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Time Dispersion in Dielectric Waveguides

By S. D. PERSONICK
(Manuscript received October 16, 1970)

In dielectric waveguides operating at optical frequencies, the primary
cause of time dispersion of marrow pulses can be mode conversion. In
this paper we argue that under certain assumptions a dielectric waveguide
acts as a linear system in intensity. That s, given the inlensity input, the
intensily output is equal to the input convolved with an intensity impulse
response. We show that contrary to intuition, the width of the impulse
response gets marrower when coupling between guided modes increases.
Using the perturbation results of D. Marcuse, we obfain an inleresting
model of energy propagation down imperfect guides. We conclude that the
intensity response width increases as the square root of the guide length for
sufficiently long guides and approaches a gaussian shape for sufficiently
long guides.

We conclude from the theory that the dispersion in dielectric wave-
guides may be orders of magnitude below that which was previously ex-
pected in guides of sufficiently long length having properly controlled large
amounts of mode conversion. These theoretical results have not yet been
verified experimentally.

I. INTRODUCTION

In multimode dielectric waveguides operating at optical frequencies,
the primary cause of time dispersion of narrow pulses can be mode
conversion. In a geometrically perfect guide with more than a single
mode, energy initially launched in a given mode remains in that mode
as it propagates down the guide. Physical guides have imperfections
from perfect geometric shape (e.g., roughness at the core-cladding in-
terface of a nominally right circular cylindrical guide) which allows
energy to couple between modes during propagation down the guide.
Since group velocities differ in general amongst the modes, a pulse of
energy initially launched in a single mode or combination of modes
will be broadened due to the spread of propagation times of different
parts of the energy.
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In this paper we argue that under certain assumptions, a dielectric
waveguide acts as a linear system in intensity as well as in voltage.
That is, we show that the relationship between the input intensity and
output intensity of the guide is defined in terms of an intensity impulse
response. We argue that this intensity impulse response, for sufficiently
long guides, has a mean-square width about its mean which increases
only linearly with length. Further, in the limit of very long guides, we
argue that the response shape is gaussian. We also show that the
greater the coupling between modes, the less the time dispersion—a
result which at first contradicts intuition. Finally, we obtain quantita-
tive results and an interesting model of an optical guide under certain
assumptions.

We conclude from the theory that the dispersion in dielectric wave-
guides may be orders of magnitude below that which was previously
expected in guides of sufficiently long length having properly controlled
large amounts of mode conversion. These theoretical results have
not yet been verified experimentally.

II. AN OUTLINE OF THE ARGUMENTS

We next outline the steps of the derivations to follow, so that the
reader can follow the train of thought.

We start with the fact that the optical guide is a linear system in
voltage. That is, if we expand the input signal in spatial modes and
expand the output signal in the same modes, then the time varying
coefficients of the modes at the output are related to the coefficients at
the input by a set of voltage impulse responses. We then make an as-
sumption about the associated set of transfer functions (Fourier trans-
forms of the impulse responses) which allows us to argue that the set
of average output intensities and the set of input intensities are also
related by a set of impulse responses. Thus the guide is also linear in
intensity under the assumptions.

We next argue that for sufficiently long guides, these intensity im-
pulse responses coupling a chosen input mode coefficient and a chosen
output mode coefficient are indifferent to the modes chosen except per-
haps for a magnitude scale factor.

Finally, this allows us to show that for guides longer than the above
scale, the intensity impulse response which is now in common for all
input-output, pairs has a mean-square deviation about its mean which
grows linearly in length, and which approaches the gaussian shape in
the limit of long guides.
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III. THE OPTICAL GUIDE AS A LINEAR SYSTEM IN INTENSITY

31 The Random Channel

We now argue that under a simple assumption, the expected value
of the intensity at the output of a random channel is related to the
intensity of the input to the channel by a simple convolution with
an intensity impulse response. We start with input baseband signal
a(t). We use a(t) to linearly modulate a carrier m/(t) which may
be coherent or a stationary (wide sense) random process centered at
frequency fy. We assume that the result x(¢) = a(¢)m(t), has band-
width B, i.e., its spectrum extends from —B/2 + f, to B/2 + fa.

We pass x(t) through a time invariant filter with a random impulse
response h(t) representing the channel, resulting in the final output
y(t). We define a Fourier transform 1elat10n:b:p between the function
A(f) and the function A(%)

A = [ exp [i2niON) 1, "
Al & ).
By simple linear system theory if
X(f) & z(0),
H(f) < h(t), (2

Y({f) =y,
then

Y({n = XHH.
Define the envelopes of x(t) and (t) by
z(t) = V2 Re [z.(1) exp (227fi)},
y(f) = V2 Re {y.(1) exp (i2nfol)}.
The intensity of the input and output signals are defined as
I..(t) = ll'-z(t)lz = a2(t) llm.(t)l2, (4)
Inul(t) = ]ye(t)lzr

where m,(t) = ecarrier envelope.
Assumption: Stationarity of channel transfer function

(H¥()H(f + «)) = T(f) (5)
provided fy — B/2 < a,f + « < fy + B/2.

®3)
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The assumption, while apparently arbitrary, is essential to the results
which follow. Perturbation results of Marcuse,! to be discussed in
Section 4.1, indicate that equation (5) may be satisfied for the input-
output temporal transfer function of a given spatial eigenmode of an
optical dielectric waveguide with mechanical imperfections, provided
the mechanical imperfections satisfy constraints also to be discussed.

Define for any function U(«)
Uile) = Ulw) az=0,

=0 a < 0.
Then it has been shown that (See Appendix C)

woF =2 [ " Y.(f + o) Y¥(e) da.

Then clearly

0 @2 [ X+ DG + JHHDXH) de

Using equation (5) we obtain

W) & 200) [ (X0 + @)X1) de,

{v.()") & T,
where
Iin(f) = (Iin(t)>'
Thus*
Tou(®)) = Lia®)) * v(@®)
where

v(t) & T(f).

(6)

(7

8

©)

(10)

Thus we have a linear system relationship between the channel input

and output intensities.

3.2 Extension to Vector Channels

Suppose we have a vector channel (corresponding to multimode

guide) consisting of a vector of L input functions

* The notation z(t) * y(t) signifies convolution:

z(t) * y(t) < fm 2t — wy(u)du.
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EXC)
X =| :
Lz (1) ]
and L output functions
3]
YO) = ° |
Ly ()]

The input and output functions are related by an L x L matrix of
impulse responses

0(t) = [h:;(®)] (11)

where we have

yi(t) = Z] hoi(8) * x;(8), (12)
ie.,
Y() = o(t) * X(¢).

Now consider a cascade of two vector channels having impulse response
matrices '0(¢) and *0(f). The input passes first through channel 1 and
then through channel 2. The output of channel 2 is given by

Y(t) = o(t) * ‘o(t) * X(1). (13)
Define the envelope of vy (¢), Yre(f) : we know that

B 0F &2 [~ Yila + DT da,

B0 @2 [0 3 5 X T HG + @ Hilf + Xl + )
(1)
CHE(@)'HE, (@) X* (o) do.

Assumption a. Stationarity of Mode Transfer function.
b. Mode Transfer functions uncorrelated.

(Hi(f + o)’Hu(f + o)'HY.(0)*H ()
= lFr,‘(f)zl-‘u(f) 5r.n 5,‘,,-. 5k.r (15)
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where

8y y & Kronecka delta

for {f + a, a} ¢ input signal bands.

We are implying that randomness, especially in phase, erases corre-
lation between the transfer functions of different modes. The validity
of this assumption for optical guides with more than one mode will be
discussed in Section 4.1.

It then follows that

]

QO =2 [ 3 3 T T + @)X () da

o j=1 I=1 (16)

L L

(ly(D) = ; ?: Ta(f) T (N Lins ()

=1

where

Lins(f) = (| z:(®) [*).

Thus under assumption (15) we have

(luee(D]) = ; ; yi(t) * My () * |z (D)%) (17)
where

va(t) & Tu(f).

Forming the matrix 1G(t) with elements y;;(¢) and similarly *G (¢);
the vectors of input and output intensities are related by

| Y, |* = *G@t) * 'G(t) * | X, |*. (18)

Thus the vector channel is a vector linear system in intensity as well
as voltage [compare equation (18) to equation (13)].

33 A Limit Theorem for a Cascade of Vector Channels

Now consider a cascade of a large number M of vector channels,
each behaving as described in Sections 3.1 and 3.2, ie., if |V, ()| is
the vector of the average intensity responses at the output, | X, () [* the
input intensity vector; we have

Y0 = (* 6,0)* KOF = 60+ K0

1

where
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M

G, = * G(l) = Gy *Gy—y -+ * G, . (20)

We would like to argue now that for sufficiently large M, all the
elements of Gy are identical in waveform, differing at most by a con-
stant. In other words, we would like to argue that the shape of the
intensity response between any input mode and any output mode is
indifferent to the choices of input and output modes, for sufficiently
long guides, except perhaps for the magnitude of the responses.

We shall prove our results for a lossless two-mode guide. Define
vi;j(t, b) as the j — 7 intensity impulse response for b sections of
guide. We obtain (see Appendix A for derivation)

b
'Yzl(t; b) = RZ yult, b — R) * ‘Ym(t) * ‘Y;‘zR_l(t) (21)
=1 .
where
'Y;zn_l(t) = 'Yzz(t) *y(l) - R — 1 times
and

u(t, 0) = &(1).
Now assume that the guide is lossless, i.e.,
[ @ + v at = 1. 22)
Further define

vii(t) = ai;pi;(t),

f pudt =1, 0<a, <1. (23)
Thus
b
Tzl(ts b) = RE 'Yu('g; b — R) * le(t) * P;‘zn_l(t')(aﬂagz_l)- (24)
=1

For the lossless guide, and b sufficiently large v,:(b — R) ~ v.(t, b)
for R <« b. Furthermore a convolution of +,,({, b — R) with
pa(t) * p£F7'(f) is approximately equal to v,,({, b — R) for R < b
since the response v,,(t, b = R), which is a convolution of b — R terms,
has a narrow spectrum compared to the other R term convolution for

b > R. Furthermore a,,al, ' — 0 for R large. Thus for b sufficiently large
¥a1 (L, b) ~ n(t, b)(an/(l - azz))- (25)
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Similarly we have

b=1

'Yu(tr b) = R}; 'le(ts b — R) * le(t) * PﬁR_l(t)anafs_lu

A vaalt, b) 22— = v,u(t, b), (26)

1 —a,

(since @y, + a,; = 1). Thus

1 1
G, =ot,n) TTT TTT A, @)
1 1

1+1/7 1+ 1/n

where n = ag,/a,3, and o(t, b) £ v..(¢, b)/[*. v (t, b) dt. Finally we
obtain the response of a guide of kb sections

G(t, kb) = p*(t, b)A.

Note that A is idempotent, i.e., A*> = A and p(¢, b) is a positive unit
area function.

3.4 Application to Long Optical Guide

For a multimode lossless of guide sufficiently long length, | = kL,
with finite coupling between all modes, we can generalize equation
(27) to conclude that the intensity impulse response between an input
and output mode is a constant times some positive unit area function
p(t, L) convolved with itself I/L times when L is a scale on which
equation (27) holds in the generalized case (more than two modes).
Since the central limit theorem states that the convolution of a large
number of unit area positive functions approaches a gaussian shape,*
we conclude that the impulse response should approach a gaussian
shape in the limit of long guides. Further, the impulse response’s
second moment about its mean increases linearly with increasing guide
length for guides longer than L.' That is, the second moment about
the mean of the response is

My(l) = My(L)l/L. (28)
If r, is the “differential delay” (time/meter) of propagation in the

* Provided that f_ (¢, L)t2dt < o, when we add similar independent random
variables with finite second moments, the probability density of the sum, which
is the convolution of the individual densities, approaches a gaussian shape.

t The second central moment of a convolution is the sum of the individual
second central moments.
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slowest modes and = is the differential delay in the fastest mode, then®

- T2)2L2 — (ATL)2

(71
M,(L) = r 2

(29)
Therefore,

(A7)’
4
for any L where equation (27) holds [for an N mode case we have an

N X N matrix multiplying p(t, [} ].

M,(I) = Li

1IV. QUANTITATIVE RESULTS

4.1 Perturbation Theory

We shall now apply the above results to the case of a lossless slab
dielectric waveguide previously studied by Marcuse.! We expand the
input field to the guide as

e(l, 7, 0) = 2 elt, 0)Yu(x) (30)

where z is the cross-sectional position parameter and the y.(z) are
the eigenmodes of the guide. The field a distance ! down the guide is
written as

ety z, 1) = 2 alt, Diu(@). (31)

We have a linear voltage impulse response relationship between the
vector of input voltages [e(t, 0)] and the vector of output voltages
[e(t, 1)). Defining E,(w, 1) as the Fourier transform of e(t, [) we have

Ew, ) = X Ciilw, DE;(, 0). (32)

Marcuse has shown that a perturbation theory solution for the Cy;(w, I)
is given by

Cuslo, D = My exp 8,0 [ 90 exp (i) — Bi(w)le} d= (33)

where ), is a constant weakly dependent upon « and g(z) is the wall
perturbation from straightness. It is assumed &k # j [For & = j,
Cyi(w, 1) = 1]. We have therefore

* The right side of equation (29) is the mean-square intensity impulse response

width if the response consists of an impulse of area } at the shortest delay and an
impulse of area % at the longest delay.
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Chi(wj I)Cv,!hn(w + g, l)
= M exp (1B — B0+ D) [ [ @)
exp (i) — B,@)e — Balo + 7) — By + NN} de . (38

Defining the correlation function

(9(2)9(2)) = R,(z — 2') (35)

(we assume g(z) is a wide sense stationary process) we obtain

{Cis(w, DCX(w + o, D)) = MaNE, exp (7 ABD) f fR,(z —2')

-exp [i(Bu(w) — Biw)(z — 2')] exp [i AB(w, o)) dzde’  (36)
where
A = (Bulw) — Bulw + 0)) — (B;(w) — B(w + 7)),

AB, = Bi(w) — By(w + o).
If R (z — 2’) drops off quickly for (2 — 2’) in an interval of length ,
then we have the approximate result

(Chilw, DOB@ + o, D) =2 MANEIS,(Bilw) — B(w))

) 1 — | AB(w, o)l
-exp (i AB,) ‘:.XXB[Z; f )(‘2’ 2 )
where 8,(:) = Fourier Transform of R,(:), and is assumed to be

constant as a function of Bi(w) — B:(w) for w within the excitation
bandwidth. Fork = n,j = p

A ~ I:_a%im) - —a%igw):lo L Aro,
(38)
= (96:
AB, = (Bw )a'

That is we assume o is small enough so that there is negligible disper-
sion of energy travelling in a single mode. Thus, the intensity impulse
response between input j and output k is (see Fig. 1)

Yei(t D) o2 AN S, (Bm(w) — Bi(w))f(t — 70) (39)
where
f(t) = 1! te{OJ Armi”;

=0, otherwise;
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for I small enough for the perturbation theory to hold.

Trom equations (36) through (38), it is clear that for cases where we do
not have k = n, j = p the correlation function Cy;(w)C.%(w + o) will be
negligible prowded AB{w, o) is sufficiently large in the band of input
frequencies. Thus we can use the perturbation length impulse response
to find a long-guide response by means of equation (20).

From equation (37) we see that we increase coupling between modes
by making the mechanical perturbation spectrum large at frequencies
which correspond to the difference of the inverses of the pliase velocities
of the modes at excitation frequencies. It should be emphasized that
while making the perturbation spectrum high at frequencies that
couple guided modes, we will wish to avoid making it too high at
frequencies that couple guided to unguided radiation modes since such
coupling results in loss.

42 A Hydraulic Model of Dispersion

We shall now show that the perturbation results imply a model
which is an interesting interpretation of the propagation process, and
which allows easy computation of the response of a long guide.

Suppose energy traveled down the guide as follows. We start with a
large number of indivisible bundles of energy at the guide input. Each
bundle begins propagating down the guide randomly jumping from
mode to mode. At any point down the guide, a bundle travels at the
group velocity associated with the mode it is currently in. At any posi-
tion, the probability that a bundle will jump to mode k, given that it
is in mode j, in the next increment of distance dl is N A%S,(Bi(w) —

Bi(w)) dl.

Since we have a very large number of bundles, the output response
of the guide in intensity should have the same shape as the probability
distribution of the arrival time at the output of an individual bundle.
For a short guide of length L, the probability that a bundle is in mode k
given that it started in mode j is | Ay; |* S,(Bu(w) — Bi(w))L and its
arrival time distribution is given exactly by Fig. 1. Since this distribution
is the perturbation solution for the intensity impulse response of a
short guide, we see that the hydraulic model gives the same result as
the perturbation theory. Further, a little thought will show (see Ap-
pendix B) that the extrapolation from a short guide to a long guide in
the hydraulic model is analytically the same as equation (20). Thus
any technique which can be used to determine the intensity impulse
response characteristics using the hydraulic model will be valid for the
solution of equation (20) using the perturbation results.
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TIMPULSE
1 il
m V722
TJ'L. {Tj+ATmJ-]L

MODE =

k V72

(TJ'+ATkj)L TJ-L

TIME —>

Fig. 1—Output intensity response for modes j, m and k, given mode j is excited.

4.3 The Solution of Some Hydraulic Model Response

4.3.1 Characteristics

We now wish to determine some probability density moments of
the arrival time of a bundle of energy at the output of a long guide
recalling that this has the shape of the guide impulse response.

Let H(I') be the mode a bundle is in at distance I’ down the guide.
In that mode the bundle travels with differential delay (time/meter)
7a = 7(I'). The total propagation time down the guide is

1
T = f () d’. © (40)
1]
The expected propagation time down the guide is
1
(D = [ 0 ... (41)
0
The variance about the mean is

(T = (DY) = < [ [ ¢w) = uaneen - ouen ar dz")

- [ f ! f R.(I 1) dl dl”] — (1Y, (42)

where E.(I', I") = E(r(I")r(l")). We need the correlation function
R.(l, ") and the mean {(r),,(').
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4.4 Calculation for a Lossless Two-Mode Guide

For the lossless two-mode guide we have an energy bundle making a
Poisson number of mode changes in any length L with mean
| Mz |* 8,(8:(w) — Ba(w))L. The correlation function R,(l, I') (assuming
we start off randomly in one of the modes) is that of a random tele-
graph wave® and is given by

RALV)=%|Anﬂ”mm(—2ll—lWﬂJ-+(ﬁ{§lQ(z—zq= (43)
where

l/lc = I A2 |2 Se(ﬁl(w) - Bz(w))s
and

At =(Qﬂ—l-—%)=r — T
12 dw dw ! 2

We obtain the mean and second moment about the mean of the
intensity response of a guide of length L.

M = (2F2),

(@ = . = B [1 5 (e (—2L/t,))] , (4
lim (T — (D) = EmTh

where

l. = [])‘ml2 Sa(ﬁl("’) - .82(“’))]“1:

lim (T — () = BTl L0

[L/1c1-0 4

(compare equation (44) to equation (29)).

4.5 Extension to the Two-Mode Guide With Loss

We can use the hydraulic model to extend the above results to a
two-mode guide with loss and differential loss.

Assume that when travelling at distance dl in mode j, a bundle of
light has probability a;dl of being absorbed.

If in travelling down a guide of length L, the bundle spends a dis-
tance L; in mode 1 and L. in mode 2, then the probability that it is
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not absorbed is

P = exp [— (L, + aoL,)] = exp [—((a; — a2)Ly + aL)]. (45)

The number of bundles entering the guide at time zero and arriving
at the output end at time ¢ in the presence of loss equals the number
that would arrive at time ¢ in the absence of loss times the probabil-
ity that a bundle with total travel time ¢ is not absorbed. But we have

L +L, =1L,
t = TlLl + TﬂLz = (‘r] - Tz)L1 + TEL,
P = exp [ (@ + asla)] = exp {—(Aa (iﬁ”‘—l‘) + aﬂL)}
12
(46)
where
ATio =7, — T2 A = o, — a,.
With a little algebra we obtain
Aa |
P = exp [—{ET— (t = (D) + <a>x.vL}] (47)
12

where

(a),,‘., = (al + aﬂ)./zs
(T = (11 + 72)/2.

Thus the intensity impulse response for a two-mode guide with loss
is equal to the lossless response multiplied by P of equation (47).

Note that the gaussian shape for long guides still holds because the
product of a gaussian and an exponential envelope is a shifted
gaussian.

V. CONCLUSIONS

We can conclude at least one important result. Long optical fiber
waveguides need not have large dispersion due to random imperfec-
tions if properly controlled mode coupling exists. From equation (44)
we sce that a mechanical perturbation spectrum which is peaked at
frequencies that couple guided modes will lower dispersion. However,
to avoid loss, we must not make the mechanical perturbation spectrum
too high at frequencies that couple guided and radiating modes.
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The above coneclusions have been obtained by D. T. Young and
H. E. Rowe,? for the two-mode guide by solving the coupled line
equations directly under the assumption of white noise coupling.

APPENDIX A

We wish to derive equation (21) from the following relationship

G(t, b) = [viit, b)] = [yi;(OP*[y:i()]* -+ (b Times),
ij=12  (48)

Equation (48) implies the following model shown in Fig. 2. The
transfer function v,.(f, b) is the overall transmission response between
input 1 and output 2. This can be obtained by adding up the trans-
mission responses over all different paths between input 1 and output 2
using any desired bookkeeping scheme. Every path between input 1
and output 2 must pass through the v,,(t) function for the last time in
some section. If a path passes through the v,,(f) function for the last
time in the fifth section from the end, then it must pass through four
v42(f) functions on its way to output 2. The sum of the path transfer
functions between input 1 and the input to the v,,(¢) function in the
fifth section from the end is v,,({, b — 3). Thus the contribution to the
overall transfer function between input 1 and output 2 due to all paths
which pass through a v,,(f) function for the last time in the fifth section
from the end is v.,(t, b — 5) * v2,(t) * y*%:(t). Equation (21) merely
expresses the sum of the contributions over all positions of last passage
through a v,, () function.

Fig. 2—b-section guide.
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vau(t, b) = Rb;'hl(t: b — R) * ’721(t) * 'r:‘zﬂ"'(ﬂ- (21)

APPENDIX B

We wish to show that the equations for obtaining the intensity
response of a long guide, given the intensity response of a short guide,
for the hydraulic model are identical to the extrapolation equations
for the intensity response given by equation (20).

Suppose we have the probability density, for a short guide, that
a bundle of energy starting off in mode j of the guide (at time
zero) arrives at the output of the guide at time ¢ in mode 7. Thus we
have the matrix of densities P(¢, L) where L is the guide length
and the elements p;(t, L) are the previously described densities.
Let. I;(t, 0) be the probability density that a bundle of light arrives
at input j at time £. Let I;(¢, L) be the probability density that a
bundle arrives at the output position L in mode j at time ¢. Let I(¢, -)
be the corresponding vectors. Using the laws of addition of random
variables we obtain

It, L) = 2 palt, L) * L(¢, 0)
of in matrix notation

I(t, L) = P(t, L) * I(t, 0)
therefore

1t kL) = (1 P(t, L)) * I(t, 0).

We see that the probability density of the output arrival mode and
time of a bundle of energy for a long guide, which corresponds to the
intensity response, is extrapolated from the short-guide response
exactly as in equation (20). Thus since the perturbation results of
Marcuse correspond to the hydraulic model in the limit of short guides
and satisfy the conditions for extrapolation using equation (20), it
follows that properties of the hydaulic model solution for long guides
will correspond to the solution of equation (20) starting with these
perturbation results. This is true no matter what techniques we use
to find these hydaulic model properties.

APPENDIX C

We wish to establish that for a narrowband high frequency signal
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y(t) = (y.(t) exp (iwot) + y¥(?) exp (—iwot))/ V2

of carrier frequency fo = wo/2r and envelope #,(f), the intensity is
given by

P =2 [ [ [ rov.g+e df] exp (—i2nad) de,
w2 [T VY6 + o) dt

Define

V) = [ v exp G2ef dt, = VI Y.l + 0,

[provided y,(t) is narrowband compared with fo] ;
lv.(O1" = f " Y.(f) exp (= 2inf) YA(") exp @2nf't) df df’,
= ﬁ: f exp [—2n(f — ALY Y] df df,

= ]:: fm exp (—2ey)[YI() Y.(f" + v)] dvy df’,

where y = f — f';

= 2 L: exp (—‘t%wt)[Yt(g) Y+(g + ,Y) dy dg]

where g = (' +fo).
Q.E.D.
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