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On the Design and Analysis of a
Class of PCM Systems

By H. HEFFES, S. HORING, D. L. JAGERMAN
(Manuseript received July 20, 1970)

This paper considers the problem of transmitting bafdlimited signals
using binary signaling over a noise-free channel. An analytical framework
is presenled for the design and analysis of a class of PCM systems where
peak error is of primary interest. For a specific class of input signals which
includes deterministic amplitude-constrained bandlimited functions as
well as bandlimited wide-sense stationary, second-order, random processes,
resulls are oblained which provide trade-offs between the sampling rafe,
quantizer and reconstruction filter.

I. INTRODUCTION

This paper considers the problem of transmitting bandlimited sig-
nals using binary signaling over a noise-free channel. A functional
block diagram of the type of PCM system under consideration is
shown in Fig. 1.*

The two major differences between the problem considered here
and previous work are the measure of system performance and signal
classes considered. The measure of system performance usually con-
sidered is related to the integral mean-squared error.!~* This
type of performance measure lends itself to a frequency-domain
analysis. While this eriterion is widely used, it doesn’t provide direct
information regarding the size of the error as a function of time. To
investigate this time behavior, we use a time-domain approach and
use the maximum error over time as a measure of system performance.

Because of the desire to consider input signals that engineers would
normally call bandlimited [i.e., trigonometric polynomials, sinusoids as
well as functions in £;(— o, ) with finite bandwidth] we treat a

* For special classes of signals, other types of PCM systems such as DPCM
ﬁnd Delta Modulation are sometimes used. These systems will not be considered
ere.
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Fig. 1—UPCM system.

somewhat broader class of signals than normally considered in the
literature. (The input class is usually considered to be a wide-sense
stationary random process.)

In this paper, a technique is presented which simultaneously selects
the sampling rate, quantizer and reconstruction filter in such a way
as to minimize a bound on the peak error between the reconstructed
and transmitted-signals. Since our interest centers on studying the
trade-offs between the various system parameters, we desire precise
mathematical results which are valid over the entire range of possible
system parameters. By using an upper bound on system performance
this aim was achieved for several classes of input signals. Using a
criterion which evaluates a given encoding-decoding scheme in terms
of its performance for the worst signal in the input class, a specific
encoding-decoding algorithm, which will be called Uniform PCM or
UPCM, is suggested and evaluated. The results are presented in the
form of a set of normalized curves which plot an upper bound on
the percentage error associated with the proposed UPCM system as
a function of a normalized parameter, p, which represents the ratio of
the bit rate to the bandwidth of the input class. The optimized values
of the various parameters which define the system can also be deter-
mined from the plots (these include the sampling rate, the number of
quantizing levels and the delay associated with the decoder).

II. AN ENCODING-DECODING ALGORITHM FOR THE TRANSMISSION OF
BANDLIMITED FUNCTIONS

The class B, of functions consists of entire functions of exponential
order one and type ¢ which are bounded on the real axis.* It includes
all funetions in £;(— «, «) having finite radian bandwidth, ¢, and all
trigonometric polynomials of degree [#].*

The performance of a given system is defined by

* [ ] denotes integral part. A trigonometric polynomial of degree [¢] has the form

(o
$ao + I:il (ax cos kit + b sin ki),
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e= sup sup ||w(®) — g(t;w) || (1
tel0,T) ueBg (M)

where u(Z) is the value of the input signal at time ¢ and g(¢; u) represents
the value of the output signal at time ¢ corresponding to the input
function . The input function % is an element of B, and the values of
the input and output signals at any time ¢ ¢ [0, 7] belong to a normed
linear space, 2. By proper choice of @ and the norm on @, a variety of
different input classes and performance measures can be treated.
Specifically, define the set B,(1) by

B,(M)={x:zxeB,,z{t) Q|| z{t) || = M Vv t}.

In arriving at the proposed algorithm, the following representation
is used for elements of B, (and hence B,(M):*

u() = 2 w(ihe;0 @
where
. do . T
sin t sin t
o) = ——2-—=2, ©
-5 1-34"
w(l — 5)-

0;(f) = 6(t — jh), h = 4)

o

This representation is valid for any & & (0, 1), hence § may be chosen
appropriately for each application. The parameter & will be called the
fractional guardband since the time between samples is =(1 — 8)/¢
which is less than the time between samples /¢ which corresponds to
the Nyquist rate.

In essence the proposed algorithm is a scheme for approximating any
element of B,(M)' by one of a finite set of appropriately chosen func-
tions. These functions are determined by first truncating the infinite
series, (2). This truneation process produces an approximation to wu(f)
(over the time interval ¢ ¢ [0, T']) of the form

[T/h]1+L

at) = 2. u(ih)e;). (5)

i=—L

* This is a special case of a broader class of representations for elements of B,5.
1t was chosen because it provided the smallest bound on quantization error.

t The results presented in this paper are applicable to the class of signals having
representation (2) with ||u(jh)|| = M. This class is larger than B,(M).
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Thus we have replaced the requirement of transmitting an infinite
number of sample values by the problem of transmitting a finite
number. To achieve our ultimate objective, these sample values are
then quantized and the quantized samples are used to reconstruct
the signal

[T/h]l+L

g(t) = 3 4(jh) 0,(t) (6)

j=—

where #(jh) represents the quantized value of u(jh).

The encoder will therefore consist of appropriate quantization of the
input samples while the decoder simply represents the reconstruction
of the truncated series using the quantized samples [i.e., the signal
g(t) given in equation (6)]. An analog interpretation of the decoding
process is disecussed in Section V. It should be noted that in order to
construet g(¢) according to equation (6), a delay of T + Lk seconds is
required. The trade-offs between this delay and the accuracy of re-
construction will become clear as the results are presented.

Having constrained the general form of the proposed system, we
now seek to determine the various parameters which define it (e.g.,
sampling rate and quantizer) in such a way as to minimize an upper
bound on the value of e. Because of the binary nature of the signaling
which is being considered, the number of quantization levels is con-
strained to be 27, where v is an integer.* Thus v represents the number
of bits per sample. The bit rate is then given by

v

B = Rb/S (7)

It is convenient to define a normalized parameter p, which is given by
2xB

=" =7 (8

where ¢ is the radian bandwidth of the input class and f is the band-
width in Hz. In terms of these parameters, from equation (4), we have

_%
p
Since 8 ¢ (0, 1), the number of bits per sample must satisfy

v < [g] (10)

* This is a practical constraint and not a theoretical one.

b=1 9)

p—
IIA
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In terms of these parameters a simple bound on the reconstruction
error results.

The analysis of the reconstruction error, given in the Appendix,
shows that ¢, defined by equation (1), satisfies

MK | 0,0)

E§E=r25L+\/E (11)
where
Lit?
K="7—, (12)
—=+1
Lh
o) =sup sup ||u(h) — a(Gh) || (13)
i utBs(M)

and & is given by equation (9). Thus the actual value of ¢ which is
achieved by the proposed algorithm may be less than the value & given
by equation (11). In fact, since the reconstruction formula (6) is inter-
polatory, the error at sample points can never exceed the raw quantiza-
tion error, a,(v). The first term on the right-hand side of equation (11)
may be viewed as the error due to truncating u(f) as given by equation
(2) while the second term represents the quantization error. The effect
of the delay on the error can be easily seen from equations (11) and (12).

As a design procedure, one might first choose the quantizer which
minimizes o,(») and then determine the value of » [subject to (10)]
which minimizes the error bound given by & [see equation (11)].

In the next sections, several important special cases are considered
and explicit design curves are presented for these cases.

III. DETERMINISTIC, AMPLITUDE CONSTRAINED BANDLIMITED FUNCTIONS
In this case, @ =R (the real line), and ||z|| = |z|. Thus

B,M) = {u:ueB,,ult)e R, |ult) | = M Vv t}*

The quantizer which minimizes o,(v) for this case is shown in Fig. 2.
The optimal value of o4(v) is given by

_M
00(”) - 2, (14)

* Insofar as information content is concerned, if M; < u(t) = M., then it isequiv-
alent to consider |u(t)| < M, where M = (M, — M.)/2
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Fig. 2—Uniform quantizer.
Using equation (14), equation (11) becomes
MK M
< g = 55— — .
€ = € _"_2 5L + ‘\/6 2v (15)
For later use, we define
. _ MK KM £
=3 5L+ V62 (16)

For the present case K, = 1 and equation (15) thus becomes ¢ < & = &,

The bound represented by equation (15) is valid for any allowable
set of system parameters. For fixed values of p, T, and L, the value of »
which minimizes & ean easily be found. If we define the normalized
percentage error as 100(¢/2M K,), then Fig. 3 plots this as a function
of p, using the optimized values of ». These values of v (denoted »*) are
indicated on the curves. Curves are plotted for K,L/K = 5, 10, 20, 40,

* K, is introduced here for the purpose of unifying the results of this section
and the next. For the class of signals in this section, K. can be replaced by unity.
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Fig. 3a and b—Performance curves. (Notes: 1. For analog implementation, use

K = 1; delay =

(L 4 1) h. 2. For digital implementation, K=

(T/Lh +

2)/(T/Lh + 1); delay = T + Lh. 3. v* is the optimized number of bits per
sample. 4. The optimum sampling rate is 1/h = B/»*.)
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and «. Since 1 < K =< 2, for a given value of the ratio L/K, one can
associate any value of L satisfying L/K = L £ 2L/K. Using equation
(12), the corresponding value of T can then be computed. The delay
associated with reconstruction in accordance with equation (6) is then
given by 7y = T 4 Lh. As discussed in Section V, when an analog
implementation is used for the reconstruction, a value of KX = 1 should
be used and the delay associated with the filter which accomplishes the
reconstruction is given by T'; = (L + 1)h.

To illustrate the use of these curves, consider the problem defined by
the following parameter values:

c=m X 10%
B = 6.3 X 10° b/s.

Using these values, we compute p=12.6. From the curves, for L/K = 20,
we have 50&/M = 4.67 percent, v* = 5. Using M = §, we have & = 0.035.
Since B = v/h, we have h* = 0.79 X 10~° seconds or 1/h* = 1.26 X 10°
samples/second. For L. = 40, the delay associated with the error [using
equation (6) to accomplish the reconstruction] is about 32 us. For the
corresponding analog implementation (See Section V) these results
correspond to a value of L = 20 (and K = 1) with a corresponding
delay of 16.6 us.

It is clear that the normalized nature of the curves in Fig. 3 facilitates
their use in a wide variety of ways. For example, one could easily
answer questions such as:

(7) For a given class of signals, what is the smallest bit rate that
can be used to guarantee an error not exceeding a prescribed
level?

(#7) For a given bit rate, what is the largest class of signals that can
be handled with a maximum error not exceeding a prescribed
level?

In the next section, analogous results are developed for some
important classes of random input signals.
IV. SOME IMPORTANT CLASSES OF RANDOM INPUTS

In this section we consider the case where Q is the space of zero
mean second-order random variables® with norm given by

[z] = (Bs =0., =zeQ. (17)

* There is no loss of generality in the zero-mean assumption.
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Then
B, (M) = {u:ueB,,u(t) eQ ouny = M}. (18)*

Thus B,(M) consists of second-order random processes (with o,, = M)
with sample functions which are all in B, . For the important special
case of wide-sense stationary random processes, o, = o, . For this
case, the quantizer will be characterized by the property that it mini-
mizes the mean-squared error at the sample times. The problem of
designing such a quantizer for a given probability distribution of the
input amplitude has been considered by B. Smith.” An approximate
upper bound on the optimized quantizing error is given by

Fq = Zl \E [-/;w pi(w) du:lg (19)

where p(u) is the probability density function of u(t). The corresponding
quantizer is described in Ref. 6.

For the important cases where p(w) is uniform, gaussian, or expo-
nential, 7, can be written in the form

11

T, = 0,

_ Koou

o
where K, is a constant depending on the particular distribution fune-
tion. Table I gives the value of K, for each of the input classes of
interest. The bound on the system performance which is given by
equation (11) ecan thus be written as

(20)

Oq

~ MK n K.M
- 7 8L V52
which is identical in form to the corresponding bound for the deter-
ministic case [see equation (16)]. The use of the design-analysis
curves of Fig. 3 for these cases is thus identical to the previously
described deterministic case.

m

€

(21

It is interesting to note that for the case of a uniform amplitude
distribution as well as the amplitude constrained input class, ¢, = @,
and the optimal quantizer is a uniform quantizer. In each of these
cases € = E.

In the next section, the interpretation and implementation of the
proposed algorithm will be discussed. It will be shown that the analog
implementation takes the form of a PCM system where the sampling

* More precisely, B,(M) = {u(-, -):u(-, w) & B, u(t, ) e @, |lu(, )l = M}.
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TaBLE I—INPUT SigNAL DEScCRIPTION*

Random
Deter-
ministic Uniform Gaussian Exponential
o il Sa
a 1 1
lu()l = M plu) = plu) = —— p(u) = 5
0 [u >a V2 o, V2o
exp (—u?/2e,%) exp (—v2u/ay)
Ky =1 K, = 1.65 K, =212
Kn = 1
UH=LEJW M =g, M =g,
V3

* All signals are in B,.

rate, quantizer and low-pass filter which is used to accomplish the
decoding are carefully chosen.

V. ANALOG RECONSTRUCTION IN THE UPCM SYSTEM

In this section we discuss an analog reconstruction in the UPCM
system. For the analog reconstruction, the system takes the form
shown in Fig. 4. The identification of the low-pass filter results from
the following analysis.

If we first consider the response, g(t), of a causal, stationary filter
[with impulse response A (¢)] to the input

u*() = 2 a(h) 8(t — jh) (22)

then
[¢/h]
gty = 2 a@Rh(t — jh). (23)

-

We now consider h(f) to be a delayed, truncated (for negative times)

LOW PASS |
uft) u(jh) | quan-| B3N g ape | CHANNEL | gy | B30 [PuLsE FiTer | 9(t)
SAMPLER P GENER- IMPULSE [——
TIZER CODING DECODIN om Lyt
h(t)

Fig. 4—Analog UPCM system.
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version of 8(¢) [see equation (3)]
h(t) = 6(t — (L + 1)R)S@®) = 6,.,()8(t) (24)

where #(t) is given in equation (3) and S(¢) is the unit step. The
response J(t) can thus be written

[t/h]

glt) = 2 aGh8,(t — (L + Dh). (25)

If (), given in equation (5), were more accurately represented by
[T/hI+L

a(t) = 2 u(he(), te(0,T] (5

j=—w

then g(t), given by equation (6), would more accurately be repre-
sented (for T = h) by

L+1

g(t) = ; u(jh)8;(1),  te[0, T]. (6

Equation (6”) can be made valid for all t with

l [t/h]1+L+1
i = 2 4. (26)
Thus
[t/h]

it — (L + Dby = 2 a@h)6;(t — (L + Dh). @7

—@

We thus see that the output F(f) of the filter, with impulse response
R(t) given by equation (24), is a delayed version [delay of (L + 1)k
seconds] of the more accurate representation of ¢ (¢) given by equation
(6’). Tt should be noted that the more accurate representation of g(t)
was obtained by truncating only future values in the infinite sum as
opposed to truncating both past and future values. The corresponding
error bound is reduced to '

lutt — (L + DR — 30 || < %KQ + 1—}% (28)*

This corresponds to the case K = 1 for the curves shown in Fig. 3.
Figure 5 is a plot of #r;(¢) and its transform

Opw) = f_: B.4:(t) exp (—jwt) dt.

* This can easily be obtained by eliminating the second term in equation (38)
which corresponds to truncation of past values.
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Fig. 5—Curve shown for L = 4,8 = 1/2.

The causal impulse response h(¢) can be written as

h(t) = B () — 0L (H)S(—1)
where the second term represents the negative time tail of 8,41 (¢). The
corresponding transform is

H(w) = 0,.1(w) — H(w) (29)

where H(w) is the transform of 8..,(f)S{—t). The transform of the
causal filter is thus seen to be a slight perturbation (for L sufficiently
large) of the low-pass characteristic of 0, .,(w).

VI. DISCUSSION

In this paper, the design and analysis of a class of PCM systems has
been considered. In arriving at these results, advantage has been taken
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of the fact that the sampling rate is higher than the Nyquist rate.
The approach taken in this paper takes advantage of the alternate
representations of the input class which are made possible by the
higher sampling rate and chooses one for which a good bound on the
effects of quantization errors can be derived.

In their present form the results which have been presented may be
viewed as a step towards the study of peak error behavior of PCM
systems. The extension of these results to input signals about which
more information is available (e.g., power spectral information) is the
next step towards providing a more generally applicable framework
for the design and analysis of PCM systems where peak error is the
natural criterion.
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APPENDIX

Derivation of Error Bound for UPCM System

The class B, of functions consists of entire functions of exponential
order one and type ¢ which are bounded on the real axis.* It includes
all funetions in £,(— «, =) having finite radian bandwidth, ¢, and all
trigonometric polynomials of degree [o].*

Any element in B, has the representation’

@

w(®) = 2 w0 (30)
where
. oo . a
sin {sin t
o) = ——% 1= (31)
1 -4 ! 1—346 t
o) = ot — i, h="L0 (32)

* [ ] denotes integral part. A trigonometric polynomial of degree [¢] has the form

[g]
jao + kz (ax cos kt + by sin kt).
=1
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This representation is valid for any & £ (0, 1), hence § may be chosen
appropriately for each application. The parameter & will be called the
fractional guardband since the time between samples is n(1 — 8)/¢
which is less than the time between samples =/c which corresponds to
the Nyquist rate.

Let #(f) represent an approximation to wu(f) in the interval
[—T/2, T/2] obtained by truncating equation (30). Thus

N

a(l) = ,;, u(jh) 8,(%) (33)
and
u(t) — at) = IEN u(jh) 6;(t). (34)
Since u e B,(M), we have
sup || u(®) — a() =M 2 16| (35)
Let 2N 4+ 1 = T/h + 2L, T/hodd, and | j | > N, thenfor || < T/2,
16,0 | < = L (36)

Thus

71'26(_ t)zl
S
t

s (o — a0 1| s 2L G-+ G+ e

ueBg (M) >N

Using the Sonin formula’ to sum the remainder series in equation (37)
yields

sup || w(t) — a(t) ||

ueBg(M
M AR 1, )\
§ﬂ_26{(N+§—E) +(N+§+E) } (38)

To obtain a uniform bound for ¢ e [—T/2, T/2], we observe that the
right side of equation (38) is maximized for ¢ = T/2. Using this and
N+ %= T/2h + L yields
R MK
sup  sup || u(®) = a() || S Zxpp (39)

te[—=T/2,T/2] ueBo (M)}

where
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it ?
K = T 1

Th + 1
Thus equation (39) represents a uniform bound on the truncation error
associated with the finite sum approximation (33) to an arbitrary
u e B,(M) over the time interval —T/2 <t < T/2. It is clear that this
bound can be made arbitrarily small by appropriate choice of L, how-
ever the quantity T 4+ Lh represents the delay associated with the

decoder and hence some compromise will generally be called for.
To evaluate the error due to quantizing the sample values, it is con-

venient to define the quantity A(8) by

AB = sp X 60, (40)

@L< o jE=—wm

IIA

K =2

A(8) plays a crucial role in relating the effects of quantization error
at sample times to the error between samples. In fact, one of the sig-
nificant characteristics of the representation (30), which is not shared
by the Cardinal series representation (for functions in W, C B,) is
the ability to establish a useful bound on A4(8). To do this, we first
apply the Cauchy-Schwarz inequality and obtain

o ]
sin —— 3 (t — jh)

AGr s s X |—
T (t — jh)

1— 4
.. a . Ik
sup Z sin - & — k)| (41)
Tsise e 11— (t — jh)

The Parseval theorem for functions in B, which are also in
£,(— @, =) provides the following explicit evaluations

[ . a 1
® sml_ﬁ(t—jh)
,:Z_:m - : =1, (42)
= 5 (= b )
2
R U O]
2 - =3 (43)
e (t — jh)
L ]- — 8 J
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Hence

1
A(d) £ —=- 44
(0) = NE (44)
Consider a quantizer with 2” output levels. If we denote by g(¢)
the signal

N

g(9) = 2. AGh)6:(), (45)

j=—

where 4(jh) represents the quantized value of u(jh), then

ult) — o) = 2 @Gk — a6 + 3 u@@eD.  (46)

] | >N

j=—

Since the maximum quantization error at sample times is o,(v), using
equations (44) and (39) we obtain
MK
sup  sup ||u(t) — g(0) || ;\% + 32w

te[—T/2,7/2] utBqo (M)
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