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In this paper, we present sequential codes which have interesting
properties in three respects. First, these codes may be used to achieve
low redundancy (e.g., bandwidth compression through coding) by
employing a multiplicity of variable-length codes to encode transitions
between successive source symbols, Second, the coding complerity is
surprigingly low. Third, many of these codes have erceedingly good
intrinsic recoverability properties following errors, These codes comi-
pare favorably with a difference code environment in which the dif-
ferences between successive souwrce symbols are encoded. The scope
of the sequential codes presented here includes, but is much wider than,
difference code schemes. Where comparable, the sequential codes have
slightly greater complerity and may have lower redundancy. They
normally have vasily superior error recovery. These codes are ap-
plicable in situations such az video transmission in which the message
source is highly correlated and where errors can be tolerated for a short
pertad of time.

I INTRODUCTION

In several previous papers, the author has pursued two apparently
separate paths of development. The first path involves classes of
slightly suboptimal variable-length prefix codes'* whose self-synchro-
niging abilities are vastly superior to the optimal (Huffman) codes
which minimize redundancy, The second path involves self-synchroniz-
ing sequential codes using information-lossless sequential machines as
encoders and decoders** In this paper, these two paths of development
are joined. The result produces highly efficient sequential eodes (with
low redundaney) which have good self-synchronizing abilities and
surprisingly low decoding eomplexity. These codes are applicable in
situations in which the message source is highly correlated.
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1.1 Difference Codes

Given an environment in which successive source signals are likely
to be similar (or at least strongly correlated), considerable compres-
gion ean be obtained by encoding the level difference between succes-
sive quantized signal levels (temporally or spatially). Such iz the
gituation in a video picture environment, for example, with respect
to adjaecent points horizontally or vertieally, or even to the same point
in suceessive frames. By encoding differences, however, any error in
gquantizing, encoding, transmitting, decoding or reconstructing the
image tends to persizt, That iz, once an error has oceurred in a signal
level, subsequent levels will eontinue to be in error by the same offset,
unless terminated by boundary effects or by compensating errors. In
an encoding of level differences between successive points in a line,
for example, errors tend to propagate until the end of the line; in an
encoding of level differences between the same point in successive
frames, on the other hand, errors may continue forever. In order to
prevent such error effects from propagating indefinitely, it may be
necessary to terminate the propagation foreibly, for example by
transmitting periodically the =et of signal levels for the entire frame
(“replenishment'’) rather than their frame-to-frame differences. Thus
the use of difference coding for compression may be compromised by
the need to resynchronize, This is true in general of frame-to-frame
difference codes. An example of the use of such codes in a differential
pulse-code modulation environment is given in Ref. 5.

II. BELF-BYNCHRONIZATION

The main purpose of this paper is to present codes which have
compression capabilities at least as good as difference codes, along
with roughly comparable decoding complexity, as well as having
rather remarkable intrinsic self-synchronization properties. (These
codes are in fact much more general than difference codes in terms
of compression eapabilities.) These codes recover quickly from the
effects of errors in that arbitrary errors give incorrect results for a
period of time, after which the entire gystem resumes correct operation
without any explicit effort. (Note that self-synehronization is a prop-
erty of the coding scheme, and should not be confused with video
picture frame synchronization.) It is important to note that in such a
scheme the errors are not corrected (in the sense of error-correcting
codes) ; instead errors are tolerafed, with the expectation that their
effect will cease quickly. Video coding is an example where such an
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approach is reazonable sinee loss of information for a short period of
time ean often be tolerated.

2.1 Self-Synchronization in Variable-Length Codes

The use of variable-length codes for reducing redundaney is well
understood. For example, I). A, Huffman® shows how to obtain a code
which minimiges the transmitted information for a given independent
distribution of source symbols. However, there has been relatively
little quantitative concern for the effects of errors on these codes. In
earlier papers’® the author has shown that a slight sacrifice in efficiency
(i.e., a slight increase in transmitted information) ean be rewarded
with tremendous gains in self-synchronizing capability. Some of this
work is required here and is reviewed briefly, although from a differ-
ent viewpoint.

A rcode 15 a collection of sequences of digits (code digits), each
sequence being called a code word, Code tert is obtained by concat-
enating code words. An encoding i1 a mapping of source symbols S{1)
onto code words Wiil. A code is a prefix code if and only if no code
word occurs as the beginning (prefix) of any other code word. Thus
in prefix eode text, a code word ean be decoded as soon as it is received,
even though there are no explicit interword markers. A code is
exhaustive if and only if every sequenee of code digits is the prefix of
some eode text (i.e., of some sequence of code words). (A uniquely
decodable code must be a prefix code if it is exhaustive.”) A sequence
of eode digits is a synchronizing sequence for a given code if the
oecurrence of the end of that sequenee in (correct) code text must
correspond to the end of a code word (although not necessarily to a
particular code word), irrezpective of what preceded that sequence.
M. P. Behiitzenberger® and E. N. Gilbert and E. F. Moore™ have shown
that most exhaustive prefix codes tend to resynchronize themselves
following loss of synechronization (e.g., after arbitrary errors, or at
start-up). If an exhaustive code has at least one synchronizing se-
quence, then the code tends to resynchronize itself following errors
with a finite average delay (assuming a suitable randomness). All
codes considered here are exhaustive unless explicitly stated otherwise.
Note that resynchronization is an intrinsie property of the code, and
no externally implied synchronization is required. Synchronization
following ambiguity occurs as a result of any synehronizing sequence
oceurring naturally in code text.

As an example, consider the code of Fig. 1, consisting of the five
eode words 00, 01, 10, 110, 111. The tree of Fig. 1 may be interpreted
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Fig. 1—A simple prefix code,

as the state diagram for a sequential machine® which deteets the end of
a code word whenever the initial state 1 recurs. In this figure (and
throughout this paper) a “0" code digit corresponds to left-downward
motion, a “1" to right-downward motion. These digits are the inputs
to the sequential machine. In Fig. 1, state 4 is equivalent to state 2
(in the usual sequential machine sense®), since the respective next
states are equivalent, for each input digit. Thus Fig. 1 represents a
3-state machine whose recurrence of state 1 indicates the end of a code
word in text.

The synchronizing diagram®'® for the code of Fig. 1 is shown in
Fig. 2. It is obtained from Fig. 1 by examining the set of next states
resulting from each input digit, beginning with the set of all states, 1.e.,
total ambiguity. For example, a “0" digit ean lead only to state 1 or
2, and & “1” can lead only to state 1, 2 (formerly 4}, or 3. Given the
set of states 1, 2, a 1" can lead only to state 1 or 3. In this way it is
seen that the sequence 0110 always culminates in the occurrence of
state 1, irrespective of the actual state at the beginning. (This is indi-
cated in Fig. 2 by the dark path.) Thus 0110 is a synchronizing se-
quence for the code. (Note that its oceurrence in code text following
ambiguity does not imply the conelusion of a particular code word;
either 10 or 110 could be involved.) There is an infinite set of syn-
chronizing sequences deseribed by Fig. 2, including as other examples
0111110 and 10110,

If a sequential machine (or a code) has at least one synchronizing
sequence, then it tends to resynchronize itself with probability one
assuming all input sequences are possible. In order to obtain a measure
of how well text for a given code is self-synchronizing following arbi-
trary errors, the code digits “0" and “1” are assumed to occur inde-
pendently and equiprobably. This is in fact a meaningful and useful
assumption under various real-life circumstances, even when it is only
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Fig. 2—Synchronizing diagram for the code of Fig. 1, showing unresolved
ambiguity.

approximately valid. (This assumption holds exactly whenever each
code word oceurs independently with its characteristic probability 274,
where d is the length of the eode word in digits.) Assuming this ran-
domness of 0 and 1 in code text, the synchronizing diagram of Fig. 2 is
redrawn in Fig. 3 to show that on the average I = 16 digits of code text
are required for eode text to resynchronize itself following arbitrary
errors. (This computation may be done in several ways' which are not
relevant to the present diseussion. Note that the randomness assump-
tion implies that at each node in the synchronizing diagram the resi-
dual lag is one more than the average between the residual lags of the
two nodes below.) In general, the synchronization lag (or, simply, the
lag) I of & (prefix) code is defined as the average number of code
digits until synchronization ean be guaranteed to the end of some (not
necessarily known) code word following total ambiguity, assuming

Fig. 3—Copy of Fig. 2, showing lag at each node.
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randomness of “0"” and “1" as above. Thus the lag is the average length
of the synchronizing sequences. (It is also convenient to speak of the
actual lag, the same average but based on the probabilities of the actual
source distribution rather than on random text. If the randomness
assumption i not roughly applicable in a given case, then it 15 neces-
sary to investigate the actual lag. If the likelihood of the wvarious
synchronizing sequences actually oceurring in text is smaller than under
the randomness assumption [e.g., because of constraints on the source
symbaols], the actual lag is larger than I. However, in such eases it is
often possible to change the encoding slightly to assure that the actual
lag 18 less than I, without adversely affecting compression. [t may
also be possible to use a different code with the same set of code-word
lengths whose lag is less. For example, the eode 00, 01, 11, 100, 101
has I = 5, a marked improvement over the code of Fig. 1, with I = 16;
for purposes of compression, these two codes are equivalent. In general,
the randomness assumption and the resulting lag are quite useful.)

[Synchronizing sequences also exist for uniquely decodable non-pre-
fix codes. For example, consider the code 00, 01, 11, 001, 011.2 The se-
quence 10 in code text guarantees that a code-word end occurred
between the “1" and the “0"; the lag is 4. Since such codes may require
decoding delays (in some cases infinite} beyond the end of their code
words, they are of little practical significance. (This paragraph and
others delimited by square brackets may be omitted on casual read-
ing.} ]

Codes vary widely in their ability to resynchronize code text. For
each number n of code words, there is a code with I = 2 (the “best"),
and a related code with I = 2/ — 2 (the “bad” code). These codes
are shown in Fig. 4 for each n = 9, along with a few other examples.
{Note that the “best” code and the "bad" code for each n have the
same set of code-word lengths, and are thus equivalent with respect to
compression considerations.) The only finite exhaustive codes with I =
20 known to Schiitzenberger® (and to the author) are the block codes
(e.g., the fixed=length codes {a), (b} in Fig. 4) and three classes of
non-block codes: the codes with greatest common divisor of their code-
word lengths greater than one (e.g., code (¢) in Fig. 4}, the uniformly
composed codes C' obtained by coneatenating f times the code words
of some code in all combinations (e.g., code (d) in Fig. 4, composed
from 0, 10, 11 with f = 2), and Schiitzenberger's “anagrammatic"
eodes® which when scanned backwards are also prefix codes (e.g., code
(e} in Fig. 4). Note that block eodes have the properties of all of these
three classes. (By sacrificing exhaustivity [and optimality], i.e., by
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Fig. 4—Prefix codes with external lags for n = 9.

957

eliminating at least one code word from a code, the lag is never in-
creased ; in some cases [ is reduced substantially. [A slight extension of
the definition of the lag is necessary for non-exhaustive prefix codes to
handle sequeneces which cannot arise.| Thus there are synchronization

advantages of nonexhaustive codes.)

The only finite exhaustive codes; known to the author which have
2im-1) — 2 = [ < oo for any n are the two codes (f) and (g) in Fig. 4.
Excluding these two codes and the “bad” codes, all remaining finite
lag codes seem to have I < 2" — 2, for all n; the worst of the re-
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maining codes seem to be far from the “bad” eode bound (I = 5.5 for
n =5 I = 12 for n = 6). Nevertheless, as n increases, the lag of an
arbitrary code may be quite bad. Since prefix codes offer compressions
which become more spectacular as n increases, this would be distressing
were it not for the small-lag infinite systematic codes of Refs. 1 and 2.
Since these are helpful in the construction of sequential prefix codes,
they are summarized next.

2.2 Infinite Codes with Good Synchronizalion Properiies

The "systematic” prefix codes of Rel. 1 are infinite codes generated
by sequential machines whose synchronizing properties guarantee that
the codes will themselves have good synchronizing properties. (These
codes have properties suggested by B. Mandelbrot.*) When truncated,
these codes give highly efficient (but not optimal beeause they are no
longer exhaustive) encodings with self-synchronizability far exceeding
that of the optimal (Huffman®) encodings. A typical reduction for a
code for English words with n = 5537 iz from I 2 1,000,000 for an
optimal code down to I = 10.7 for a systematic code which is within
3 percent of the optimal code in terms of compression. (The resulting
compression i about a factor of three better than a block coding of
the English letters, due to the redundancy of the language.) High-
efficiency compression using these codes is discussed in Ref. 1.

Several examples are given in Fig. 5. The convention of this and
sueceeding figures is that a terminal node without an arrow indicates
the end of a code word. A terminal node with an arrow indicates the
oeccurrence of a state shown elsewhere in the diagram. If there is no
label on the arrow, the corresponding state is that occurring at the top
(the root) of the diagram. The first code (a) 18 a “definite” code,* with
any occurrence of the sequence “10"” in code text indicating the end

' 010 : 010 : 100
110 oo 0 ol
0010 1110 0100
TEL 2 0oo10 2 0011
2 RRT- a1110 1901
[y - 11010 B
. : 3 .
{n
ia) bl icl
Fig. 5—Examples of systematic ;rnﬁn codes with small lags I. (a) Definite
code, f =4, L =4; Nid) =012345867....(b) Treebared code, f = 8,
L=6;Nd)=011236813....(c) General systematic, ] = 6, I = 4;
Nd)y =01234887....
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of a code word. A definite code is one in which a code-word end occurs
in eode text if and only if one of a finite set of finite sequences occurs;
in the example, the sequence “10°” forms the set. The other codes are
not definite, but nevertheless have small lags. The number N{d) of
eode words of each length d is given for each code. The function N (d)
is usually ealled the structure function of the code. The average code-
word length (assuming randomness of “0” and “1" in code text) is L,
the sum of d N(d) 2 over all d. (If each code word occurs inde-
pendently with its charaeteristic probability, then L is equal to the
entropy H of the source distribution.) Note that I = L for all prefix
codes, with equality if and only if the code is definite. That is, on the
average, one code word is sufficient to resynchronize a definite code,
longer being required for a non-definite code.

It appears that asymptotically almost all [completely specified,
strongly connected, deterministic] sequential machines have synchro-
nizing sequences; for those that do, the resulting systematic prefix
codes are self-synchronizing (ie., I < ). The spectrum of values of I,
however, is wide. As is the case with exhaustive finite prefix codes, the
infinite codes with I = = may be of several ‘classes. There exist codes
with a non-unit greatest common divisor of their code-word lengths
(e.g., Fig. 6a), with uniform composition (e.g., Fig. 6b), and with the
anagrammatic property (e.g., Fig. 6¢). Unlike the case for finite ex-
haustive ecodes, infinite exhaustive codes can easily be constructed
which belong to none of these three classes (e.g., Fig. 6d). (Uniformly
composed codes are studied in Ref. 13.)

[The worst value of I for a code derived from a synchronizable
r-state machine appears to be about I = (r — §) (2" — 2) + 1; that is,
just about a factor of r worse than the “bad" code of Fig. 4 with r
states, r = n — 1. A. E. Laemmel and B. Rudner'* exhibit for each r a
machine whose shortest synchronizing sequence iz (r — 1)* For all r-
state machines with synchronizing sequences, the best bound known
to the author for the longest synehronizing sequence is that given by
M. A. Fischler and M. Tannenbaum'®: (r — 1)?, exact for r = 4;
(r* = r)/6 for small r = 5; 11r*/48 for large r. On the other hand,
there are many machines with extremely short synchronizing se-
quences and small values of I.]

I, SYNCHRONIZATION IN SEQUENTIAL PREFIX CODES

For purposes of this paper, sequential coding implies the use of a
sequential machine for the encoder, and a corresponding sequential
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Fig. 8—Examples of systematic codes with infinite !aﬁ (I = =). (a) Greatest
commeon divisor 2; N(d) = 010309027081 ....(b) Uniform composition ;
=3 N(d=01284567....(c) Anagrammatic; N(d) =02222212
«::. {d) None of the three classes; N{d) =01123581321....

machine (the inverse or “quasi-inverse”) for the decoder® In an
earlier paper,? the author explored the use of particular input sequences
to the encoder (synchronizing input sequences) each of which synehro-
nizes the encoder to a particular known state. Also involved are partic-
ular output sequences from the encoder (synchronizing output
sequencez) whose presence in eode text (in the absence of errors) guar-
antees the occurrence of a particular state of the encoder at a particular
point in the code text. Synchronizing output sequences correspond to
the synchronizing sequences for prefix codes.

(Given an encoder with both synechronizing input sequences and
synchronizing cutput sequences, the entire system is self-synchronizing
on the average. That iz, following some arbitrary errors, two things
happen. First the encoder resynchronizes itself and begins to encode
correct text again. Then the decoder tends to resynchronize itself with
the encoder (the synchronizing output sequences for the encoder act
as synchronizing input sequences for the decoder), and correct decod-
ing resumes, This occurs spontaneously as an intrinsic property of the
coding system, with no externally imposed resynchronization required.

A (first-order) sequential encoding is a mapping of symbols S(1)
onto code words w (i | j) where the code word selected depends on the
previously encoded symbol S(j) as well as on 8(i). If the set of code
words {w(i | )} for each j is a prefix eode, then the set of code words
fw(i| j)} for all €, j is & sequential prefiz code. For such codes a syn-
ehronizing sequence is a sequence of code digitz the end of which must
correspond to the end of a code word (possibly unknown) resulting
from a known symbol S(i), irrespective of what preceded that se-
quence, Thereafter subsequent decoding is correct, irrespective of the
initial ambiguity. The remainder of this paper is concerned with
sequential prefix codes, and investigates their compression, decoding
and self-synchronizing properties. (The development is also applicable
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to higher-order sequential encodings, with the code word depending on
the present message 8(7) and some finite number of previous messages.)

As an example, consider the sequential encoding given by Table L
A, B, C and D represent four source symbols 8(i),1 =0, 1, 2, 3, where
i is the level of the symbol. This is an example of an encoding in which
the code word wit|j) to be transmitted 18 a function of the eyelic
difference between the level of the symbol 8(i) to be encoded (eolumn
headings) and the level of the symbol S(j) just previously encoded
(row headings): w(i|j) = Wik), where k = i — j (mod 4). This
encoding is thus a difference encoding. Note that, irrespective of the
choice of the code {Wik)}, there iz always ambiguity in decoding as
soon as an error is made. If for example S(2) is decoded instead of
S(1) as a result of a transmission error, subsequent decoding will
consistently produce S(i + 1) instead of S(i) where 1 + 1 is modulo
4, as long as further errors do not compensate for the original errors.
{Throughout the paper, all additive operations involving ¢ and j are
modulo n.)

As a second example, consider the sequential prefix code of Table 11.
In this example four different prefix encodings wii|j) are used for
i =01, 2 3, depending upon the symbol S{j) previously encoded.
For example, if “A™ was just encoded, then A, B, C, D are encoded
ag 0, 11, 100, 101, respectively. Thus any symbol S{t) as input to the
encoder acts as a synchronizing input sequence. (The encoder is a 1-
definite machine,* with its output being a function of the present input
symbol and the previous input symbaol.)

A state diagram for the decoder is given in Fig. 7. The states A, B,
C, D represent the successful decoding of these four symbols, while the
states a, b, e, d, a’, b’, ¢’, d’ are intermediate states. The state diagram
is shown in four pieces, which fit together as the upper-case letters
indicate. The synchronization diagram for this state diagram is shown
in Fig. 8. Its construction follows the usual technique®'® and 13 similar
to the synchronization diagram for prefix codes (ef. Fig. 3). The top

TapLe I—Four-LEVEL IMFFERENCE UODE

i=10 1 2 a3
8(3) S(f) = A B C ]

Win) Wil1) Wi2) Wi3)
Wwia) W) Wil) Wi2)
Wi(2) Wid) Wio Wil)
Wwi(l) wiz) W{E; Wio)
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TasLe II—A Goon SEQUENTIAL PrEFiX CobE

im0 1 9 3

8(4) 8(i) = A B C D
j=0A 0 11 100 101
j=18 010 1 i) 011
=20 100 11 0 101
y=3D 010 011 00 1

node corresponds to the set of all states. Each terminal node corre-
gponds to the oeeurrence of the end of a code word resulting from a
particular symbol S(i). Given a “0" input, the next state must be one
of A, C, b, d, &', ¢, for example, beginning with the set of all states.
The synchronizing diagram of Fig. 8 results after noting several
equivalences (e.g., Abda’e’ with AChda’e’).

From the synchronizing diagram of Fig. 8 it is seen that the se-
quence 0011 ean arise in code text only if the corresponding source
sequence ends in a “B". Thus 0011 synchronizes the decoder to the end
of a code word corresponding to the symbol “B" irrespective of what
preceded it; similarly 00101 synchronizes to “D", 1100 to “C"”, and
11010 to “A". Assuming 0 and 1 are random in the above sense, it is
easily shown that synechronization results from total ambiguity after
an average of J = 7.67 digits. The sequential synchronization lag J
iz the average number of code digits until the end of a code word is
achieved corresponding to a known symbol; that is, J is the average
length of the synchronizing zequences. In this example, the occurrences
in code text of the encoded versions of CB, CD, BC and BA imply
synchronizing sequences for the decoder. (For example, note that CB
is encoded as 0011 following a “B* or "I}, as 10011 following an "A",

Ly B el d’

Fig. 7—8tate diagram for the decoder for the code of Table ITI.



RELF-SYNCHRONIZING CODING 063

ARcDabedab’e'd'

(8] A

Fig. B—8ynchronizing diagram for the decoder of Fig. 7, J = 787, / = 3,
JY = 487,

and az 011 following a “C"; in the last case, 011 must have been
preceded by a “0".)

In the example, any sequence ending in 00 or 11 (ef. Fig. 8) guar-
antees the end of a code word, although not the code word for a known
symbel. For purposes of this paper, synehronization to the end of some
iunspecified) code word is called firsé-stage synchronization. Synchro-
nization to the end of a code word corresponding to a particular symbol
iz called second-stage synchronization. The former is of coneern in
prefix codes, and both are of concern in sequential codes, In rare cases
(particularly asymmetric ones), the second stage is achieved simul-
taneously with the first stage. In many useful cases, however, they
may be treated independently. (In all but one example given in this
paper, second-stage synehronization implies a particular known code
word as well as a particular known symbal. }

[A word of caution iz again needed regarding the randomness as-
sumption. Again, the actual lag may be defined in terms of the actual
probabilities. If synchronizing sequences oceur naturally in code text,
then the lag J iz a fair estimate of the actual lag. If the sequences ocecur
only as a result of unlikely sequencez of symbols, then the lag J is
smaller than the actual lag. However, in such cases the encoding ean
often be altered so that J is realistie, In general, it is desirable to have
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codes with widely distributed likely synchronizing sequences, as in
Fig. 8, rather than being totally dependent on a few obseure sequences. ]

I¥. CODING COMPLEXTTY

It iz clear that the choice of the code of Table II {with J = 7.67)
is (infinitely) superior to the code of Table I (with J = e} in terms of
resynchronizability. If Wik) = 0, 11, 100, 101 in Table 1 for k =
0, 1, 2, 3, then the codes of Tables I and IT are identical with respect
to eompression capabilities. The significant coneern remaining is the
computational complexity of the encoder and the decoder for the code
of Table II. Intuitively, one might expect that an n-state sequential
prefix code would be almost n times as complex az a difference code in
terms of its encoding and decoding eircuitry. Somewhat surprisingly,
codes are developed below for which the complexity is essentially the
same as the difference codes, while attaining good synchronizability
and compression,

Examination of the code w(i|j) of Table II shows that the prefix
code w(i| 1) for state B (j = 1) is the binary complement of the code
wii|0) for state A (j = 0}, cyclieally shifted by one word: w(i|1) =
w' (1 — 1]0). Further, the code w(i|2) for state C (j = 2) is related
to wii| 0), having the same code words but with a different mapping.
In particular, w{i |2} = w(2 — ¢|0). Finally, the code for state D
(j = 3) is the shift of the complement of w(i| 2}, or the complement
of the shift, and thus w(i|3) = w'(3 — 1|0). Thus all four of the
prefix codes are closely related to any one of them.

The code wii|j) as a function of w(i|0) is summarized in Table
II1 for each j. The structure of the code is somewhat more transparent
when related to the difference code of Table I, with W(k) = 0,11, 100,
101 fork =0,1,2,3and k = — j (mod 4). In this case, wii|j) =
Wik), Wi(k), W(—k), W'{—k) for j = 0, 1, 2, 3, respectively. The
encoder and decoder for Table IT are thus easily specified in terms of
the difference code. If (p, g) is the binary reprezentation of j as shown
in Table III, then W(k) is replaced by Wi—k) if p = 1, and the result
is eomplemented if g = 1. The encoder for the difference code is shown
in Fig. 9, while the encoder for the sequential prefix code of Table II
is given in Fig. 10. (" A" represents a one-digit delay.) It is seen that
an AND gate (-) and two EXCLUSIVE OR gatez (@) represent the
marginal cost of encoding the latter code, compared to the difference
eode. The same is true of the decoder, which employs precisely the
same set of gates.
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Tapre IHI—Sumvary oF ExcopeEr axp DecopeEr For THE CoDE oF

TasLe I1
i p | g Code w{ilf)
0 0|0 w(i|0) = w(i|0) = Wik)
1 0o |1 w(ill) = w'{i—110) = Wk)
2 1 |0 wiil2) = w2—i0) = W(—k)
a 1 1 wild) = wi{d—d0) = Wi{-k)

¥. CONSTRUCTION OF GOOD SEQUENTIAL PREFIX CODER (WITH SMALL LM:IE}

The synchronizing properties of sequential prefix codes fall into two
classes, those which depend on the individual choiee of the encoding
w(i|j) for each i, j, and those (in varying degrees) which are inde-
pendent of the aetual choice of wii| j). [The encoding of Table I,
for example, has J = = irrespective of the w(i | j).] Such properties
are said to be choice-dependent and choice-independent for these two
classes, An example of how choice-independent properties may be
treated separately is given by the following theorem.

51 Very Bad Codes (J = =)

Theorem 1: A sequential prefiz code has J = oo in each of the
Jellowing cases: {a) if there are precizely n distinct code words among
the n x n {wfi | j)}, ench of which oceurs eractly once for each i
{a “Latin square” code); (b} if for some value of 5 (0 < & < n) the
relation w(i 4+ &|j + 8) = w(i|j} holds for all i and j.

Proof: Case (a). Consider an ambiguity between any two symbols
which could have led to a given code word. Then any subsequent code
word could have resulted from either of two distinet symbols. Thus
ambiguity is never reduced, and J = =0 irrespective of the choice of the
n independent w (i | j). [Note that if the prefix code for any j (the same
code words, but a different encoding for each j) is self-synchronizing
(I < oo}, then it iz possible to reduce ambiguity to the end of some
(unknown) eode word, but no further. Reeall that in the definitions, a
distinction is made between the code (the set of code words) and

CODE TEXT

-] k| wik)

Fig. 9—Encoder for the difference code of Table 1.
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Fig. 10—Encoder for the sequentinl prefix code of Table IT.

the encoding (the mapping between code words and source messages). |

Case (h). Without loss of generality, suppose that s is the smallest
value of s for which w(i + & | j + 8) = w(i| j) foralltand j. (If 8is 1,
the code is a difference code.) Then w(i + gs | j + g8) = w(t|j) for all
1, j, for every integer g. Let u be the smallest value of g > 0 for which
gs = 0 (mod n). Then since & is as small as possible, it follows that su
= n, i.e., 8 divides n: Thus there are & prefix codes wii| j), e.g., for j =

0,1, ---, 8 — 1, which completely determine the prefix codes for j = s,
g+ 1, »=+, n — 1, That is, the same prefix code (shifted) occurs for
eachj=g¢gs + h (mod n) forg =0,1, -+, (n — 5) /s, for any fixed

value of h, 0 = h = & — 1. Thus there must always remain an ambi-
guity among all the symbols with i = gs + & (mod n) for g = 0,
1, -++, (n — 8) /&, for any particular value of A, 0 = h = & — 1. There-
fore J is infinite again, irrespective of the choice of the sn independent
w(i|j). QED.

[Case (b) of Theorem 1 ean easily be extended to inelude eases for
which w(s + s|j + ¢) = w(i|j) for all €, j: if # and ¢ are each
relatively prime to n, or more generally if # and ¢ have the same order
in the field of integers {i.e., if u = v, where u and v are the smallest
non-gero values for which uws = 0 (mod n) and v¢ = 0 (mod n)}. As
these cases are less natural to the present environment, they are men-
tioned parenthetically.]

The difference codes satisfy both eases (a) and (b). Another example
of case (b) is given in Table IV. If e, f, g, h are replaced by b, ¢, d, a,
respectively; this example also satisfies case (a), and 18 a “sum" code
rather than a difference code.

5.2 Properties of Good Codes

It is highly desirable that sequential codes {w(i| j)} have consider-
ahle structure, in order to simplify encoding and decoding, to simplify
the analysiz of synehronizing properties, and to facilitate the construe-
tion of good large codes. Several intuitively evolved properties have
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been examined which are found to contribute considerably to this
desired structure. Firstly, to simplify encoding and decoding, the num-
ber m of distinet prefix codes (not counting complements) used to form
a sequential code should be small (one or at most two). If a prefix
code and its complement are hoth used, the sequential code is comple-
mented. In the complemented code of Tables II and III, m is one
ginee the prefix code for each j is Wik) or its complement. Since the
cireuitry required iz up to m times as complex as when m = 1, large
values of m are to be diligently avoided. The m distinet prefix codes
(ignoring complements) are called kernels. The property of keeping
a small is called the symmetrization property; it is choice-independent.
Secondly, if all code words w(i | j} for a given i end in the same digit,
irrespective of j, then first-stage synchronization is greatly enhanced.
This property of making code-word endings uniform by column {as in
Table I1) is called the columnization property. (It is more or less
choice-independent.) A third property involves the number of different
symbaols to which a given code word ean eorrespond. (In the example
of Table 11, half of the code words oceur only for one value of i each.)
Second-stage synchronization is greatly aided by having almost all code
words oceur only for a relatively small number of different symbols,
avoiding having each oceurrence correspond to a different symbol 8(1).
This iz called the assoectation property, and is also choiee-independent.

It should be noted that none of the above properties is necessary for
obtaining finite lag codes; however, these properties are found to be
helpful in achieving low lags. Although the example of Table V is a
(complemented) one-kernel code, it violates both the columnization
property and the association property. (Note that each code word
oceurs only twice, but always for different symbols.) Its lag J, though
finite, is quite horrendous (around 200), with the shortest synehroniz-
ing sequences being of length ten (e.g., 0101000100). It thus compares
badly with the code of Table IT with respeet to its lag. (It even com-
pares badly with the worst columnized one-kernel finite-lag code using
the given prefix code, for which J = 23.1.}

TaBLE IV—ExamrLe oF & Cope witH J = = BY THEOREM [(b)
n=43=12
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TasrLe V—A Bap Fivire Lac Cobpe

0 11 100 101
1 ik 011 010
101 100 11 0
140 01 00 1

An example of a two-kernel code which satisfies the columnization
property and the association property is shown in Table VI. The code
words which occur for only one value of 1 are indicated by asterisks.
This code has J = 89, with synchronizing sequences ineluding 0011
(for B) and 11100 (for C).

In a columnized code, the set of symbols S(i) for which all eode
words end in "0" {(“1"} is called the 0-set (I-zet). In the example of
Tahle VI, the sequence 00 (among others) guarantees the end of a code
word corresponding to the O-set A, C or E (¢ even), while a 111 guaran-
tees the end of a code word corresponding to the 1-set B or D (i odd).
These are two of the first-stage synchronizing sequences. Having re-
duced the ambiguity to a 0-set symbol or to a 1-set symbol, the associ-
ation property within these sets is of great aid to second-stage synchro-
nization. For example, the code words which optimally satisfy the
association property (e.g., those with asterisks in Table VI) themselves
act as second-stage synchronizing sequences in thiz example. Associa-
tion i= especially helpful to second-stage synehronization if the prefix
code is the same for each symbol S(j) in the 0-set, and similarly for
the 1-set. This is the bifurcation property of columnized codes, that
the O-set and the l-set use one prefix code each (although the two
codes may be identical). Note that this property is found in the code
of Table VI, in which two distinet prefix codes are used. If present, the
bifyreation property implies that the symmetrization property is met
with m = 1 or 2. (By definition, bifurcated codes must be columnized.)

An example of a one-kernel code satisfying all four of the above
properties is given in Table VII. Apart from 00 and 01, no code word

TasLe VI—A Two-KERNEL EXaMPLE, J = 88, ' = 4 J" = 51

() Si)=A B C D B

A 1] 11* 100 1011+ 1010
B oLo* 1 o0* 0111 0110
Q 1010 11* ] 1= LM}
D
E

o10* 0111 oo+ 1 0110+
1010 11* 10k 1011* 0
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TasLE VII—A Oxe-KerserL Examere, J = 202, [ = B, J" = 14.7

8(7) S(i)=A B & D E F G H
A B 1] m 100 101 1100 110 1110 11
C,D T 10k 1101 L] i 100 101 1110 1111
E F N L(bk 1101 104 101 oo i1 1110 1111
G, H LRTL 110K 1110 1111 100 101 M} i1

oceurs for more than two symbols S(f) (ie, in more than two
columns). The lag is seen to be J = 20.2.

53 Balanced Codes

If the columnization property is to be achieved in a eomplemented
sequential eode, then any kernel prefix code and its complement must
each have the same number of code words ending in zero (or one).
Consequently, the prefix eode (and its complement) must have half
of its code words ending in each digit. Such a prefix code is called a
balanced eode, and of course must have an even number of code words,
The codes of Tables IT and VII are examples of balanced prefix codes
used in complemented and uneomplemented one-kernel codes, respee-
tively.

Thearem 2: For every set of code-word lengths with n even for
which there exists an exhaustive prefir code, there exists at least one
balanced prefir code.

Proof: A simple proof involves a construetion procedure during
which the number of code words ending in “0" differs by at most one
from the number of code words ending in “1". Thus since n 15 even,
the resulting code is balaneed. Such a procedure is easy to construet,
but iz omitted here sinee it does not eontribute to a basic understand-
ing of the paper. [It ean in fact be shown that the ratio of balanced
exhaustive codes to all exhaustive codes i asymptotic for large n to
1/ (nw)t.]

A few balanced exhaustive codes are shown in Fig. 11, including one
for each structure funetion N{d) with n = 4 and 6. In each of these
cases, the code shown has the smallest possible lag I among all bal-
aneed codes with the given N (d).

If the sequential eode is not complemented, the kernels need not be
balanced. However, the use of balanced prefix codes as kernels is
highly beneficial. It greatly enhances flexibility in the assignment of
the wi(t | j) according to the necds of synehronization (e.g., via colum-
nization and association), coding complexity and compression.
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Fig. 11—Some balanced codes for n = 6.

5.4 Analysis of First-Stage Synchronization

Another property emerges from considering the relation between
the lag J of a bifurcated sequential code and the lage of the kernel
codes. For an uncomplemented one-kernel code, first-stage synchroni-
gation is guaranteed by the synchronizing sequences of the kernel, ie.,
with the lag I of the kernel. Thus this lag should clearly be small. On
the other hand, for a bifurcated complemented one-kernel code, the
lage I is not relevant to first-stage synchronization. Instead the mu-
tual lag I’ of a prefix code and its complement iz needed. The mutual
lag of a 0-zet code and a 1-set code is obtained by considering the state
diagrams of both codes. Imposing the restriction that a code word
ending in “0" (“1") is followed by a 0-set (1-set) code word, these
two state diagrams become one just as the four diagrams in Fig. 7
become one. The mutual lag I' is then the lag of this combined state
diagram, obtained from the mutual synchromizing diagram, ie., the
synchronizing diagram for the combined state diagram. Terminal nodes
consist of first-stage synchronization, i.e., solely of O-set or 1-set eode-
word ends. (Note that the mutual lag is partially choice-independent,
depending on the cheice of the 0-set and 1-set prefix codes, but not on
the actual w(i|j).) Mutual lags are relevant primarily for balanced
prefix codes and their complements, as used in (one-kernel) bifurcated
complemented codes; this ease is assumed unless otherwise specified.
They are also meaningful for two-kernel bifureated codes, for which
the mutual synchronization diagram also guarantees first-state syn-
chronization. (For example, the two prefix codes used in Table VI have
I’ = 4.) Note that the mutual lag of a code with itself is I' = I (since
the 0-set eode and the 1-set code are identical).

Consider as an example the prefix code {0, 11, 100, 101} used in
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Tahle I1. Suppese that it is used for the O-set symbols A and C (Fig.
12a), while its complement is used for the 1-set symbols B and I (Fig.
12b). The state 0 (1) corresponds to a code word ending in “0™ (%17},
and implies that the next code word is taken from the O-set (1-set)
eode. (Note that irrespective of the actual w(i| 7), the oceurrence of a
00 or a 11 suffices to guarantee the end of a code word, as in Fig. 8.)
The mutual synchronization disgram is given in Fig. 12e, and has
F=38.

Values of the mutual lag I' are given in Fig. 11 for each code shown
there and its complement. In each case, the code shown has the smallest
value of I' for any balanced code with the given sct of code-word
lengths N(d}. A numerological curiosity is provided by Fig. 11: for
each Nid), the indicated best value of I is precisely one greater than
the best value I* of I attainable by any code (unbalanced, in fact)
with the given N (d). Since this curiosity is true of all N{d) for ex-
haustive codes with n = 6, including those for odd n, it seems highly
likely for all n, for all ¥{d) for which exhaustive codes exist,

[It should be noted that the value of I' for a given prefix eode and
its complement is obtained with the given code as the 0-set code. If
it iz used instead ms the 1-set code, the resulting value of I” is the
mutual lag of the complemented prefix code, and is designated by I
Values of I' are also shown in Fig. 11. It i seen that I” and I are not
usually the same. |

The kernel lag J* of a bifurcated code is then defined as the synchro-
nization lag of the first stage. For a one-kernel uncomplemented code,
J* = I; for a two-kernel (uncomplemented) code, or a one-kernel com-
plemented code, /' = I'. The kernel lag property then states that the
kernel lag J* of a bifureated code should be small, in order to help mini-
mize the lag J.

{’Ilhellqu‘:"

0,24 13,5

(a) (b} ic

Fig. 12—Example of first-stage synchronization in & eomplemented code with

I =3.
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6.6 Further Properties of Bifurcated Codes

The second-stage lag may be approximated by the structural lag J”
which assumes first-stage synchronization, and results in a known
symbol {at the end of a code word). It iz obtained by averaging the
second-stage lags, K beginning with the 0-set and K’ beginning with
the 1-set; K and K’ are weighted according to the probabilities of
reaching the 0O-set and 1-zet, respectively, in the mutual synchroniza-
tion diagram. (In the example of Table VI, for example, it is seen that
these weights are § and 1.) The structural lag property states that this
lag should be as small as possible. A rough measure of J” may he
made independent of the prefix code by assuming all code words of
equal length, and the 0-set and 1-set equiprobable.

Theorem 3:; For a bifurcaled code,
J 5 JI‘ + J'.l'f-

Proof: The theorem follows from the definitions. Inequality oecurs
when, in the sequential synchronization diagram, first-stage synchro-
nization occurs in at least one ecase as the result of an advantageous
subset of either the O-set or the 1-set. By “advantageous" is meant
a subset which accelerates second-stage synchronization. The value of J'
gives precisely the first-stage synchronization lag in any event. When
there are no such subsets, equality holds, as in Fig. 8. (For example,
the code of Table VI has J' = 4, J" = 5.1 and J = 8.9; the sequence
1100 guarantees not just the O-set, but specifically a “C" or an “E"
at its end. The code of Table VII also has such subsets. These subsets
are obtainable from the first-stage synchronization diagram, and may
be used to caleulate the exact second-stage lag J  based on the subsets
with their appropriate weights, rather than just on the O-set and the
l-set. Then J = J' + J . In all eases J'* = J . Also, if J* is infinite,
then so is J.) :

Theorem 4: A bifurcated code has J = = if and only if either J'
or J'' i infinile.

Proof: The “only if"" follows as a corollary of Theorem 3. The "if"
requires two cases. If J" = @, then J = o since the 0-set and 1-set
are subsets of the set of all states, on which J is based. If J' = =,
first-stage synchronization iz never reached. Since a bifurcated code
must go through this stage in order to reach second-stage synchro-
nization, and since J' is the true value of first-stage lag even when
there is inequality in Theorem 3, it follows that J = . QED. (Note
that in Theorem 4 J* may be replaced by J )
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In many symmetric cases, the (-set and the l-set are equivalent
structurally, and K = K' = J". This occurs in the example of Table IT,
since the code obtained under the transformation 4 < D, B < (' is
the complement of the Table II code (a complementary reflective
symmetry). It also oceurs in Table VII, since the O-set and 1-set sym-
bols are paired with identical encodings. Such symmetric cases are
advantageous for eneoding/decoding and analytic simplicity.

In certain cases it is desirable to use complemented bifurcated eodes.
If the above numerological curiosity is true in general, there is essen-
tially no sacrifice in the best I” of a balanced code compared to the
beat I = I* for the given N (d). That is, first-stage synchronization 1s
just as rapid for these complemented codes, while avoiding the diffi-
eulties arising from the use of an unbalanced code. Further, considering
only balanced codes for a given N(d), the best value of I’ is often
better than the best value of I (ef. Fig. 11). Thus the overall lag is
frequently better. Furthermore, the flexibility of compression available
with the complemented eodes is often greater. For example, consider
again the code of Table 11, this time only in terms of its code-word
lengths. Using an exhaustive prefix code, it is impossible to have length
one on the 1 = j diagonal with an uncomplemented one-kernel code
unless the eolumnization property is violated; this in turn may greatly
increase the lag of the code.

[Surprisingly, prefix codes with I = = are not altogether useless. If a
one-kernel code uses a block code or a code the greatest common divi-
sor (ged) of whose lengths is greater than one, then it follows that
J' = J = =0, It is interesting to note, however, that many uniformly
composed codes and anagrammatic codes (with I = =) have I" < w0,
and thus may give rise to one-kernel codes with J < oo, assuming
J' < =, The smallest possible finite exhaustive anagrammatic code
with I' = I' = « has n = 18, and is its own complement. An infinite
example with the same properties is provided by the self-complement-
ing anagrammatic code of Fig. 6c. Thus the use of such prefix codes
in & one-kernel sequential eode must result in J = w, by Theorem 4. |

V1. GOOD STRUCTURE FOR LARGE SEQUENTIAL CODES

The codes of Tables II and VII are rather small examples, albeit
good ones, of one-kernel codes. Since great compressions are found
primarily in large codes, the next question is whether low lags can be
achieved for large codes without sacrificing coding simplicity and
COMpPTESSIOn,
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Assume for now that it is possible to approximate the second-
order probabilities associated with the code words w(i | j) as a funetion
of k=1 — j (mod n), and henee that from a compression point of
view a difference code is meaningful. {This assumption will be general-
ized below.) Now consider the general n-level one-kernel encoding
framework shown in Fig. 13. The diffierence & is modified as a function
of j, and the result k&* is encoded by an ordinary prefix encoding
Wik®). If the code is a complemented eode, the result is complemented
(e.g., if j iz odd). (Otherwise the complementing cireunitry is not needed,
as in Table VILI.} The corresponding decoder is shown in Fig. 14.
(Again the complementing cirenitry may not be required.) In many
eases the demodification eircuitry of Fig. 14 is identical to the modifi-
cation eircuitry of Fig. 13, with the input and output interchanged.
Note that the codes of Tables IT (see Figs. 9 and 10) and VII are
examples of codes amendable to this framework. The ineremental cost
of encoding and decoding compared to difference codes is embodied n
the modification logic and the trivial complementing logic; as long as
the modifieation logic ean be kept simple, the incremental cost is low.
The compression can in general be made at least az good as the differ-
ence code,

If a balaneed eode is used, the framework defined by Fig. 13 makes
it easy to satisfy the columnization property, the symmetrization
property (with s = 1}, and the bifureation property. The choiee of a
prefix code is dictated by the kernel lag property, and by the condi-
tional probability distribution of the symbols S{1), given S(j). The
suitable structure iz dietated by those probabilities, mitigated by the
structural lag property, and by the complexity of the modification logie
desired. Considerable experimentation has shown that the properties
diseussed here are eentral to the eonstruetion of good codes. Columni-
gation and the choice of prefix codes with small J° greatly facilitate
first-stage synchronization. Association greatly influences second-stage
synchronization. Bifurcation greatly simplifies coding complexity and
improves second stage synchronization. The use of balanced codes is

S0URCE
L o N N o 25

- MODIFI= | b COMPLE= | TEXT
L-j CATION W[ %) MENTIMG  [r—
= LG LOGIC
DIFFEREMCE FREFIX
DECODER

Fig. 13—=Generalized cneoder for one<kernel rodes,
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Fig. 14—Generalized decoder for one-kernel codea.

very helpful. If the number n of messages iz odd, however, it may bhe
desirable to use a two-kernel eode as in Table VI to achieve columni-
zation.

If the conditional probabilities are strongly asymmetric and/or
not approximately representable by difference probabilities, 1t may
be advantageous from a compression standpoint to use a multi-kernel
code, Alternatively, or additienally, it may be desirable to eliminate
the difference/sum circuitry in Figs. 13 and 14, and to deal directly
with the ¢ and j. The properties deseribed in this paper are equally
relevant in such ecases. No restrictive assumptions have bheen made
regarding the first-order probahilities, It is also unnecessary for 0-set
and 1-set code words to mateh even and odd i, respectively; this is
merely a deseriptive convenience,

6.1 Large Balanced Codes

In order to enhance the kernel lag property for eodes with large n,
it may be desirable to use truncated systematie prefix codes rather
than optimal prefix codes as kernels. In this way it is possible for I to
remain small as n increases. Several examples of sueh eodes which may
easily be truneated to give balanced codes are summarized in Fig. 15,
along with their structure functions N(d) and their lags I, I’ and T'.
The best lag I* for any code with the specified Nid) is also given,
along with the random average eode-word length L for Ni{d), The
selection of efficient codes for compression purposes is econsidered in
Ref. 1.

There exist many elasses of codes for which J remains finite {and
in faet quite small) as n inereases without limit. A simple (rather
extreme) example 1= indicated in Table VIII for n = 8 The code is
eolumnized, complemented, bifureated, and maximally assoeinted with-
out being trivial. (It azsumes very ligh probability of ¢ = j for com-
pression purposes.) To avoid confusion, the symbols are given az A to
H for i and j from 0 to 7; the integer k is given to indicate the oceur-
rence of the code word Wik, If j is odd, the complementary code word
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Fig. 16—Some syatematic prefix codes easily truncated to balanced codes.

W’ (k) is used, and the table is read from the bottom up. The code
thug has complementary reflective symmetry. If Wik) = 0, 11, 100,
1011, 10100, 101011, 1010100, 1010101 for & = 0, 1, ---, 7, then
J = B62. This code is readily extended to arbitrary even n with a
similar pattern of k's: for each even j other than 0, k = 0 for ¢ = j,
k = j for i = 0; otherwise k = i; code words for odd j are then
specified by the complementary reflective symmetry. The modification
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logic of Figs. 13 and 14 is thus exceedingly simple, and the comple-
menting logie is again & single EXCLUSIVE OR gate as in Fig. 10,
The limiting prefix code is code (a) of Fig. 15, Analysis shows that a
sequential code with " = I =3, 0" = 4[1 + 14 + Wa + YWin + Yans
+ ---] < 5.7, J < B.7 exists for every even n. (For suitably skewed
distributions, the eampression factor arising from this code approaches
the base two logarithm of n.) This is an example of a class of codes for
which the differential circuitry is not relevant; it is easier to encode
directly as k = i, with (n — 1)/2 pairs of exceptions. Variants for
which the 1-set is treated in this fashion while the 0-set is treated
differentially as before are also easily implemented. These variants
provide a very simple structure which results in low J and simple
ecircuitry.

[A word of eaution is in order when considering sequences of ex-
haustive prefix codes approaching systematie codes in the limit: the
limit of a sequence of values of I (or I’y thus obtained is normally
somewhat larger than the value of T (or I} for the limiting systematic
code, (The previous example 15 an execption with respect to I'.) Code
(b) of Fig. 15 is an example in point, with I = I' = 5. The limit of the
value of I (or I} for the codes 01, 10, 001, 110,000, 111 (I = I' = 10),
01, 10, 001, 110, 0001, 1110, 0000, 1111, (I = I" = B), cte., is seven,
although this sequence approaches the systematie code (with I = I"' =
5) in the limit. In general, truncated systematic codes have better
synchronization properties than their finite exhaustive approximations,
gince the values of I and I' are essentially unaffected by truncation.
For large codes, there is little if any noticeable degradation in com-
pression caused by using truneated infimte codes. |

The use of definite codes is suggested sinee their lags are minimal
(I = L), while I > [ for non-definite codes. However, non-definite
codes ean be quite good. Codes (a) and (c) in Fig. 15, for example,

Tasre VIII—Examere oF A Goop Copg FrRoM AN IxFiNITE CLASS OF
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have N{d) for which definite codes exist (whenee I* = L), In these
cases, I' = L + 1, recalling the above numerological curiosity. No
counterexample to this curiosity is known among N(d) for which
definite codes exist, or even among all systematic codes. In general,
there are many non-definite cases for which I or I' is quite close to
L + 1. Thus in these cases the non-definite systematie codes do almost
ag well ag comparable definite codes in achieving first-stage synchroni-
zation. Subsequently the non-definite codes may be much better in
reaching the second stage. Definite eodes are necessarily completely
unbalanced,*® with all code words ending in the same digit; therefore
a complemented columnized code is impossible. Although a non-com-
plemented code is thus automatically columniged if it uses a definite
prefix code as its kernel, second-stage synchronization often must
begin with the set of symbaols, not just half of them as in the case of &
halanced code. However, some definite codes are balanced on two
distinet terminal sequences, e.g., on the next to last digit of each code
word or on some earlier digit position, In these cases, it is possible to
columnize on the two distinet terminal sequences. As an example, con-
sider code (d) of Fig. 15. This iz a definite code defined by the set of
sequences {0100,0110}, with N(d) = 00224481224 --- . For each
length there are exactly as many code words ending in 00 as in 10. If
the sequential code is columnized aceording to the last two digits of
each code word into a 00-set and a 10-set, first-stage synchronization
results in one of these two sets, as in the balanced code situation. Sinece
I = L. = 8, this code has synchronization properties excelling any non-
definite code with the given N{d).

8.2 Guidelines Jor Cheosing (rood Encodings

Beeause of the perversity of the three-dimensional tradeoffs among
compression, complexity and synchronizability, it is pointless to try to
give a specific algorithm for choosing the best encoding for a given
application. Optimality in any one dimension is of little concern, for
slight sacrifices in any of these dimensions often result in great savings
in the other two. Besides, no sensible cost metric is known. Nevertheless,
the techniques of this paper provide a set of guidelines for the con-
struction of good eodes and good encodings.

The first step in selecting a sequential encoding is to establish for
each § the eode-word lengths which are optimal for the code word
w(i | 7} in the prefix code for the given j, based on the eonditional prob-
abilities of S(i), given S(j). This may be done simply using any variant
of the Huffman algorithm® which derives the eode-word lengths. In-
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spection of the matrix of lengths thus obtained (i.e., of the set of n
structure functions, one for each j) indicates what kind of symmetries
the code might reasonably have, e.g., whether a reflective symmetry is
in order, and whether the code can be a one-kernel code. A comple-
mented bifureated code may be required for ecompression reasons, as
in Table 11, The next step is to choose the basis eode(s), considering the
set of lengths and the first-stage lag J'. For large eodes, techniques of
Ref. 1 may be required to aid eode selection. The eneodings should then
be arranged to have the columnization and association properties to
help minimize the first- and second-stage lags, respectively. The de-
gired code-word lengths should be taken as suggestive rather than as
mandatory; slight departures from these lengths are generally not
harmful to compression (especially among large lengths), and may
help greatly in decreasing J . Care should be taken to avoid having
short synchronizing sequences oceur only as the result of unlikely
sequences of source messages,

VII. CONCLUSIONS

The objeet of this paper is to present codes with low redundaney,
reasonable complexity and intrinsic error tolerance, within a single
class of codes designed for that purpose. The approach taken is by
no means the only one, although the codes exhibited here seem quite
powerful in view of their capabilities. In combination with some
additional redundaney (e.g., as in Refs. 1, 4, 17 and 18) to be used
for error-detection and/or eorrection and/or forced framing, the in-
trinsic properties deseribed here may be used to great advantage.

The sequential prefix codes of this paper ean be useful for a wide
range of conditional probability distributions. Quantized video picture
information provides an example of a class of distributions'** to which
these codes seem suited, with respect to compression and synchroniza-
bility, as well as to the meaningfulness of tolerating errors for a short
period of time. Such distributions are strongly geometrie* for which
the eodes presented here are naturally applicable.

The techniques described here are also applicable to other eom-
pression situations. Examples inelude run-length coding (which has the
same essential synchronization problem as differential eoding) and
predietive, averaging or smoothing schemes, or comhbinations thereof.
In addition, the same techniques are applicable when code words
w (i | j) need not be provided for many of the transitions, for example,
when only relatively small differences are possible.
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In conelusion, a wide variety of sequential prefix codes has been
presented, with a considerable range of tradeoffs among coding com-
plexity, compression and synehronizability. By not insisting on opti-
mality in any of these, it is possible to obtain codes which are highly
satizfactory in all of these respects at the same time.
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