameter from the stable solution diameter at 8§ to the unstable solu-
tion diameter at Al and then returning the bias field to its original value
just as the unstable solution was attained. The domain having the
unstable solution diameter was then stabilized sufficiently by coercivity
to allow it to persist.

If the applied field is increased from a value for which there are two
solutions, then, the solutions approach each other until at some field
value they coalesce. This point at which the solutions coalesce is a
point of radial metastability since, at this point, the construction line is
tangent to . Thus, the solution is neither stable nor unstable to lowest
order by the small variation argument of the preceding paragraphs.
There are no solutions for applied fields greater than the field of radial
metastability. Since in this case the inward forces dominate at all
diameters, the domain collapses. (Since F everywhere lies below the
asymptote d/h, the domains always collapse for applied fields greater
than 4xM, .) In Fig. 2 where {/h = 0.3, the collapse point, €, occurs
at H/4rM, = 0.283, d/h = 1.16. The sequence of the types of solu-
tions which occur as H is varied depends only on the invariant signs
of the slope and curvature of F. Therefore for a fixed value of {/h this
sequence is independent of the value of I/h. From the slope and curva-
ture properties of F the uniqueness of the collapse diameter and field
for a given value of I/h may also be shown. However, the discussion of
both this uniqueness and the detailed behavior of the domain diameter
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as a function of applied field are conveniently postponed until general
stability is discussed.

The device implications of this subsection may be summarized by
noting that cylindrical domains exist only in the presence of an applied
field applied in a direction tending to eollapse the domain and having
a magnitude less than 4w, .

2.2 General Stability

The sign of the second variation of the total domain energy pro-
duced by a weak variation in shape characterizes the stability of a
cylindrical domain. Sinée only domains in equilibrium are of interest
here, attention is restricted to variations of such domains from their
equilibrium size and strictly circular shape. Since an arbitrary weak
variation is describable by the expansion (2) with condition (3),
the stability problem is reduced to the study of the coefficients of the
terms in the energy expansion which are quadratic in the Ar, and Af,.
These coefficients are defined (up to some constant factor) as the
stiffness matrix elements of the system, and these stiffness matrix ele-
ments may clearly be classified as either radial, mixed, or angular stiff-
ness matrix elements.

In the equilibrium energy expansion (7) the only nonzero quadratic
coefficients are the coefficients of the (Ar,)?, n #= 1. As required by the
cylindrical symmetry of the system, the domain is completely metasta-
ble with respect to angle, This is indicated formally in (7) by the
absence of any nonzero terms in A#,A#,, or Ar,Af,. (The angular and
mixed stiffness submatrices are identically zero.) Since no terms in
AryAT,, for m = n appear in equation (7), (the radial stiffness matrix
is diagonal) the variation amplitudes are quasi-normal-modes of the
system, Nonzero terms of order three and higher in the variation ampli-
tudes and angles prevent the variation amplitudes being true normal
modes. Finally, since the energy of a domain in an infinite plate is
independent of the domain position, the translational stiffness of the
domain is zero and therefore since the variation Ar; corresponds to
lowest order to a translation (see Ref. 1 Sec. 4.2.2), the coefficient of
(Ar;)? in equation (7) is zero.

Since the second-order energy variation with respect to an arbitrary
small amplitude weak variation is simply the sum of the energy
variations from each normal component of the variation, the study of
the stability of circular cylindrical domains reduces to the study of
the stability of the domains with respect to size, Ary, and shape, Ary
to Ary, . The sign of the corresponding stiffness matrix element deter-
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mines the stability or instability of the domain with respect to the
variation of a particular Ar,. From equation (7), the nonzero normal
stiffness matrix elements are '

4(%11?2)(«1;’) (6;;93?){, = —(2 %)[% - So(%)] (15a)

and
4(2#11;;)(#’13) (3;?)0 n* — 1)(—3)[% - S.,,(g)] . n =2 (15b)

The quantities in square brackets are termed stability coefficients.
The domain is stable with respect to an arbitrary variation in shape
when all of the stiffness matrix elements are positive. From equation
(15), this oceurs when the n = 0 coefficient is negative and all the
other stability coefficients are positive,

[l/h — So(d/W)] < 0 ' (16a)
and
[(l/h — S,(d/h)] > 0, nz 2. (16b)
or
So(d/h) > 1/h > S(d/h). (17)
Since the stability functions have the property,
Saan(d/h) < Sy(d/h), (18)

(at least up to n = 10 see Ref. 1) the condition for total stability
reduces to

So(d/R) > I/h > S,(d/h). (19)

Since domain stability with respect to Ar, and Ar; assures total stability,
attention is largely restricted to the n = 0 and n = 1 coefficients. The
variations Ar, and Ar, are termed radial and elliptical variations
respectively.

The numerical value of the stability coefficients and in particular
the conditions under which the stability coefficients change sign, is
determined by a graphical construction, an example of which is now
given. The construction of the radial and elliptieal stability coefficients
for the ease I/h = 0.3 is shown in Fig. 2. The elevation of the horizontal
line W®' represents the value of I/h. In order to determine the stability
coefficients it is necessary to specify an operating diameter which, in
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turn, is determined by the applied field. When the domain diameter is
greater than the diameter at the intersection of the horizontal line
and S; at @' (applied fields less than that represented by the slope of
the line W®) the elliptical stability coefficient is negative and the do-
main is unstable with respect to Ar, . The domain diameter at the
intersection of the horizontal line and S, is ecalled the diameter of
elliptical metastability and the corresponding field (the field represented
by the slope of the line W®) is termed the field of elliptical metastability.
When the diameter is decreased below the diameter of elliptical metasta-
bility (by increasing the field above the field of elliptical metastability)
the domain becomes stable with respect to elliptical deformation. When
the domain diameter is decreased to d = 2h (the corresponding field
being represented by the slope of the line W8) the magnitude of the
radial stability coefficient (corresponding to the length of 8'8}) is approx-
imately equal to the magnitude of the elliptical stability coefficient
(corresponding to the length of §'8}).

Increasing the field to the value corresponding to the slope of the
line We, decreases the domain diameter further to the value at the
intersection of the horizontal construction line with 8, at €, so that
the radial stability coefficient is zero and the force equation construc-
tion line is tangent to the force curve. Increasing the field above the
field value corresponding to the slope of W& decreases the diameter
even further so that the radial stability coeflicient becomes positive,
the radial stiffness matrix element becomes negative, there are no
solutions to the force equation and the domain collapses.

Since the construction line for the force equation is tangent to the
force curve at the diameter of radial metastability, it is possible to
construct the S, curve from the F curve by plotting the loci of points
whose ordinate is I/h and whose abscissa is the diameter at which
the construction line is tangent to the F curve. Figure 3 illustrates
four points of such a construction. Conversely, given the initial slope
of F, the S, curve may be used to construct F'.

In Appendix A of Ref. 1 (see also Fig. 2 here) it was shown that
the stability functions are in general monotonic increasing functions of
the normalized domain diameter, d/h, and monotonic decreasing
functions of the radial periodicity, n (at least up to n = 10). From
these properties of the S, functions and the properties of the solution
to the forece equation discussed in Section 2.1, the following general
stability properties may be deduced for any fixed value of I/h: When
there is no applied field, the domain diameter is infinite, and the
domain is unstable with respect to all variations for which n = 2.
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Fig. 3—Construction of the Si(d/h) function as a sequence of collapse diameter
solutions.

When the applied field is small, the diameter is finite and the domain
is stable with respect to all variation for which n is equal or greater
than some n,,, while remaining unstable with respect to variations of
r, for which 2 = n < n,,. When the applied field is between the values
of elliptical and radial metastability, the domain is stable with respect
to all variations. Finally, for applied fields greater than the field of
radial metastability, the domain collapses. (As noted previously the
domain collapses for applied fields greater than the fields of radial
metastability for any value of the domain diameter.)

Note that except for S, each S, forms the boundary between the
regions of stability and instability with respect to the corresponding
Ar, and that metastability with respect to each Ar, (n = 1) occurs only
along the boundary between the stable and unstable regions.

Even though the radial and elliptical stability funetions bound the
region of total domain stability, the threefold and fourfold stability
functions, S; and S, , lie quite close to S, and it might be expected
that when the bias field on a eylindrical domain is reduced in the
presence of a small stabilizing coercivity the domain might run out into
an initially three or fourfold figure. Such runouts have indeed been
observed.®

When the bias field on an initially circular stable domain, repre-
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sented for example by the line WS in Fig. 2, is decreased, r,(6) will
increase uniformly for all # maintaining a circular shape until the point
® is reached. Increasing the domain radius beyond this value causes
the domain to become unstable with respect to elliptical variations.
Since for small variations, the variations in the expansion used here
are normal modes, the breakaway to instability will not be coupled to
any pure radial motion. Thus, when the breakaway ocecurs r,(8) will
actually decrease along one half the length of the wall. Experiments in
platelets which have just enough coercivity so that the initiation of
the breakaway is observable confirm this somewhat surprising pre-
diction. (See Ref. 4, pp. 1916-1917. The sequence of photographs on
these pages were taken with an increasing bias field. The corresponding
sequence for a decreasing bias field is similar.)

2.3 Restrictions Placed on the Possible Region of Device Operation by
Stability Considerations

Since the diameters of radial and elliptical metastability (and the
corresponding applied fields) are the boundaries of the region of total
stability, they are the boundaries of the region of possible device
operation in the hard bubble mode. It is easily appreciated by inspec-
tion of equation (15) that the domain will be metastable with respect
to a particular Ar, (n = 1) if and only if the corresponding stability
coefficient is zero,

I/h — S.(d/h) = 0. (20)

Since the S, are monotonic increasing functions of d/h, a diameter
of metastability is uniquely defined for each value of n and charac-
teristic length to thickness ratio,

d/h = 87U (/k), n = 1. (21)

The corresponding applied fields of metastability are then defined
using the force equation (14) by

;) I3 [F(g) _ _l]. (22)

dxM, 4, " \n h

While I/ is a normalized wall energy, it is also, obviously, the recipro-
cal of the thickness measured in units of the characteristic length.
Thus, the d, and H, are functions of the normalized thickness, &/I.
In the remaining topies of this section it will be appropriate to think of
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this parameter as the normalized thickness, since in a given material
it is the thickness which is the accessible variable.

In principle, the values of the d, and H, for each value of &/l could
be obtained by graphical construction. Figure 2 may be taken as an
example of such a construction for h/l = 3.33 and n» = 0 and 2. In
this construction the intersection at @’ represents d,(0.3) = 1.16h, the
intersection at ®’ represents d,(0.3) = 3.58h, the slope of We repre-
sents H,(0.3) = 0.283(4wxM,) and the slope of W® represents H,(0.3) =
0.196(47M,). (The values quoted here were obtained numerically.)

To better appreciate the way in which the requirements of static
stability bound the possible region of device operation, several diam-
eter and applied field functions of the normalized plate thickness
have been plotted and their asymptotic forms in the limit of very
thick or very thin plates have been computed.

The wvalues used in plotting the functions were obtained in the
following way: The implicit equation for d, and d» [equation (20)]
was inverted numerically using the expressions for Sq(d/h) [equation
(12)] and S:(d/h) [equation (13)] to obtain dy/h and da/h as func-
tions of k/I. (Parametric plotting may be used only for functions of a
single d,.) The desired functions were then computed from dy/k, da/h
and the expressions for the H, [equation (22)] and F(d/h) [equation
(11)]. (See also Ref. 1, Sections A.1 and A.8.) The asymptotes of the
various curves are obtained using the expansions for F(d/h), Sy(d/h)
and S,(d/h) from Appendix B of Ref. 1, with the force equation
where necessary (14) and the d, defining equation (20). The small
d/h expansions are carried to order (d/h)? and the large d/h expan-
sions are carried only to the lowest order constant and log terms in
order to facilitate the algebraic inversion of equation (20).

Since the validity of some of the assumptions of the theory increases
with increasing d/h, each plot includes an arrow indicating the direc-
tion of increasing d,/h along the plotted curve or curves. The marks
at dp/h = 1 and ds/h = 1 indicate the points at which the theory
becomes definitely suspect. It has been found experimentally, however,
that the theory does give reasonably consistent results for values of d/h
which are somewhat less than one.

Figure 4 is a plot of the diameters of radial and elliptical metasta-
bility measured in units of the characteristic length, dy/l = (h/1) (do/h)
and do/l = (h/l) (d2/R), as functions of the thickness measured in
units of the characteristic length, h/l. These diameters have the
asymptotic values
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Fig. 4—Diameters of radial and elliptical metastability, do and da, in units of
the characteristic length, {, as a function of the thickness, h, in units of I.

do/l ~ 0.412(h/1) exp (nl/h), h/l K 1, (23a)
and
do/l = 1.263(R/1)Y,  R/L> 1, (23b)
for the collapse diameter, and
da/l =~ 1.564(h/1) exp (xl/h), R/IK 1, (24a)
and
dy/l == 3.760(R/1},  R/I>1, (24b)

for the elliptical runout diameter. The uppermost curve in Fig. 5 is a
plot of the ratio of the diameter of elliptical metastability to the
diameter of radial metastability, dso/dy = (do/h)/(do/h) =
(da/1)/ (do/1), as a function of the h/l. This ratio has the aymptotes

d/dy == 3.794, R/l 1 (25a)
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and

dy/dy =~ 3.000, h/1> 1 (25b)

which are easily obtainable from equations (23) and (24). Figure 6 is
a plot of the relative variation of the geometric mean of the diameters
of radial and elliptical metastability with respect to a relative varia-
tion in plate thickness oln|(dd.)?|/dln|h| as a function of h/L
This curve has the asymptotes

dIn |(dodo)|/0 In || =~ 1.000 — 3.142(h/1)~",  h/I> 1, (26a)
and
3 In |(dods)}|/0 In |h| =~ 0.500,  h/l> 1. (26b)

Inspection of these limiting diameter plots and asymptotic expres-
sions yields the following: In a given material, the minimum stable
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3.79 e e - — =
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- |
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]
8

Fig. 5—Diameter and applied field margin ratios, da/de, Ho/H., and 2(H, —
H:)/(Ho + Hs), as functions of the thickness, h, measured in units of the charac-
teristic length, [.
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Fig. 6—Logarithmic derivative of the domain diameter with respect to plate
thickness, @ In d/d In |&|, for the bias condition d = (dsls)! as a function of
the plate thickness, k, measured in units of the characteristic length, L.

diameter attainable for any plate thickness is =3.90 at a thickness
of =33l The minimum diameter of elliptical instability is =12I
attained at a thickness of =~4.2l. For any given plate thickness, the
range of diameters over which the domain is stable is small, the ratio
of the diameter of elliptical metastability to the diameter of radial
metastability being roughly equal to three for any plate thickness.
The domain diameter is thus for all practical purposes determined
once the plate thickness and characteristic length are known. The
increase in domain diameter with increasing plate thickness in thick
plates is quite mild being according to a square root law. The increase
in domain diameter with decreasing plate thickness is, on the other
hand, exponential for a thin plate. This variation is so rapid that the
magnitude of the relative variation of the diameter of a centrally
biased domain, d = (dodz)? with respect to a relative variation in
thickness inecreases according to the inverse of the thickness.
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Figure 7 is a plot of the applied fields of radial and elliptical
metastability, Ho/4=M, = (h/d,) [F(dy/h) — l/h] and H./4=M, =
(h/dy) [F(dy/h) — l/R], as functions of h/l. These curves have the
asymptotes

Ho/4=M, ~ 0.772 exp (—=l/h), h/l K1, (27a)
and
H,/4xM, ~ 1.000 — 1.596(h/D)~%,  h/l> 1, (27b)
for the collapse field and
H,/4xM, =~ 0.475 exp (—l/h), h/l K 1, (28a)
and
H,/4wM, ~ 1.000 — 2.660(h/)7},  h/L> 1, (28Db)

for the elliptical runout field. The two lowermost curves in Fig. 5 are
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Fig. 7—Applied fields of radial and elliptical metastability, Ho and H:, in units
of 4rM, as a function of thickness, h, measured in units of the characteristic

length, L.
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plots of the ratio of the collapse field to the elliptical runout field and
the ratio of the difference of these fields to their average as functions
of h/l. The asymptotes of these ratios are

H,/H, ~ 1.626, h/l < 1, (29a)
and
H,/H, ~ 1.000 + 1.064(h/1)7}, /1> 1, (29Db)
for the field ratio and
2H, — Hy)/(H, + Hy) ~ 0477, R/l K1, (30a)
and

2(H, — H,)/(H, + H,) ~1.064(h/1)*,  h/I>1, (30b)

for the ratio of the difference of the fields to their average. Equations
(29) and (30) are easily obtainable from equations (27) and (28).

Inspection of these limiting applied field plots and asymptotes
yields the following: The field magnitudes decrease exponentially
with decreasing plate thickness, rapidly becoming unmanageably
small for very thin plates. The fields increase monotonically with
increasing plate thickness toward the common value, 4xM,. The rela-
tive variation of applied fields, allowed within the region of stable
circular domains, is smaller than the allowed relative variation of
diameters, approaching a constant for thin plates and zero for thick
plates.

Note that 4xM, determinations are most accurately carried out in
moderately thick plates (within the limits of the cylindrical wall
approximation and the coercivity limits described in the next section)
since here Ho/4xM, (and H./4xM,) is a weak function of I and is
asymptotic to one. Measurements of the characteristic length, on the
other hand, are best carried out in moderately thin plates (within
coercivity limits) where the diameter is a strong function of I. The
appreciation of the validity of these statements will be greatly en-
hanced if the reader will try a few constructions on a plot of the
F and 8, functions. :

The implications of the foregoing for device design are summarized
as follows: For a given value of h/l there is only an approximately
three-to-one variation in the domain diameter permitted within the
stable region so that given material and plate thickness, domain size
is closely determined. The minimum domain diameter occurs for
h/l = 4. For thinner and thinner plates, both the plate thickness
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margins and the applied field magnitude decrease exponentially. While
field margins are reasonable for h/l = 4 (H,/H, = 1.41) [or 2(H, —
H.)/(H, + H.) = 0.34], they become vanishingly small in very thick
plates. These considerations thus demonstrate that from stability con-
siderations alone, for a given value of the characteristic length, there
is both a preferred range of thicknesses and a preferred range of
domain diameters (or applied fields) for device operation. The
preferred range of each is centered about the preferred values

h, = 41 (31)
and
d, = 8l (32)
for which the bias field is
H, = 0.279(4xM,). (33)

These values will be shown to be preferred in another sense in the
next section.

2.4 Domain Diameter as a Function of Applied Field

Since domain diameter is in practice only measurable for diameters
between d, and d. (applied fields between H, and H,), these points
form natural endpoints for plotting the diameter as a function of
applied field. Figure 8 is a plot of (d — dy)/(d2 — dy), as a
function of (H — H,)/(H, — H.), for various values of the
normal thickness in the infinite disk. The plots for finite nonzero
values of the thickness were obtained numerically using the force
equation (14), the defining relation for the d, [equation (21)] and
the expressions for F [equation (11)], S, [equation (12)] and S,
[equation (13)]. In the limit of very thick plates, diameter and applied
field are related by

H,—H _3(—d)
Hy—H, 4 dd, '
using the small d/h expansions of F, S, and S, from Ref. 1, Appendix
B, to order (d/h)2 In the limit of very thin plates, diameter and
applied field are related by
All

H, — H _ 1 [_@( d
H—H - 1-Tep(=h Ll " a\! TG

h— o (34a)

h—0 (34b)
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Fig. 8—Relative diameter, (d — db)/(d: — da), as a function of relative applied
field, (H — H.)/(H, — H.), in the infinite plate for various values of the plate
thickness, &, measured in units of the characteristic length, [.

using the constant and simple log terms of the expansions of F, Sy
and S, from Appendix B of Ref. 1. The curves for intermediate thick-
nesses are seen to lie, in order, between the limiting curves and are all
nearly linear except in the neighborhood of the collapse diameter. In
the neighborhood of the collapse diameter, the slopes of all the curves
are infinite. This is easily appreciated by expressing the derivative of
the domain diameter with respect to applied field in terms of the
radial stability coefficient.

The derivative of the domain diameter with respect to the applied
field is obtained by considering equation (14) to be continuously
solved and then differentiating with respect to d to obtain

454‘ (51 o | %H) ~ 2 pam =o. (35)

k ad
Eliminating H with the force equation, using the equation for S, (12)
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and rearranging yields

4rM, 3d _ d 1 36)

d 4H h d
I/h — Sol 7

So that indeed the derivative of diameter with respect to applied field
approaches infinity as radial metastability is approached.

2.5 The Effect of Wall Energy Anisotropy on the Size, Shape and Stability
" of Cylindrical Domains

The domains observed in orthoferrites are never precisely circular
but always have some degree of ellipticity. The present subsection
relates this anisotropy in domain shape to more fundamental domain
parameters.

In the orthoferrites K, >> 2xM? so that the magnetization lies rigidly
along the plate normal and the wall width is narrow as compared to the
domain diameter (1). The applied field energy, E; and the internal
magnetostatic energy, Ey , terms of the total energy expression (4)
thus make no contribution to producing the domain anisotropy. There-
fore the anisotropy results from an anisotropy in the wall energy
density ¢, . Considering again the wall energy density to be inde-
pendent of wall curvature and the wall to be oriented with its normal
perpendicular to the plate normal, ie., a cylindrical wall, the wall
energy density may be expanded as

P S | i 20 €08 [20(v — ¥24)] (37)

where » is the angle between the wall normal, N, and the x axis (see
Fig. 9) and the expansion coefficients, ¢, , 72, and »,, are taken to be
positive. The odd angular periodicity expansion coefficients are deleted
from equation (37) since the energy of the system is invariant under
time reversal while the direction of the wall normal (referred to the
magnetization direction) changes sign.

To describe the anisotropy observed in orthoferrites, it has proven
sufficient to include only the average and two-fold terms in equation
(37). In addition, if the plate is assumed oriented so that the wall
energy is maximized when the wall normal lies along the z axis, the
wall energy density is

0, = G, + % Ao, cos 2v. (38)
Although the method which now will be employed to calculate the
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Fig. —Coordinate system used in consideration of anisotropic wall energy.

implications of equation (38) is clearly applicable to the more gen-
eral energy expression (37), attention will be restricted to equa-
tion (38).

The total wall energy is

Ey=h gg oo ds (39)

where s is the arc length along the curve describing the domain shape
in the plane. When the wall energy density (38) is substituted into
equation (39) and the differential arc length, ds, and the wall normal
orientation angle, v (see Fig. 9), are expressed in terms of 8, v, (4) and
dr, (8) /86, the total wall energy expression becomes

27 a 2|3
Ew = hé, fu [r';’ + (5’};)} e
27 2714
+ ik Ao, f {[rﬁ + (%) :| cos 26
o a6

— 235 (5 o 20 = im0 2+ (3]}
269 39 cos 260 — 7, sin 20| r, + 30 de. (40)



CYLINDRICAL MAGNETIC DOMAINS 749

In the isotropic wall energy density case, ¢, = &. , the first term in
equation (40) is identical to the isotropic wall energy expression [equa-
tion (8) of Ref. 1], the second term in equation (40) representing en-
tirely the effect of the wall energy anisotropy.

To evaluate the effect of the anisotropy term even to lowest order,
it is necessary to obtain all the first and second derivatives with
respect to the expansion coefficients, Ar, and A6, of the expansion of
r,(8) (2) for the case of a strictly circular domain r,(8) = ro. In the
expressions for the derivatives, dar, and dA6, are again abbreviated
to ar, and 86, and evaluation at r,(8) = r, is denoted by a zero sub-
seript. The first derivative with respeet to Ar, is

oE “J or, or a(%)t a1
e b BT

ar, a8 oar, a0

a(ar,,)
ory .
-2 a6 (% cos 28 — r, sin 26)[1{ + (%) :|

or, \df ad

SO |
298 61‘,.[69 cos 26 — r,sm 20 {ry + {5 J’da. (41)

Setting 7, = 7, and dr,/80 = 0 and carrying out the integration yields
(aEW
ar,

where 8, is the Kronecker delta function. The remaining derivatives
which are evaluated in an entirely similar manner are:

) = 2mhé, b — §)E h Ao, 8,2 cos 26, (42a)
0 2

aEw) _

(ﬁa 6. ) = 0, (42b)
azEW ) _ Ty 2

(Gr.,, .o T hn” dmn

4y { 6"1 1 tl aﬂ.miﬂ cos (nan mom)z ]
o
(420)



750 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1971

I Ew ) _
(aa,,. 90./0 0, (42d)
and
a"EW) _ .
( 6. or) = 3rh Ac, 8. 8, 8in 26, . (42e)

The terms of equation (42) in 7,, are all identical to the corresponding
terms in the isotropic case [equation (14) of Ref. 1] so that adding the
terms of equation (42) in Ae, to equation (7) yields the total energy
expansion for the anisotropic case. The domain is therefore in equi-
librium when the foree equation for the isotropic ease (14) with ¢, = 7,
is solved and the force tending to make the domain elliptical is some-
how balanced. Inclusion of the effect of second order energy variations
terms solves the latter part of the equilibrium problem to lowest order.

Before proceeding with this solution, it is appropriate to comment
upon the significance of the various energy terms. As required
by translational symmetry [Ref. 1, Sec. 4.2.2] (dE,w/0r2)0 = —2r,-
(8°E s w/0rY), when 6, = 0, where E,y is the Ay contribution to the
energy. The (8°Ew/dr), term in the stiffness matrix thus has only
kinematic significance. On the other hand, —a[Ar,(8E /drs)c]/30, =
— Ary(8E /38, ary), is a torque tending to turn an elliptical domain
into the direction in which the force tending to make the domain
elliptical is most positive.

To solve the elliptical equilibrium problem, it is convenient to write
the energy variation expression in the form

AE; = —F-X 4 3X-5-X + 0,(X) (43a)

where
XE["BI?:BE}IEII‘ilISFIElx?)...] (43b)
= [A'r(] y Arl y Aﬂl y ATQ ) Agg ) A’ra s Aea s " ‘] (43(:)

and where the elements of the foree vector, F, and the stiffness matrix,
S, are

F, = —(%f'i)u (43d)

and

oE
8 = (azi axf)o . (43e)
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Setting the gradient of the total energy in the space of the z; equal
to zero and solving for the equilibrium yields displacements when third
order energy terms are neglected

X=S8F (44)

where S™' is the inverse stiffness or compliance matrix. From the com-
ments in the preceding two paragraphs and inspection of equations (43)
and (44), it can be seen that stable equilibrium is obtained when:
7o is the stable solution to the isotropic force equation (14) with e, = 7.,
g, = 0 and A8, = 0 for all n (allowing now negative values of Ar,) and
Ar, = 0 for n = 0 and n odd. The remaining even n Ar, are determined
from equation (44) written with respect to these variables only. Be-
cause of the special form of the resulting F and S, inverting only a
finite submatrix of S yields X to any finite order in Ac, . When this is
done there results

31 O] ) vol3).

2
e i o0 - s 6 ol
Ar,
el O*(%E) , nz8 (450)
where

Al = Ac,/47M? . (46)

Equation (45a) has also been obtained by E. Della Torre and M.
Dimyan.’

In the small Ar, approximation of this calculation the wall anisotropy
term has no effect on r, or any of the odd n Ar, . The collapse diameter,
d, , and collapse field, H, , are thus unchanged with respect to the iso-
tropic case. At all diameters, however, the anisotropy pulls the initially
circular domain out into an elliptical shape, the ellipticity being smallest
at the collapse diameter and blowing up to infinity at the isotropic
elliptical runout diameter (45a). At the isotropic runout diameter
this calculation clearly cannot be applied to obtaining the reduction in
the range of stability which wall anisotropy produces. It is also clear
from the blow up of Ar, that any statement of such a reduction in
the region of stability should be in terms of applied fields rather than
domain diameters. In calculations of &, and As, from measurements
of the major and minor axes of elliptical domains, it should be noted
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that Ar,/r, [equation (45b)] makes a small contribution to the length
of each axis which is not removed by averaging.

In platelets having the preferred thickness, h = 4, and biased to the
collapse diameter, Ar,/r, = 2.61(Al/k) and Ar,/r, = 4.65(Al/R)?, while
in the neighborhood of the isotropic elliptical runout diameter where
Ary — o, Ary/ry = 3.59(Al/R) Ary/r, .

In rare earth orthoferrites, the anisotropy in wall energy is typically
(within a factor of two) Ac./d. = 3% so that Al/k for h = 4l is only
3/49%,. The ellipticity at collapse is thus small. The contribution of
Ar, is very small at all diameters (h = 41) and further, near collapse,
the eylindrical wall and infinitesimal wall width approximations quite
possibly produce larger errors.

The implication of the foregoing for device applications is that wall
energy anisotropy has no effect upon the collapse diameter and collapse
field. As far as the elliptical runout conditions are concerned, careful
measurements carried out on a low coercivity platelet of TmFeO; in
which As,/7, = 39 show that the reduction in the ratio of the col-
lapse to the elliptical runout field is only of the order of 19,."

III. COERCIVITY AND MOBILITY

The preceding sections treated only forces arising from reversible
processes. The present section considers forces arising from the irre-
versible processes describable by the wall motion coercivity and wall
mobility. Several relations between wall parameters and domain
parameters are obtained. In particular, this section computes the
domain coercivity and mobility in terms of the wall coercivity and
obtains the maximum allowable coercivity which permits device
operation in the hard bubble mode. Inversely, it is shown how the
wall mobility and coercivity may be obtained by domain measure-
ments.

3.1 Domain Dissipation

The method used to take dissipative effects into account is to
compute the power dissipation produced by a general variation in
domain shape using the wall dissipation equation and then to set
this equal to the power produced by the variation. By this procedure
the equations for the 'various modes (translation, size change and
deformation) are obtained. The dissipation equation approach is taken
as a best first guess to the solution of coercivity problems, The reader
is ecautioned not to take any of the coercivity results too literally, since
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coercivity is never uniform and in many cases depends on the direc-
tion of wall motion.}!

Wall motion in many materials is describable in terms of a wall
motion coercivity and a wall motion mobility.>** Such a description
should be valid in any material for sufficiently low velocities and
coercivities. Presently known uniaxial materials such as BaFe;;0y
for which the velocity-drive field relation is not describable by
coercivity and mobility at high drive fields'*'* (they show roughly
a limiting velocity) have low mobilities which reduce their usefulness
in device applications. The present work therefore restricts attention
to 180° domain walls in materials having the velocity-drive field
relation

] = {uwuml ~H),  |Hi > H., n
0, |Ho| = H. ,

where: v, is the local wall velocity in a direction normal to the wall,
H is the total local field component parallel to the magnetization, and
where equation (47) serves as the defining relation for the wall motion
coercive field, H,, and the wall mobility p,. The field Hy includes
the effect of all magnetic fields as well as any effective fields such as
the “wall energy field,” and may vary from point to point. The
symbol, H;, is used to distinguish it from H, used elsewhere to denote
the spatially uniform z component of the applied field. For a planar
wall in the absence of internal magnetostatic forces, Hy, is the applied
field. Equation (47) is assumed to hold whether or not the wall is
accelerating since for presently known materials wall inertia effects
are negligible.

Consider now a segment of 180° domain wall such as a portion of
the domain wall shown in Fig. 1 and assume that Hy, is positive when
it lies in the positive z direction. Under these conditions, the power
input per unit area from the local field to an inward moving (decreas-
ing r;) segment of the domain wall is independent of the details of
the magnetic configuration within the wall and is

Pin = 2]‘{! |HLvn{' (48)

Since inertial effects have been assumed to be negligible, the power
input must be equal to the power dissipated per unit wall area, pyiss ,
so that eliminating H; from equations (47) and (48) results in

Paise = 2M¢[He oal + ul,,:]. (49)
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Integrating the dissipation density over the domain wall area yields
the total dissipation

Puin = L _om, [H, Ioal + ’:l;vﬂJ da (50)

where da is the differential wall area. For a circular domain, where
r5(6) = 7y, this expression becomes

2
Powns = 201, [ [Hc v-i,| + ;1— |v-i,12] d6 1)
o w

where i, is the unit vector in the radial direction. Now for a circular
domain

v, = dr;,_(tm
- £[(22) 1 (22) 22 ]

dr,‘

= 3 cos [n(o — 0] ¥ 52)

n=0
where again dAr, and dA#@, have been abbreviated to dr, and d6,.
Substituting equation (52) into equation (51) and carrying out the

integration yields
Pdiul = 4"I‘ﬂdlhru{PIc[ (dr )]
T =1

+[@+EWM%W} @

where NO; (dr,/dt) indicates the nonlinear coercivity coupling terms
which appear even in lowest order. The nonlinear coupling terms
tend in general to couple in additional modes even when only one
dr,/dt is initially nonzero. An exception to this is the uniform radial
mode of motion dry/dt which, because of its symmetry, may take place
without coupling in the other modes. If the coercivity is negligible
[He € 1/pyw(dr,/dt)] then the Ar, and Af, remain uncoupled normal
modes of the system. The consequences of the damping of the various
individual modes will now be considered in the order n = 1, n = 0,
n= 2.

dro

3.2 Domain Coercivity and Mobility (n = 1)
Consider an initially ecircular domain in which only dAr;/dt is
nonzero. In this case the component of the domain wall velocity
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normal to the wall is

v, = dry(6)/dt = (dAr,/dt) cos (8 — 8,). (54)
Since the distribution of the wall velocity component normal to the
domain wall for a circular domain propagating with velocity, v4, in
the 8; direction is

v, = 1i,-V, = |v4| cos (8 — 84), (55)

a variation in Ar; may be identified with translation in the 8, direction
with

|va| = |dar,/di|. (56)

Using equation (53), the power dissipated by a uniformly moving cir-
cular domain is

Piiow = '-‘I'Meh?'u[% H, lvdH' ;2_"3] (57)

and, since Py = —Va'Fq where Fy is the drag force, the equivalent
force for a domain moving with a nonzero velocity is

F, = —WM,hTuE H. + “3 |vd|]i. (58)

where i, = v4/|va| is the unit vector in the direction of the motion.
Notice that F, is an ordinary linear force which could be measured
mechanically with the aid of a magnetic probe.

Translational forces are most easily produced by gradients in the
applied field. The power input to the domain from such a force is
obtained by integrating the power input density, equation (48), over
the domain wall area. In the case of a uniform gradient the local field
at the domain wall is

o, =HL_%|AH| cos (6 — 6,) (59)

where AH is a vector orientated in the direction in which the bias field
decreases most rapidly, 6,, and has a magnitude equal to the max-
imum difference in field across the domain (a gradient of magnitude
|AH|/2r, and direction 8, + 7). In equation (59) H, includes: the
bias field at the center of the domain, the ‘“wall field” and the de-
magnetizing field, all of which are independent of angle. All of the
field components in equation (59), H, , H, and AH are to be understood
as the z-averaged z components of the actual field since this is the
quantity which interacts with a 180° cylindrical domain wall. With
this understanding, integration over the wall area may be replaced by
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multiplication by % and integration over #. Assuming the domain to
be exactly cireular, the total power input to the domain is

Pin = ZM,TDh
2x
-f [, — & |AH| cos (8 — 8,)]-[— [va] cos (8 — 8,)] d6

= wrohM, AH v, (60)

which is just the expression for the power input to a dipole of strength
(wr,°h) (2M,) propagating in a gradient of magnitude | AH|/27, .

The domain will propagate in the direction in which the input power
is greatest, (6, = 6, the direction in which the bias field decreases most
rapidly), and the magnitude of the velocity will be such that the dissi-
pated power (57) balances the input power (60). Such a balance always
oceurs for v, = 0, When |AH| = (8/7)H, this is the only condition in
which the balance is maintained. The domain velocity is therefore

8

1 8
vl = du(am - 2m),  jam > Ba, e

3 oo

lva| = 0, |AH| < = H, . (61b)
Comparison of equations (47) and (61) shows that it is possible to
define a domain mobility and coercivity by taking AH as the driving
field in terms of the wall mobility and coerecivity as

Ba = Fl (62)
and
H.=2H, (63)
™

if AH is taken to be the drive field.

Note that in the integral for the power input (60), the angle inde-
pendent field term, A, , does not contribute so that the effective power
input density with respect to angle for a domain propagating down a
bias field gradient is rohM, |AH| |v.| cos® (8 — 8,) which has the same
angular factor as the mobility associated dissipation (50) and (55).
The power input and power dissipated thus cancel (after z averaging)
at each point on the perimeter of the domain for domains propagating
under the influence of a uniform field gradient and viscous damping.
In this case therefore there are no forces tending to distort the domain
shape from circular. When coercivity is present (even perfectly uniform
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coercivity), the power input and dissipation do not cancel locally and
thus internal stresses tending to distort the domain from circular
are present.

When a bias field is applied to a cirecular domain which is not simply
a uniform gradient, the affect of the additional nonuniformities may be
taken into account by Fourier decomposition of the z-averaged z com-
ponent of the applied field at the domain wall with respect to angle.
When this is done the constant term determines domain size, the 0
term translates the domain, and the né terms, for n = 2, deform the
domain. The procedure is, of course, only applicable if the domain
shape remains near circular.

Coercivity and mobility may be measured either by applying fields
to walls®® and using equation (47) or by applying field gradients to
entire eylindrical domains*® and using equation (61). In the platelets
of material which have a coercivity which is so low as to make them
useful for device applications it has been found convenient to use a
second domain to provide the field gradient for the coercivity measure-
ments. In this measurement two domains are brought together and
then released, the coercivity being given by the formula®

3x roh
H. = (M) g0 (64)
where s is the center-to-center distance of the two circular domains.
Equation (64) was obtained using equation (61) and the z component
of the dipole field from the second domain at the center of the plate,

oM, wrih/s".
3.3 Domain Size in the Presence of Dissipative Processes (n = 0)

The domain size variation mode Ar, has two properties which are
not common to the other modes: First, large variations from equi-
librium may be considered using the force function, F(d/h), as well as
small variations from equilibrium using the radial stability funetion,
So(d/h). Second, arbitrary dissipation functions may be considered
because the rotational symmetry of the motion removes any tendency
for an initially circular domain to couple in other modes.

3.3.1 Large Variations in Domain Size

Setting all the dAr,/dt except dAro/dt equal to zero in equation (53)
yields the dissipation produced by a domain size change

Ld_fﬁ_]dﬂ

e dt dt (65)

Piivs = 47rM.hr0[:i:H= +



758 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1971

where the upper sign is for an expanding domain. Setting the sum of
the power dissipation and the rate of energy change from equation (7)

T B My g

equal to zero yields the differential équation for the domain diameter
[dAry = dry = 3d(d) ]

(67)

;)
h d™\w _1 dH:i:Hc_F(d)

Top(rMAh dt R T h 4x, A

The domain diameter thus relaxes toward a value which is a solution
to the force equation (14) in which the bias field H has been replaced
by a composite bias field, H 4 H, . After this substitution is carried
out, the equilibrium diameters are obtained as deseribed in Section 2.1
except that the sign of +=H_ must now be determined in each case and
now there is a small continuous range of stable solutions about both
the stable and unstable zero coercivity solutions. There are again two
solution diameters for each H &= H, when 0 < H &+ H, < H, . In the
present case, however, coercivity produces two stable ranges of solutions
rather than one stable solution point and one unstable solution point.
The large diameter solutions to the force equation for H + H, and
H — H, bound the solution range which brackets the zero coercivity
stable solution and similarly the small diameter solutions to the force
equation for H 4+ H, and H — H_ bound the solution range which
brackets the zero coercivity unstable solution.

Figure 10 shows the graphical construction for the case I/h = 0.300,
H/4xM, = 0.2544, H_ /4=M, = 0.020. The zero coercivity stable and
unstable solutions at d/h = 2.000 and d/h = 0.767 are marked 8 and U
respectively; the large diameter solutions for H 4+ H, and H — H, at
d/h = 1.527 and d/h = 2.468 are marked §. and §_ respectively and
the small diameter solutions for H + H, and H — H, at d/h = 0.919
and d/h = 0.685 are marked L, and 9L_ respectively. A domain having
a diameter greater than that at $_ will relax toward the diameter at §_
as indicated by the arrow. Coercivity stabilizes domains having di-
ameters between 8, and $_ . Domains having diameters between the
diameter at 8, and U, will relax toward §, as indicated by the arrow.
Coercivity stabilizes domains having diameters between U, and U_ .
Small diameter coercivity stabilized solutions have been observed in
the process of carrying out the mobility measurement described in the
second paragraph which follows.” Domains having diameters smaller
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Fig. 10—Construction of solutions to_the force equation in the presence of
coercivity, I/h = 0.3, H/4xM, = 02544, H./4=M, = 0.020.

than ai_ will collapse as indicated by the arrow. The rate of change of
domain diameter in any of the dynamic processes described is, of course,
given by equation (67).

It can be seen that the collapse diameter is independent of coercivity
to the extent that the coercivity is uniform (this is only approximately
true at best). A measurement of the collapse diameter, denoted by d.
here, yields the characteristic length

1 = hSo(d./h) (68)

independent of the coercivity. If H. is then measured from the diameter
hysteresis and this value is subtracted from the measured collapse
field, the value of 47M, is obtained.

Bobeck'”''® has developed a method for measuring mobilities which
requires only the observation of static domain states. In this method the
domain is biased to a stable diameter and then a short duration field
pulse having a magnitude, Hp , such that the total field amplitude
exceeds the collapse field, H + Hp > H, , is applied. The pulse dura-
tion is at first kept so short that at the end of the pulse, the domain
has a diameter between the zero coercivity stable and unstable solu-
tion so that it recovers its initial size. The pulse length is then gradually
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increased until the diameter at the end of the pulse is less than the
unstable solution diameter so that the domain collapses.

Figure 11 is a construction illustrating the mobility method for
I/h = 0.30, H/AxM, = 0.254, Hp/4rM, = 0.246 and zero coercivity.
Under these conditions, (H + Hpz)/4wM, = 0.500 > H,/4rM, = 0.283,
and the solution diameters are d,/h = 2.00 > dy/h = 1.16 > d,/h = 0.77
where d, is the stable solution diameter and d, is the unstable solution
diameter. In the figure the static collapse point is denoted by €. The
domain is initially at the stable equilibrium point 8. Application of a
fast rise bias field pulse of amplitude Hp takes the domain to 8§’ where
it collapses towards W. If the pulse is turned off at ®’ (above the un-
stable solution point); the diameter increases until the point § is again
reached. If, on the other hand, the pulse has sufficient duration to
reach D’ so that the domain state reaches , the domain collapses
to W. In the insert, the field pulse shape used in making the measure-
ment is shown as a function of time.

When the domain velocity is proportional to the applied field and

1.6 1 1 T7 1 T I T

j
/
7
14 - { -
/
Vi !
/ 8
1.2 |- / -
/
Il t
/ F(d/h)
10— / ]
, /
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o
iS
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Fig. 11—Construction used in the pulsed bias field mobility method, I/h = 0.3,
H/4wM, = 0254, (H + Hp)/4xM, = 0.500.
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pulse rise time effects may be neglected, the mobility is

d .(d
w e ndd)
o = oT4xM, Jounn 1 L F(g)
h '~ hdrM, h
where T is the minimum pulse duration which results in the collapse
of the domain. When coercivity must be taken into account the limits
of the integral change as described previously. (At the beginning of the
pulse the domain is at the point 8, of Fig. 10.) If additionally nonlinear
velocity-drive field relations and pulse rise times must be considered,

it is not possible to obtain the mobility as a simple integral over the
diameter and the integration is better carried out with respect to time.

(69)

3.3.2 Small Variations in Domain Size from Equilibrium

This section considers the effect of dissipative processes on domain
size for the case where the energy variation expression (7) may be
considered an expansion of the energy about the domain diameter
which is a solution to the force equation (14). In this case the rate of
change of energy with respect to time using (7) is

dBy _ 9B dbn,
dt dAr, di

= —S8rh(2rM?) g [lﬁ - Sn(%)] Arg dgf- (70)

Again equating the rate of energy decrease to the power dissipation
(65) yields for the linearized differential equation for radial motion

1 dbn _ (ﬁ)[l_ (q)]% _H.
AR TR R A ™ 3 @)

The domain radius thus relaxes towards

|ar,| _ _H. d/h
re  4xM, | I/h — Sy(d/h)

if the domain is stable or, in the case of an unstable domain, coercivity
stabilizes the domain for departures in radius from equilibrium up
to this same value. In either case, stable or unstable, the relaxation
time [defined by the time factor exp(—t/r)] is

(72)

T d/h )
wodrM, I/h — S.(d/k)

(73)

T =
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The factor d/h[l/h — So(d/h)]™* in equations (71), (72) and (73)
is a measure of the radial compliance of the domain relative to co-
ercivity or mobility and will be called the radial relative compliance
function. The value of this function may be obtained as the inverse
slope of a line constructed on a plot of the force and stability functions.
Such a construction is shown in Fig. 12 for I/h = 0.30, d/h = 2.00,
H/4wM, = 0.2544. The numerical slope of the line W& drawn from I/h
on the vertical axis to the point on S, at d/h = 2.00 is 0.0883 so that
d/hll/h — So]”' = 11.33. Thus, in this case, for a domain to have a
diameter defined to within ten percent, the coercivity must be
H, < 0.01(4nxM,).

At the collapse diameter, dj, the relative radial compliance is, of
course, infinite while at the other end of the range of stability (the
elliptical runout diameter) where in the present example d»/h = 0.358,
the relative radial compliance has the value 9.57. The minimum
value of the relative radial compliance for I/h = 0.30 is 9.52 occurring
at a diameter of d/h = 3.22. This behavior of the radial relative
compliance at I/h = 0.30 is typical for thicknesses near the preferred
value of A/l = 4 as can be seen from Fig. 12. In all such cases, the
minimum compliance is achieved at some diameter less than ds, the
compliance being nearly constant from d = d; down to (dpdz)? [for

.2 T a— T T T

/ N Fld/h)

MAGNETOSTATIC FORCE-STABILITY

Fig. 12—Construction of the radial and elliptical relative compliance functions
for I/h = 03, d/h = 2.
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I/h = 0.30, (dyds)?/h = 2.04] then increasing rapidly to infinity at dq.
The constancy of the radial compliance over a large part of the stable
range is related to the linearity of the diameter-field curves away from
the collapse diameter [see (36) and Fig. 8].

In Section 3.3.1, the diameters bounding the coercivity stabilized
solutions to the equilibrium problem were computed for the case
I/h = 030, H/4=M, = 02544 and (d,/h = 0.767 d,/h = 2.00 and
H./4xM, = 0.020 using the force equation in the presence of coercivity.
As an illustrative consistency check, these bounding diameters will
now be computed using the linearized equation (72). The diameters
bounding the solution region bracketing the zero coercivity unstable
solution obtained from this equation are

d _ d. H. d,[l_ (d_)]}_
h b {I:t%M 7 [h So A = 0.664 and 0.869,

and the diameters bounding the solution region bracketing the zero
coercivity stable solution region are

d _d, _H, d, (d,)]} _
P {1 + — . h [h S h = 1.547 and 2.453.

The corresponding diameters obtained directly from the force equation
were d/h = 0.685, 0.919, 1.527, and 2.468. The excellent agreement
of the diameters bounding the zero coercivity stable solution com-
puted by the two methods is again related to the linearity of the
diameter-field curves. Note that the agreement of splittings of the
diameters bounding the zero coercivity unstable solution computed the
two ways is also quite good.

3.4 Domain Shape in the Presence of Dissipative Processes (n = 2)

The power dissipation produced by the motion of a single mode is
from equation (53)

11 dArn]dAr_., nzo (14

Py, = 4rM hro[:i: H +3 2 h. dl TR

where the upper sign is for positive dAr,/dt. The rate of change of
domain energy under these conditions is from (7)

dEr _ 0Ey dAr,
dt ~ 9Ar, dt

= 4rh(2e MY — 1)(%)[% - s(%)] Ar, d;‘:" ,  nz=2. (75
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Setting the sum of the rate of change of the energy and the power
dissipation equal to zero yields the differential equation for the
relaxation of the variation of a single Ar,,

1 dbr, _ . (f_z)[g_ (@)]g_, 4_H.
it @~ @ OGRS T e, O

The domain shape variation amplitude thus relaxes towards

|ar,|  H. |4 1 d/h
re  4xM, |7 @ — 1) [I/h — S.(d/h)]

if the variation is stable or, in the case of an unstable domain,
coercivity stabilizes the domain for variations in amplitude up to this
same value. In either case, stable or unstable, the relaxation time
(defined by the time factor exp(—t/r)) is

n 2, 77

b =

To 1 d/h
T ke, @ = D= Samyt "EE

Whenever the coercivity is effectively zero so that the mobility
characterizes all dissipative processes, the normal modes of the domain
remain decoupled (within the small amplitude approximation). Each
of these modes relaxes according to equations (71) or (76). When
coercivity must be considered, these equations become rather crude
approximations because even perfectly uniform coercivity introduces
nonlinear mode coupling. The nonlinear mode coupling is especially
noticeable at the end of the relaxation of a single mode. The reason for
phrasing the discussion of the effects of dissipative processes in terms
of dissipation equations was to account correctly for the effects of
coercivity to lowest order without being required to examine the
coupling of the modes or the origins of coercivity. The results obtained
do provide a general picture of the dependence of the effect of coerciv-
ity on the various domain parameters and in particular they provide
a measure of the dependence of the stiffness of the domains on these
parameters.

Equations (77) and (78) show that the entire n dependence of the
residual distortion of a domain recovering from a fluctuation of a
single mode and the relaxation time with which it recovers is contained
in the stiffness factor (n® — 1)[I/h — 8.(d/h)]. The domain stability
condition, S, = I/h = 8., and the inequality (18) imply that [I/h — 8,]
is a monotonic increasing function of n. Therefore the residual Ar, and
relaxation time both decrease slightly faster than 1/n° (see Ref. 1).



CYLINDRICAL MAGNETIC DOMAINS 765

Thus, to characterize the effect of coercivity in limiting the attainment
of stable movable cylindrical domains it is necessary only to consider the
elliptical shape variation mode (n = 2) in addition to the size (n = 0)
and translation (n = 1) modes discussed previously.

The factor (4/3x)(d/h)[l/h — S.(d/h)]"" in equations (76), and (77)
and (78) for n = 2 is a measure of the elliptical compliance of the do-
main relative to coercivity of mobility and will be called the elliptical
relative compliance function. The value of this function is proportional
to the inverse slope of a line constructed on a plot of the force and
stability functions. Figure 12 shows such a construction for I/h = 0.30,
d/h = 2.00, H/4xM, = 0.2544. The numerical slope of the line W&
drawn from I/h on the vertical axis to the point on S, at d/h = 2.00
is —0.068 so that (4/37)(d/h)[I/h — S.]”' = 6.25. Thus a coercivity
less than that value which defines the domain diameter to within ten
percent (H, < 0.01(4xM,)) defines the ratio of the difference in the
ellipse semiaxes to their average (2Ar,/r,) to 12 percent.

At the elliptical runout diameter, ds, the relative elliptical com-
pliance is, of course, infinite while at the other end of the range of
stability (the collapse diameter) where in the present case do/h = 1.16
the relative elliptical compliance has the value 2.22. The figure shows
that this behavior is true for any value of I/h. In general the minimum
value of the relative elliptical compliance occurs at the collapse
diameter, the compliance increasing from the minimum in a regular
fashion to infinity at the elliptical runout diameter. This regular
behavior is in contrast to the behavior of the relative radial com-
pliance.

3.5 Restrictions Placed on the Region of Device Operation by Consideration
of Dissipative Effects.

The relative compliance functions appearing as factors in equations
(72), (73), (77) and (78) contain the dependence of both the normal-
ized residual distortion Ar,/r,, and the normalized relaxation time
7 (ppdwMy) /70 , upon n, I, h, and d, or H. Although the discussion which
follows is phrased in terms of the residual Ar,/r,, it should be kept in
mind that the same remarks apply to the relaxation times scaled to
ro/ (medwM,), the time required to propagate the domain one radius
when the maximum field difference across the domain, AH, is 8=M,
[equation (61)].

In preceding subsections, the following has been demonstrated:
Except in the immediate neighborhood of the collapse diameter, the
domain diameter and bias field are, within the range of stability,
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approximately linearly related (Fig. 8). In the neighborhood of the
plate thickness previously termed preferred, h, = 4l [equation (31)],
the radial compliance, considered as a function of the bias field, is
roughly constant from d = (dyds)? to d = ds, and at d = (dyd2)?,
the elliptical compliance is one half the radial compliance so that
d = (dyd,)? represents a reasonable bias condition. Since for h/l = 4
or in general for any plate thickness, the diameter and bias field
ranges are relatively narrow (Fig. 5) the radial and elliptical compli-
ance of domains suitable for device application may be completely
characterized with respect to plate thickness by plotting the relative
compliance functions with respect to h/l for the bias condition d =
(dods)?.
The relative radial compliance,

ArefTo d/h

H./4nM, — So@/h) — Ik’ (798)
~ 1.085(h/1)*, R/ 1, (79b)
= 3.783 exp (wi/h), h/l K 1, (79¢)

and the relative elliptical compliance,

T, = o S = i (0)
~ 1.382(h/ll)*, R/L>> 1, (80b)
~ 1.606 exp (rl/h), h/1<K1, (80c)

are plotted in Fig. 13 as functions of &/l for the bias condition d =
(dyds) ?. The function values and asymptotic forms were obtained by
methods which were used in Section 2.3 to obtain the diameter and
field funetions. The feature which distinguishes the relative compliance
functions from the diameter and field functions is that the diameter
and field functions bound the region of domain stability whereas the
relative compliance functions provide a measure of the magnitude of
the stability of the domains within the stable region.

The constructions of the radial and elliptical relative compliance
functions shown in Fig. 12 and deseribed in Sections 3.3.2 and 3.4
for h/l = 3.33, d/h = 2.00 may be taken as approximate construction
for the values of these functions at A/l = 3.33 since (d,d:)¥/h = 2.04.

The minimum value of the radial compliance [d = (dyd2)?] is = 7.9
occurring at a thickness of A/l = 10.3 and the minimum value of the
elliptical compliance [d = (dydz)!] is = 5.9 occurring at a thickness
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Fig. 13—Radial and elliptical relative compliance functions as a function of the
thickness, h, measured in units of the characteristic length, [, for the bias condi-
tion d = (doda)?.

of h/l = 6.1.The compliance minima occur at somewhat greater plate
thicknesses than the diameter minima. However, since the functions
are quite flat bottomed, they increase only slightly in value from their
minima to the thickness value previously termed preferred, 2/l = 4.0
[equation (31)]. {At h/l = 4.0, (dyds)*/l = 6.8. However, the pre-
ferred values were taken to be h, = 4l [equation (31)], d, = 8l [equa-
tion (32)] so that d,/h, = 2.0. The exact preferred values depend on
the deviee structure in which the domain is located.}

As in the example of Sections 3.3.2 and 3.4, the coercivity require-
ment

H. < 0.01(4xM,) (81)

will insure that a domain having the preferred thickness and diameter
values will show radius function variations from the equilibrium
radius of no more than ten percent. Just below k/l = 4.0, the increase
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in the compliance functions is seen to become exponential so that the
observation of stable moveable cylindrical domains in reasonably thin
plates is experimentally unlikely. Since the relative compliance func-
tions increase slowly with thickness for thick plates, cylindrical
domains may be observed well into the region in which the assump-
tion of cylindrical walls becomes dubious (see Ref. 1, Section 6.1).

Although domains may be observed in thick plates, other considera-
tions cause the realizable bit rate to decrease at least inversely with
increasing thickness. These effects are as follows: The AH appearing
in the domain velocity expression (61) is twice the n = 1 Fourier com-
ponent of the z-averaged z component of the applied field. Since the
field gradient is applied from the surface of the plate and obeys La-
place’s equation, the variation in the applied field intensity decreases
exponentially into the plate from its value at the surface. Thus for a
given field variation intensity at the plate surface, the z-averaged z
component of the intensity variation decreases inversely with increasing
h/d for h/d > 1. Now for d = (d, dy)¥, d/h = 1 oceurs at h/l ~ 8 (see
Figs. 2 or 13) and above this value d/h ~ 2.17(h/l)"* [see Fig. 4 and
equations (23b) and (24b)] so that for thicknesses greater than b/l =~ 8,
the mobility with respect to the field gradient at the surface of the
plate decreases according to (h/ )7} Since in a given material the abso-
lute domain diameter increases with increasing plate thickness in this
region according to d/l ~ 2.17(h/1)}, the bit-rate decreases according
to (h/1)"". If additionally the maximum field difference at the surface
of the plate is assumed to be some fraction of the difference of the
collapse and runout fields, H, — H, , then it is seen from equations
(27b), (28b) and (30b) that the bit-rate decreases according to (h/ nH

Thus in summary, consideration of the effects of dissipative
processes even more strongly defines the neighborhood of h,/l = 4,
d,/l = 8 as the preferred region than did considerations of stability
only and additionally yields the requirement H./4=M, < 0.01 for the
attainment of stable movable domains.

IV. DETERMINATION OF MATERIAL PARAMETERS FROM PREFERRED DEVICE
PARAMETERS"

The preceding sections have provided preferred values of the plate
thickness (31) and domain diameter (32) or bias field, and the least

* Reference 21 includes part of the material of this section in a discussion of the
relation of the M, and K. values of materials (available at that time) to the pre-
ferred values of these parameters.
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permissible value of the anisotropy constant (1). Additionally it was
shown that the wall mobility acts to form the scale factor for time.
For device construction it is desirable to specify the domain diameter,
d,, from considerations of bit density and the resolution of mask-
making and etching procedures while maximizing the bit rate. Once the
domain diameter is specified, the desired characteristic material length
is determined by equation (32) as [ = d,/8, the thickness is deter-
mined by equation (31) as h, = 1d,, and the applied field is specified
by equation (14) as H = 028(4=1{,). It will now be shown that by
adding assumptions about mobility and room temperature operation
to conditions (1) and (31), it is possible to specify uniquely the three
parameters A, K, and M, appearing in the energy density expression
for the simplest uniaxial material®?

[(aa)’ ., (agb)z:' g
pe = A| =] 4 sin” 8{ — + K,sin” 8§ — H,-M. (82)
as ds
In equation (82), A is the isotropic exchange constant, @ is the polar
angle (the angle between the magnetization and the z axis), ¢ is the
azimuthal angle, s is the distance through the wall, K, is the uniaxial
anisotropy constant, M is the magnetization vector (M| = M,)
and H; is the sum of the applied and demagnetizing fields. Only Bloch
walls in this simplest uniaxial material will be considered. Achievement
of the coercivity condition (81) is a function of both intrinsic material
properties and processing and will not be considered here.

In Section VI of Ref. 1, it was shown that from several standpoints

q = K./2xM;, (83)

the dimensionless ratio of the uniaxial anisotropy constant to the
energy density of a volume containing a magnetic field of strength
4xM, must at least be greater than one, equation (1). From the
definitions of g, [, and d, and the expressions for the Bloch wall width
and energy in the simplest uniaxial material (82), I, = =(4/K,)* and
o = 4(AK,)??* the ratio of preferred domain diameter to the wall
width is

d, _ 16 (84)
L, T

If ¢ were much less than one then the domain wall width would be
larger than the domain diameter and clearly no domain of the type
which has been considered here could exist. On the other hand, if g is

very large the domain wall is very narrow with respect to the domain
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diameter. For a given rate of flipping over of the spin systems com-
prising the wall, the bit-rate will thus be inversely proportional to g.
It may thus be expected that everything else being equal (it is not
clear at the present time just exactly what is to be held constant)
that materials with high g values will have low bit-rates in devices
whose speed is drive field limited. A g value of approximately three
may thus be termed preferred.

The range of values of the exchange constant, A, occurring in ma-
terials which may be considered for room temperature device applica-
tions is quite limited as can be seen from the following argument:
For a given structure and density of spin systems, the exchange
constant is expected to be proportional to the Curie or Néel tempera-
ture, T,.2* For room temperature device applications, as a practical
matter, T, must be above approximately 400°K. Since the highest ob-
served T, are approximately 1000°K, the range of allowable T, and
therefore the range of A in acceptable materials is nearly determined.

F. B. Hagedorn, D. H. Smith, and F. C. Rossol have combined
domain measurements of ! with magnetometer measurements of K,
and 4rM, to obtain the exchange constant in two materials.?* They
find for Sm,Tb,_.FeO; (x = 0.55, T, = 661°K), A = 04 X 107
ergs per em and for PbFe._,Al,01 (x = 40, T, = 508°K) 4 =
0.1 x 10-° ergs per em, values which are apparently typical for high
T, iron oxides.

Since the exchange constant, A, is to be considered fixed, ¢ has the
preferred value three and d has the preferred value d,, it is appropriate
to solve for the magnetization and anisotropy constant in terms of
these quantities,

4xM, = 32(2rqA)/d, -(85)
and

K‘H

256Aq°/d . (86)

If A = 40 X 1077 ergs per em, ¢ = 3 and d, = 107° em (approxi-
mately one mil bit spacing) then 4rM, ~ 80 Gauss and K, ~ 900 ergs
per ec which are both numerically small.

Maintaining the values of A and d, but considering g as variable (85)
becomes 47, =~ 50 \/& Thus g any within two orders of magnitude
of the preferred value produces a value of 4rM, of one kilogauss or
smaller. Since the magnetic moment per spin system and the volume
of the individual spin systems are approximately constants and since
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the exchange interaction is of short range, low saturation magnetiza-
tions cannot be achieved by dilution of the spin systems with magneti-
cally unordered materials. Spin system density thus must be high
while the net magnetic moment per unit volume remains low. Some
sort of antiferromagnetic character is thus required in magnetic ma-
terials which are candidates for use in cylindrical domain devices.
Typical systems are ferrimagnets, and canted antiferromagnets.

The K, value of 900 ergs per cc is quite low for a symmetry allowed
intrinsic uniaxial anisotropy constant.?* When low anisotropies are
obtained by operating near the reorientation temperature in canted
systems?®® or near the Neel temperature, the material parameters tend
to be undesirably temperature dependent. Since uniaxial anisotropy
energy densities of the required value may be induced, it appears
that the use of materials having induced anisotropy, such as the
recently announced garnets,'”'%28 appears quite promising.

Having determined that A is to be considered fixed and that K,
and M, have preferred values, this section concludes by showing the
dependence of several overall device parameters on these parameters
and the mobility. The device parameters considered are the bit
density, bit rate, the domain flux which is important in Hall effect
detectors®” and the induced voltage which is important in wire pickup
loop detectors. .

In typical domain devices, the bit positions form a square array
with the bit spacing being three to four domain diameters (see figures
of References 4 and 5). If the bit spacing is assumed to be 3d,, then
the number of bit locations per square centimeter is

ps = (3d,)7% = 6.9 X 1077 (4w M ,)*/AK, . (87)

Since the bit density is such a strong function of 4xM, the magnetiza-
tion is nearly determined once a bit density is specified.

The difference of the collapse and runout bias field for a plate of
the preferred thickness h = 4l is Hy — Ha = 0.1 (4xM,). Retaining
the assumption of a bit spacing of 3d, and assuming that the device
structure continuously maintains a field difference across the domain
of 0.1(4xM,) the bit rate in bits per second is

fo = v,/3d, = p,ArM,/60d, = 4.1 X 107°u,(4xM,)*(AK.) "}, (88)

linear in the mobility and again dominated by the 4xM, dependence
of dy,. If it is assumed that a pickup loop intercepts one half of the
flux emerging from the magnetic charges forming the upper surface
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of the eylindrical domain, then the flux change produced by moving
a cylindrical domain under the loop in gauss square centimeters is

& = Tdiendl) = 6.4 X 10°AK,(4rM )" (89)

If it is assumed that this flux change takes place in the time required
for a domain driven by a field difference of 0.1(4xM,) to propagate
a distance d,, the induced (MKS practical) voltage is

V = o e dy X 107 = 7.9 X 107, (AK). (90)
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