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Theory for Some Asynchronous
Time-Division Switches

By J. E. MAZO
( Manuseript received September 24, 1970)

A two-wire active asynchronous time-division switch has recently
been proposed by J. 0. Dimmick, T. G. Lewis, and J. F. (’Neill. The
interrupted energy transfer from one filter to another is accomplished
asynchronously in order that more efficient use may be made of pro-
cessing time of talker pairs on the switching bus. After first formulat-
ing, in a concise mathematical fashion, the effect of passing a gignal
through such a randomly time-varying circuit, we focus attention on
optimizing an important filter response function. Typically, two per-
cent vms jitter in the transfer times yields an output S/N of 30 dB
independent of signal spectrum. The timing stabilization required to
obtain small jitter is also discussed and an exact solution for ex-
ponential processing time is obtained, This latter result may be put
to good wse in studying the efficiency of the switch. Conservatively,
asynchronous operation should increase traffic capacity threefold.

Finally, a speech wave which passes through a sample-and-hold
eirenit with random sampling times is considered upon being recon-
structed with a fired filter. This 1z a model for a four-wire active
asynchronous switch, and results are compared with the hwo-wire
suluation.

1. INTRODUCTION

Vaiee switching systems have most commonly been based on con-
trolling electromechanical switches which seleet and hold a spatially
distinet path for each eonversation. The technology used to implement
such a space-division network (crosshar or ferreed switehes) usually
results, in practiee, of an individual path having much larger band-
width than is required for faithful transmission of the signal. The
space and cost of these switches makes other solutions desirable for
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many applicationz. One line of attack has been to keep the space-divi-
sion eoncept, but replace the electromechanical relays with semicon-
duetor switches. These techniques, however, still suffer from the
hard-to-grow nature of multistage space division networks. A more
promizing solution seems to be to place all the conversations on a
wideband bus using time-divizion techniques. In fact, the 101 Elee-
tronie Switching System (ESS) is such a time-division switch. This
system uses resonant energy transfer to “move” periodieally measured
samples of a speech wave from an incoming line to an outgoing one. In
the same wvein, an asynchronous time-division switch has recently
been propozed hy J. O. Dimmick, T. 6. Lewis, and J. F. O0'Neill.! This
switeching arrangement makes use of active energy transfer between
filters rather than resonant energy transfer and allows a variable time
slot for transferring each speech sample through the switch. The asyn-
chronous nature of this switch allows a more efficient use of processing
time than is possible to achieve synchronously. However, a consequence
of this virtue is a periodic sampling of the input waves. While the
synchronous syitch can make uze of the usual sampling theory to
guarantee faithful reproduction, the asynchronous switch cannot.
FurtHer, the modifications of the theory which are required to diseuss
the proposed asynchronous switch are not simple, for the random
sampling eauses some feedback energy which is later retransmitted,
further adding to the output noize. Our immediate purpose will be,
then, to present theoretical work relevant to this problem. We diseuss
the quaiity of transmission [measured by the output signal-to-noise
ratio (8/N)] as a funetion of jitter in the sample values and as a
functional of a certain filter responze funetion upon which the feed-
back energy depends. The optimum funetion is found. Also a tech-
nique suggested in Ref. 1 for keeping the jitter small iz discusszed
theoretically, and the combined question of how jitter, quality of
transmission, and increased efficiency are related is answered.

Section X summarizes our conclusions and, barring some terminology
introdueced in the text, may be read next.

II. MATHEMATICAL MODEL

Consider the diagram in Fig. 1 which represents a talker and listener
on a switching bus. There will be many such pairs on a particular bus,
but we need now concentrate on only one. The way the switeh works
is that, at approximately periodic instants of time, the two identical
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Fig. 1—Model for a “talker"—“listener” pair on an asynchronous switching bus.

capacitors which are shown in Fig. 1 are interchanged* and energy
tranafer is effected. The following assumptions are made:

(#) The input signal z(f) is bandlimited to W Hz and the switching
oeeurs at times {, = o7 + e where T = 2W and e, is small com-
pared to T

(#) The filtering aspect of the filter i= neglected in the sense that if
no switching is performed, then »(t) = =z(t). In particular this
means that if current impulses of area x(nT) are applied at times
nT to the listeners eapacitor, z(f) will oeeur at the output.

(if) Suppose that one volt is placed on the listening capacitor when
no energy is stored in the filter. The voltage across the capacitor
(t = 0) under these conditions will be ealled 2(f), and we assume
2(04) = 1.

Our goal will be to determine, for given spectrum of the input, and
for given second-order statistics of the ¢ sequence, the output 8/N.
The proper design of z(t) will be of major concern in the analysis.

We shall eall the problem just deseribed two-wire switching.

11I. FUNDAMENTAL EQUATIONS

In this section an exact equation which deseribes the two-wire
talker-listener switehing situation will be derived. As in Fig. 1, let »(t)
be the actual voltage on the talker's capacitor and w(¢) the actual
voltage on the listener's eapacitor. In the absence of switching, v(t) =
2(t). In addition, at times nT + e voltages [winT + ¢—) — v(al +
w—)] are placed on the capacitor, where wi(f—) means the limiting

* Of course in reality they are not interchanged. What happens is that at the
given instant. of time at which the “switch” is to occur, the instantaneous voltages
are mensured, certain current sources (not shown) are sctivated and o fixed value
of current flows for a duration just sufficient to effect the interchange of charges
and hence voltages, of the equal capacitors. All this occurs in o negligible p&ﬁmi
of time compared with the response time of the filiers.
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value of w(t’) as ¢ approaches ¢ from below. Since switching occurs at
times nT + «, , continuity cannot be assumed at these instants and left
and right limits must be distinguished. Using the definition of z{¢) we
have by the superposition principle

LEER

o(f) = () + 2 [winhT + &a—) —v0T + =)t — 0T — &} (D)

=1

where [(t) iz the integer which =atisfies

HOT + ¢ = 1 < (D) + DT + &1.1.
Likewise for w(t) we may write
Eqdd

wit) = 3 bl + e—) — wnl + e—)lelt —nT —e). (2

=i
If we let t = (kT 4+ &—) in equations (1) and (2), we have the
pair of equations

Eied
WkT + &—) = 2(kT + &) — ¥ p(T + =) — winT + .—)]
2k — )T + & —e,—]  (3)
and

V0T + 4=) = 34 BT + =) — 0T + o)
A s s g INNIA)

It is very useful to now introduce the veetors ¥, V, W and a matrix Z
defined by

th = kT 4+ &),
v = v(kT + =), (5)
w, = wkl + &),
and
L= 2[(k = n)T + & — =] ()

Note Z, = 0if k = nsince 2(¢) =0 fort < 0,
Using equations (5) and (6), {(3) and {4) become

V=Y-=-2(V-W), (7)
W = Z(V — W). (8)



TIME-DIVIZION SWITCHES aR7
Solving the above pair for (V. — W) gives®

(V- W) =[I+22]"'Y. (9)

Equation (9) determines exactly the behavior of the switch, for the
output is determined by applying the sequence {V, — Wi} at times
kT + & to the filter (here assumed ideal). We emphasize that the
jitter enters not only through the time at which the &-functions are
applied, but also in the quantities Z and ¥.

Consider now a z(t) such as that shown in Fig. 2 which passes
through zero at all times kT, k > 0. If further there is no jitter, then
Z = 0, and equations (5) and (9) show that impulses of area z(nT)
are applied at times nT, thus giving x(¢) at the output. In short, in
the absence of jitter, any z(f) which passes through zero at all positive
integer multiples of the sampling interval will be optimum,. One might
now conclude that a zit) which is zero in a sufficiently large neighbor-
hood of each such crossing will not see the jitter and would therefore
be optimum in the presence of jitter. However the following argument
(by J. F. O"Neill} suggests that such is not the case. Consider sampling
a de signal at random times. We must get enough power through the
switch to reproduce the signal. Surely if we sample late, we are lagging
in power and we would like to inerease the area of the impulse; like-
wise if we sample early, we seem to be supplying extra power and so
should decrease the impulse area. There should be a design of z(t)
which would conspire with the jitter to reduce jitter noise even below
that noise obtained for the class of z(¢) which do not see the jitter.

IV. WHAT I8 THE OUTPUT NoOISE?

Define the vector
y=V-W (10)
and the functions

sin;—1 (t — aT)

) = — (a1
7 (¢t = nT)
for all integer n. The properties of y,(f} that we use are
Yall) = "I{'-n[‘.-r'j! (12}

* The inverse of (] 4 22) alwayvs exists since it is triangular and all its diagonal
elements are unity.
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Fig. 2—An illustrative curve for z(2).

[~ v at =1, (13)
and

bh— = 3 deli)¥altl. (14)

We assume that the reconstructing filter impulse response is given by
galt) and thus the output error signal is

o) = S rubult = ) = 32 2l (1)

and has average power" N where

KT -
N = '.EK_IT f_”e*u} dt = lim HLTL () di.  (18)
In the right side of equation (16}, we have introduced e.(¢) which
is the error signal truncated to K pulses; that is, the upper limit of the
sums 1n equation (15) iz K inztead of infinity. If we use equation (14)
to expand y,(t — e ) which oeeurs in equation (15), find e?{¢) and
do the time integral, we obtain

[[aw-=r

K

E FuTe i irn{!n}\bnl-n—ﬂ:ft}

=i -

K

iy f; 2= Y raesle).  (17)

* This corresponds to the noise in a band up to 1/2T He. If T is less than the
Nyquist rate, then some out-of-band noise is included here. In practice T will be
about. hall the Nyquist interval in order to make filter design problems easier,
but then the inclusion of the out-of-band noise seeme fair at thizs stage. Figure 3
shows o picture of the relevant bandwidiha.
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Equation (14) may be used again to recombine the first terms of the
right side of equation (17) and so

% f: ex(f) = %.Z tersbasles — &) +

il
K 2

e 56 P S -
K’ ad EWn=kEEk) .

Recall again that

Zie = 2[(k — n)T 4 & — &,
v = (1 + 2Zyawm , (19)
Wy - r‘THT == Er}-

It is useful to define a new matrix & by

8

=

1+ 22 (20

zp that
+= ¥ — #Y, (21)
Substitution of equation (21) in equation (18) splits the expressions
into two types of terms. The first type, ealled collectively Ay, do not
involve the filter 2(¢) while the remaining ones, called By, do. We
thus have
N = lim E[Ax] + lim E[Bx] = A + B, (22)
K=oz K—ali

where in equation (22), the expectation is taken over both the signal
and jitter statisties. The quantities A; and B, are given by

1 K 1 K E K
Ax = 2 2 ywbsles — &) + 5 > - T Y Talabe-sle), (23)
K n, k=il 0 n k=il
IDEAL
RECOHNSTAUCT NG
< FILTER
I3
e asats |
| u |
B
'] 1
L L
_ 1 2T T
l""'.—‘:T{.

Fig. 3—Relevant bandwidths in terms of the sampling interval T
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Be = —= 3 y(0pdildbe-sles — &) — duu(ed]

n, k=il

= L

-2 2 (hlyn — Tl¥a-r(e)

o

K
+ % L Ol — @) 28

One may note that if z({) is such that when the filter iz designed
s0 as not to feel the jitter (as deseribed in Section III), then B = 0
and the noise would be given by the filter independent term A alone.
The funetion of the filter design i= to make B as negative as possible.

To proceed further we make essential use of the fact that the ¢ are
small. In addition, sinee z(kT) = 0 12 an optimum solution in the
absence of jitter we shall keep the requirement

z(kT) = 0, k=12 ... (25)

and see what further optimization ¢an now be made. This will amount
to designing the slopes of the function z(¢) when it goes through zero.
The evaluation of A and B for small ¢ is carried out in Appendix B.
Introducing the correlation function of the signal

R(r) = Elx(t)z(t + 7)] (26)
and the correlation function of the jitter
Jk — n) = Elee,] (27)

we find that when the jitter 1= independent from sample to sample,

A = lim E[A,] = ﬂi[—ﬁ'iﬁ} +%%1R{D}]= (28)

In equation (28), o] is the variance of the jitter and is given, for inde-
pendent jitter, by

=@ =& =J0) — Jn = 0). (29)

To write the corresponding expression for By we introduce, as is done
in Appendix B, the derivatives £, of the function z(f} at the zeros,
that 1=

o

. i
:.=a:{.ﬂ} e=128 --- (30}

r=i T
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and also the constants®

L= %0 = (-9 = S~ a0, @31

Then, for jitter independent from sample to sample,

B = lim E[By] .
- w0 Sravz S - SR o 3 aa 50

0y

Expressions for 4; and B, which include the effects of correlation in
the jitter are also derived in Appendix B and will be discussed in
Section V. At the moment we merely state that positive correlation
between jitter values will tend to reduee the noise power given by the
sum of equations (28) and (32). Equation (32) gives, incidentally,
more of a physical interpretation as te the breakup of the noise mnto
A and B terms. The filter mentioned at the end of Seetion IIT which
does not see the jitter certainly has 2(f) = 0 at each erossing, and thus
from equation (32), B = 0 Fl:r:r that filter. Thus the 4 term js the
noize power for the “blind” filter; it will be improved upon whenever
B is negative.
If we now define the functional F[z] of z(t) by

o Rl ; Be— 1)
I:l-l
then optimum choice of any % is found by simple differentiation of

equation (33):

aFfz] AU 1 = . Rk — 1) Al
5, =0 =Ti+2% - 5o zgjlz. o7 ke

(34)

i
Thus for given signal statistics, equation (34) must be solved for the
optimum set of {z,}. In reality, equation (34) does not have to be
taken seriously for all positive integer k, since the response of a
realistic filter will die off rapidly with time. Thus in equation (33),
most of the #; can he set to zero and only a few retained, If the first Z
are thus retained we shall refer to this as designing the first £ gzero

* Recall the definition of .(t) given in equation (11). Also in equation (31),
dots denote differentiation with respect to the time variable,
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crossings. Of ecourse equation (34) will hold only for the k such that
i;‘ #=0a FII"I!-E':I'I:.

As gur first example we consider the case where the signal spectrum
iz flat and extends to Q. = =/T rad/sec. We refer to this as the
full spectrum case. The interval T in this case is also the Nyquist
interval, and no oversampling is done as one would expeet to do in
practice (the latter case will be treated shortly). We have

Full 8pectrum Case:
R(r) = R(Q)yo(r),
R(s) = 0, g = 0,
R(0) = 0, (35)

.*E‘{aj_ﬂm}f-—w, s = 0,

—&(0) = R(0) § "F‘

Thus equation (34) yields as the optimum solution for designing all
geros in the full spectrum case

URLRITTNR i LT
f = o il (36)

Proceeding to evaluate A and B, we have

A=R@§%ﬁ,
(37
Wl
B = —R{ﬂ]mT
Since R (0) is the signal power, we have
S8 1 x°
Soixa. (39)

An important fact can be gleaned from equation (37): one should not
generally expect the optimum filter to be very much better than the
“blind"” filter.* In the reasonable example which we have just worked,
only a gain of 3 dB is achieved.

* Of course the blind filter is itself a highly designed filter.
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TapLE I—FuLL SPECTRUM

Jitter Btandard Deviation
Output 8/N "y
15 dB 01T
21 dB 0.05 T
M 4B o.o2T
5 dB np.omfT
55 dB o001 T

Table I ealeulates equation (38) for several values of jitter. For an
output 8/N of 30 dB, two percent jitter is required.

V. EFFECTE OF SIGNAL CORRELATION

Equation (34), the basic design equation for the filter response z(t),
can be conveniently rewritten in matrix notation

I+ M)i=4A (39)
where the veetors 2 and A have components

[‘i}k =&, Hﬂ'ﬂ]
~1[E8 _p]| pars,--
A 3 [R(ﬂ} | k=1 2 '
and the matrix M is defined by
_Bk—=1
M., = R(0) (40b)

The matrix I is of course the identity. The dimension of all the above
quantities is Z, where Z is the number of zero crossings that one wishes
to design for.

To solve equation (39) one must in general invert the matrix
(I + M). Thiz was possible in the full spectrum case because M was a
diagonal matrix; in general it iz hard to do exactly, unless the dimen-
sion Z is small. A ease of special interest for applications is a qualita-
tive understanding of the situation for a flat signal bandwidth up to
Oex = r/2T. This corresponds to sampling at twice the Nyquist rate
and better approximates the situation to be encountered in praectice,
We eall it the half speetrum ease. We have
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Half Spectrum Case:

R(sT) = R{ﬂ}f—asm%a, ¢ v O

l::us,Es sin = 8
ROT) = R[ﬂ}{ - - E—a—ﬁ-—] |

i (41)
—~R(O) = 3 (ﬁ) -R(0).
The A term yvields, from equation (28)
A 5 % a
f-ffi}l 12 T% 7 = {4 16). (42)

In the B term we must solve equation (38). We do so by inverting the
matrix by hand fof the cases of designing either the first gero, the first
two geros, or the first three zeros (Z = 1, 2, 3 respectively). We obtain

(43)

Thesze numbers give for B

B
R(0) &, ’I

B
R(0) ..,T’{ i

E
R(0) £

From equations (44) and (42) we note that Z = 1 design improves the
“hlind” filter by only 1.7 dB and £ = 2, 3 by 1.8 dB. Output 8/N are
given in Table I1. For a given fraction of jitter essentially the same out-
put 8/N is obtained as for the full spectrum ease shown in Fig. 1. Let

II 1.34),
9), (44)

T’{ 1.50).
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TasLE Il —HaLr SrECTRUM*

Output 5/N o /T
z {
1 2 3

15.5 dB 0.1
21.5dB 5 8 0.05
20.5 dB A A .02
35 5dB M M 0.01
55.5 dB ¥ E 0.001

* The noise is here measured in a bandwidth twice the signal bandwidth.

us emphasize here that the jitter is listed as a fraction of the nominal
sampling time and not in absolute units. Thus for a fized signal spec-
trum and fired jitter in seconds, one percent jitter for the full spectrum
case would correspond to two percent for half spectrum situation.

The effect of positive correlation ean be seen by comparing equation
(43) with equation (36). Positive correlation tends to flatten the slopes
at the zero crossings somewhat. Pursuing positive signal correlation to
the utmost, we consider one more case, the case of a de signal. In this
case R(r) = 0, and we want to solve

(I + M)i = —iT (45)
where
o e o
1 2 1 1 s+
I+ M= - (46)
B T T (R
¢ Ce U W S

Let us first consider the (Z * Z) version of equation (45). One may
verify that for de

o JPEEE, R (R
R el e (47)

where 7 is the Z x Z matrix that has all its elements equal to unity.
If we let V equal the Z dimensional vector which has all its com-
ponents equal to unity, then we get

. r (=1
R A e il
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Finally for de zignal we have

- R

A x
RO T T3 )
and

which has the limiting value (Z = =)

B —oi el —ar

TR ! T 1 | e T

Again we see for an exact solution that only 3 dB is gained by pursu-

ing optimum design past the “blind” filter design. The output (8/N)

iz 3 dB better than equation (38} ; one would expect de to be influenced
less by jitter. '

We note the remarkable faect that as £ = o, equation (48) yields
exactly the same solution 2, = —I':/2, a5 one gets for the full spectrum
case, This is not true for a fixed finite Z.

Judging from our two exaet and one approximate solution, designing

(50)

. r

£, = «f (51)
is an optimum design independent of signal spectrum. Also the “blind”
filter iz a very good design independent of signal spectrum, being about
only 8 dB worse than optimum. This all assumes that the jitter is in-
dependent from sample to sample.

V1. EFFECT2 OF JITTER CORRELATION

Until now, any correlation between jitter samples has been ignored.
In fact, some positive correlation is to be expected in the jitter statis-
ties. We do not feel it is large for the way we have deseribed the jitter
in the previous sections* (ecall it e-jitter), so that our previous design
is not affected. Nevertheless, we should note that any positive correla-
tion which exists between the jitter values will improve the output
8/N above that obtained by assuming that the jitter from sample to
sample is independent. The physical argument as to why this should
be true is quite simple. Assume ¢ 15 a nongero constant, the same con-

* Bee Seotion VIL.
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stant for all i. Then we are sampling at time t, = nT + « From equa-
tion (19), Z = 0 and we are supplying current impulses of area
r(nr + ¢) at times nr + « to the output filter and the signal is recon-
structed perfectly. Positive correlation helps.

An important check on our work thus far can be made by assuming
e = const., and checking that the A and B terms, which for jitter are
given in Appendix B, vanish. Since for this case

J(0) = J(s), foralls, (52)

the B term given in equation (112) obviously vanishes. The explicit
demonstration of the vanishing of the A term in equation (107) is not
at all so obvious. Term (107), the A term, for constant jitter, iz seen to
be proportional to [note ,(0) = 0]

—R(0) — X R0 + 2 Z R(5)¢,(0)
= —R(0) — ‘_/: Rig)fulsT) — 2 .E R@)o(eT).  (53)

Define a function of time g(f) by

o) = T3 RE(D].

Then the right side of equation (53) is

and by Poisson's sum formula
= 1 2

where (7i{w) is the Fourier Transform of g(f). WNow yq(f) i= band-
limited to |u| < »/T and so is E(t). The spectrum of R(t)yo(t) ex-
tends only to 2¢/T and in fact vanishes at » = 2=/T since it is a con-
volution. Thus only the m = 0 term of equation (54) could possibly
contribute, but this contribution also vanishes because the second time
derivative in the definition of g(#) introduces a double zero in the
spectrum of (flw) at « = 0.

Further use will be made of the expression for output noise with cor-
related jitter when the e-model for jitter is compared with another
model discussed later in Bection IX.
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VII. TIMING STABILIEATION

At this point we return to consideration of many talker-listener
pairs. Let L be the number of possible such pairs. This number depends
on how rapidly each talker can be processed (switched). For example,
if each talker iz sampled at a nominal rate of 1/T and ¢, is the process-
ing time for the ith speaker, a constraint which reads something like

L

=T (55)

i=1
must be imposed. Further, the timing errors ¢ are hopefully small. A
scheme for stabilizing the sampling rate has, in fact, been proposed
but T. G. Lewis.!:* An interpretation of this scheme due to Saltzberg
and Pasternak is shown in Fig. 4. For immediate convenience let us not
worry about normalization and let the dashed line have unity slope.
The large dots in Fig. 4 represent a talker starting to be sampled, and
let the length of time required for the ith sample be ¢;. The time &
represents the length of time that the eurrent source pumps current to
effect the interchange of the talker-listener capacitors and, in accord-
ance with our earlier assumptions about measurement times being
short compared to filter bandwidths, we have {; € T. After many
counts {measurements), say L, we return to resample a given talker.
We particularly note that a talker is never sampled early. We see that
in Fig. 4 after the time {3, our path hits the 45° line early, and we

MUMBER OF COUNTS
)
I

TisE

Fig. 4—Timing stabilization.
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“pad" time until the fourth count occurs. Also, as shown, the variables
g represent the horizontal distance from the 45° line to the dot repre-
senting the count. They are positive random variables and are given by
the equation®

{u
g« = Max
Fa=1 + "'I|-—I N 1-

The random length of times f,_, are assumed to be identically dis-
tributed and independent of g,.,. We shall proceed to derive an in-
tegral equation for the probability distribution function for g.! We
note the possibility of a &function at g, = 0 and thus write for the
density funetion g,(zx)

gu(z) = a, 8(z) + (1 — e,)p.(2). (57)

The number a, is the probability of having ¢. = 0, and p.(z) describes
the continuous portion of the density. If we let u(f) denote the density
of t, and * denote convolution, we have, using equation (56),

(56)

&y = dy—y .’: u(f) di + (1 — @) _‘: [Pa-1 * u] di’, (58a)
" ez + 1 — £ a¥
d(2) = apy “‘f‘;ﬂ il SR f"_ - i
J: u(t’) dv’ f. d _}; Par(Yult — #) at'

(58b)

A steady-state o and p(x) would obey equation (58) with all indices
removed. We shall write the steady-state equation. Let K denote the
known constant,

K= [ u@)ar, (59)
let, for > 0, v(f) denote the known density funetion
) 1
o = YLD, (60)

* Execept for a time scale normalization, the sequence {gae} n = 1, 2 +-+ corre-
Eonda_tii the sequence {e} of previous sections when there are L talkers on

e switch.

tB R. Baltzherg and G. P. Pasternak?® had also derived an integral equation
for ga, and no doubt our mut:{nn is substantially equivalent to their equation.
An entirely different appro {ie. an equition for a different set of variables to
describe the same problem) has alss been digeussed by J. Balz and R. D. Gitlin
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and introduce the unknown constant

p= [ pruenar, ®1)

Then the steady-state solution (lim n — o) satisfies, if it exists,
a=(1—Ka+ (1 —a)p, (62a)
p@) = anle) + (1 —a) [ pltholz — 1)ar.  (62b)

If we let ('{w) denote the characteristic funetion of p(x) then equation
(62) vields

0l = 1 - — P (63)
where
CS PR R
a = : (64)

One may now imagine determining the unknown constant p in the
following manner. Equation (63) determines () and therefore the
density p(z) in terms of p. Form the convolution of p with » and set
the finite integral of this convolution equal to p in accordance with
equation (61). This then is an equation which can be used for the
numerical determination of p. For the case

u(t) = @ exp (—Bt) (65)

the procedure may be carried through exactly. We find that the dens-
ity p(z) of the g variable is also exponential and is

p(x) = af exp (—afz), (66)
where the probability o of having g exactly zero is related to g by
1 — a = exp (—Ba). (67)

Using the inequality
1—z<e’, x # 0,

we see that equation (67) has a nonvanishing solution for « if and
only if # > 1. Realizing that the average of ¢ is 1/8, this says the
gystem will be stable if the average duration of ¢; is less than one.



TIME-DIVISION SWITCHES 1001

From the above considerations we calculate that
o = g (68)

VIII. EFFICIENCY OF SWITCH

We propose here to give an idea of how much iz gained by asyn-
chronous (but stabilized) versus synchronous sampling. We have
shown in the previous section that (introducing unnormalized quanti-
ties now) for a speech processing duration distributed exponentially,
1e.,

u(t) = pe™, (69)
we have
3 1 — o
SEmEh L
where « and g are related by
R4 )
which requires
L
B> (72)

Again, L is the number of talkers. To effect the comparison with the
synchronous version of the above scheme a new parameter has to be
introdueed which represents the peak-to-average voltage (not power)
ratio of the signal. Reecall 1/8 is the average processing time, and
therefore represents the average voltage. In the synchronous case a
maximum time, .., i8 allowed for each talker. Clearly fu.. is 8
representative of the peak voltage. The ratio A is then

"l = ﬂt-ll o {Tﬂl
If L, is the number of synchronous talkers, we also have
L = T. (74)

Now use equation (70) to solve for &, substitute the expression for a
into equation (71), eliminate @ via equations (73) and (74) and obtain
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1 [_‘1(%)

RINIAIRARERL AR AR AR AR — 75
RV, T i v ey =
where
:gﬂ'.'
EEHALE(T). (76)

An approximate solution to equation (75), which is accurate for large
Ly, is that

A, (7

i.e., in the large Lg limit, the ratio of possible asynchronous talkers to
synchronous ones is approximately the peak-to-average voltage ratio
of the speech signal. One would expect this number to be at least
four. Actually for Ly of interest (77) is not an accurate enough ap-
proximation. The solution of equations (75) and (76) iz shown if
Figs. 5 and 6 for A = 4 and 8 respectively, Taking A = 4 (which is
conservative), we see from Fig. 5 that if the technology would permit
50 talkers to be put on the switch synchronously, the switeh could
accommodate 150 simultaneous speakers, sampled on a stabilized asyn-
chronous manner, with an output 8/N of 35 dB.* To repeat, factor of
3 increase in efficiency seems like a conservative estimate,

IX. FOUR-WIRE CONBIDERATIONSZ

The last topic we consider is what we call a four-wire treatment of
the problem. Here we treat the details of a model proposed by F. K.
Becker* which should deal with active asynchronous energy transfer
when four-wire facilities are available. The model is this. A speech
waveform is sampled and held for a variable time A, before the next
sample is taken (see Fig. 7). The holding times A; are independent,
identically distributed, and have average value

a = T. (78)

The initial speech waveform is approximately reconstructed by passing
the jittered box car through a filter having an inband characteristic

wT
=ln ?

* The 8/N is read from Table 11 for &/T = 0.01.
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[

EFFICIENCY s =
Ls
i1}

ol [ L L 1 1 3 ual i i L
[T+] Z20 ] 40 B0 BO TOAD 100 200 300 400 500

HUMBER OF SYMCHROMOUS TALKERS, Le

Fig. 5—Efficiency versus number of synchronous talkers for peak-to-nverage
voltage ratio 4 = 4.

The A, in the above model will not necessarily be assumed to be
sharply distributed about T'; later a stabilized version using an «)itter
model will be used.

Let x(t) denote the speech wave and r,(¢) denote the jittered box
ear version. Further denote the spectra of the two processes by Sw)
and 8;(«) respectively. Our major interest shall focus on determining
the spectrum E («) of the error

error = h * z,() — z(I), (80)

L
Ls

EFFICIEMC Yy

N 1 I 1 T [T | i
A B T B 910 20 30 40 S0 &0 TOBO 100 200
MUMBER OF SYNCHRONOUS TALKERS, Lg

Fig. 8—Efficiency versus number of synchronous talkers for peak-to-average
voltage ratio A = B
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4,

&g

Az

ba Ly ta ta
Fig. 7—"Jittered-boxear" sampled speech wave.

assuming h(t) is the reconstructing filter. The output noise power can
then be obtained by integrating the spectrum. It may be shown that for
the A-model of jitter described above the eract error spectrum is

B = 86 |1 - S rn - co)
+ P .;E::I i Re {[1 = C*w) P f_ : Slw’) 1 1;-{5[“_;} ) %} (81)

In equation (81), the function C () is the characteristic function of the
variable A, that is,

Clw) = [ exp (wt)p(a) da, (82)
p(a) being the probability density of 4. Also

o) = [ exp (—iwh(0)

The symbol P in front of the integral in equation (81) denotes that
the principal value is to be taken for the simple pole 1/[1 — Cla" —
w) ]. If the term in the braces in equation (81) is rewritten as

sndiiigrae (1 = C*eh( — Clw')) | da’
“‘LS{“]R’E[ I — O’ — w) sz g
the reader should be assured that now no singularity will arise in the
integrand, and the prineipal value distinction need not be made.

For numerical purposes, we plot the error spectrum given in equa-
tions (81) and (83) for the case when A is gaussian distributed about
mean value T, and for standard deviations (es/T) = 0316, 0.1.*

* The rendom variable A is always positive, while the gaussian assumption al-
lows it to become negative with some probability. We have werified that this

effeet is not significant here,
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These larger variances are chosen here because we are mainly in-
terested in the unstabilized version. Figures & and 9 show, respee-
tively, these error spectra, assuming the input speetrum iz flat up to a
maximum frequency 02 = = rad/s, and assuming a sampling interval
T = 0.5 s. This corresponds to sampling at twiee the Nyquist rate.
Also in ealeulating the out-of-band noise we have taken the reconstruct-
ing filter (79) to extend to fwice the baseband spectrum. This em-
phasizes the higher frequencies more than desirable, perhaps. Thus
in Fig. 9, the 8/N for noise measured in twice the baseband interval is
24 B while inband we have a 8/N of 29 dB. Thus for independent 4,
a 10 percent jitter about the mean value seems tolerable for sampling
at about twice the Nyquist rate.”

In the event that the unstabilized four-wire version is unsatisfactory,
we recaleulate the error spectrum when timing is stabilized according
to e-model discussed earlier. In this case the Fourier transform eg(w)
of the truncated error signal is found to be given by

eplw) = 3 }: z(nT + ¢,) exp (—ﬁ.m.ﬂ" — fw J]_;)

n=l
twT : 1wl !
X | exp il lwegy, | — €Xp il Tiwd,

<[4 e ()] CETE) e

g0 =5

2

Again, the reconstructing filter (79) has been assumed. Further details
of the caleulation will not be recorded, but we simply state that the
error spectrum E(w) is, retaining only second-order terms as in pre-
vious work involving ejitter,

() = lim 212 6]

] L i
= - f‘mT i eXp {-—wT}{% JI:E}[R{E:I _Be+ IJ_EHEEE - 1}:|
sin— "7 "
2
— sin* 4T R()J(6)

* Let us remark that the A model l’nrﬂler deseribed here i= uiq::j.ﬁcunt]y dif-
ferent from the e-model used previously. The A model implies positive correlation
between adjacent e variables and for a given variance produces le=s moise. We
shall return to these questions shortly. v -3
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+ %gm% JI:E]I:("E'[E} + R(s + 1)) exp (_HET)

~ (-1 + R - 1) exp (27) ]} (85)

One may verify that the above expression is indeed real, that is, it
vanishes when ¢ = ¢ and when the correlation function corresponds
to & de Input =ignal. The noise power N in any bandwidth 0 is gotten
from equation (85) by

0

N = o

Efm} du. (86)

Choosing @ = /T we obtain from equation (86)

N = —ROJO) + j; Bl [R{a} SCUchei} + I = ”:f
+%; 8. I Bls + 1) ;Rn:a — 1)
-1 % a0 -ne + BetDERe=D]
ooa)
=
Z 003
E .02

e

Fig. &—FError apectrum for T = 1/2, 7/T = 0316, Undistorted spectrum is one
for —r = w = », and zero otherwise. 8/Ny = 185 dB, 8/N~ = 14 dB.
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Fig. %—Error spectrum for T = 1/2, oo/T = 0.1. Undistorted speetrum 18 one
for —» = w = w, and zero otherwise. 8/N. = "HdB BN =M3d

where
a, = ,l'f cqujiz, (88a)
27 Jo gint
2
T
1 *.3
go=2[ zeosss—dn, (88b)
Hlﬂﬁ
r A Kl |
ﬁ,=£f ::sina:rda:=!:—i}——. g 0. (B8e)
i}

Numerically
ﬂ'n = Eﬂq E E.TE.

S i (89)
B, = 1.38,
g, = 0.386.

For the case of independent e-jitter, equation (87) reduces to

noise power; [ R R(1) Rm]
independsnt e = Rm]'“'[ R{0) T’ “(1 R{ﬂj) + 7% R0
- (900
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The results for the stabilized full spectrum and half spectrum cases
are obtained by using equations (35) and (41) in equation (90).

Full Bpectrum:

8 o | % o Ty
GJ__T[ +m1~1#&ﬁl (91)
Half Spectrum:

N

By comparison with equation (38), the four-wire full spectrum answer
(91) is about 1.5 dB worse than the optimum two-wire result, but
the four-wire result has about a 4.5-dB advantage for the half-spee-
trum case [compare equation (92) with equations (42) and (44)].
The latter case correspondz more to the case of practical interest. We
note further that in this comparison the four-wire might be penalized
by two dB or so due to the (z/ sin z) characteristic being used out of
band also. Secondly, the more coneentrated toward de the signal spee-
trum is, the better the four-wire version will become since it has
vanishing distortion for de, while the optimum two-wire version does
not.

Before leaving this tople, a comment on the relation between A-jitter
and e-jitter should be made. We begin by looking at two successive
A-variables A, and A,., in terms of «-variables,

ﬂ‘ - T+ Ex — Eg—ij {93]
Bovr = T+'En+1 = ks

) (‘H) -5 [{% + m(l N E) ~ mf] ~T 0. O

Clearly
E(A) =T, (94a)
¢i = 2¢(1 — p), (94b)
El{Au; — V(A — TV] = 285 — & — &\ (94c)
In writing equation (84 a through ¢}, we define
Eleatsss] = &p (95)

and assume no e-correlation after one displacement, 1.e.,

Eleney) = -
To make two successive A variables uncorrelated, we set equation
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(84e) equal to zero and obtain

L
B

p= (96)

B2 =
_I_
B |

®ull

and
gl = ok . (97)

Thus to compare independent A-jitter with e-jitter, a good way to
do it is to choose the same variance according to equation (97) and
introduee a correlation between adjacent &'s by equation (96). This
simple way of comparing the two schemes is not exact, but should be
good if signal correlations do not persist for extended periods. In any
event, it illustrates why for ¢ = o} the independent A-model will yield
appreciably better results than the independent ¢ model. The first
implies positive eorrelation in the second.

X. CONCLUBRIONS

We began our study with consideration of the two-wire switching
problem (Fig. 1). After obtaining a concizse mathematical deseription
of the operation of this switeh, [equation (9)], attention focused on
the optimum eapaeitor discharge zi(¢) when one volt is placed on the
eapacitor (Fig. 2). We have seen that a good design for the slopes
of the funection z(¢) as it passes through its geros (=ee Fig. 2) are the
values & = (—1)%/(2kT). Exact solutions for full spectrum and for
de indicate that this result is not sensitive to the signal spectrum. This
optimum design ean be expected to yield only a 3 dB improvement
over the “hlind” filter which i= defined to be flat at the zero crossings
and consequently does not “see” the jitter. Typically two percent jitter
vields an output /N of 30 dB. Any positive correlation in the jitter
will tend to improve this figure.

When the processing time of an individual speaker is exponentially
distributed, an exact distribution of the timing jitter with a stabilized
elock is obtained. This result is used to study the efficiency of the
asynechronous switeh, This increase in eapaeity over a switch using the
same technology but employing a synchronous strategy is, roughly,
the peak-to-average voltage ratio of the signal. More accurate deserip-
tions are presented in Figs. 5 and 6. Conservatively, the asynchronous
switch should handle three times the traffie.

Finally, a four-wire version modeled as a jittered boxcar recon-
structed with a filter has been considered. Under the independent
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A-model for jitter, Fig. 7, 10 percent jitter can yield 30 dB /N, largely
because of the correlations this implies for e-jitter. Exact error spectra
have been plotted for this case also (Figs. 8 and 9). With timing
stabilization, and consequently the e-)itter model, the reconstructed
boxcar should yield several dB improvement over the two-wire results
for cases of practical interest (spectrum concentrated at de).
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AFPENDIX A

Some Lemmas on Limits of Sums
We list here certain lemmas which will be needed in Appendix B.

Lemma 1: I either E_-, | f(s) | or 2_%., sf(s) converges,* then

lim % 3 jn— B = 5 10). 99)
Lemma 2: If 2.7, {(s) m;;;mm then
lim & 3 310 = 310, (99)
Likewise
tim e 3 3 j60 = % 16,0, (100)

Lemma 3: I E f(4, 8) converges, then

a=]
§==un

K B K-k L
lim e 3 2 3 16,9 = X 1G,9). (101)
j=—m

APFENDIX B

Derwvation of Output Noise Power
Our first step is to derive the filter independent noise, i.e.

* Neither eondition implies the other; each implies the convergence of Zf(s).
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J! = liﬂl !Ix
&

where Ag is given by equation (23). Our expressions are valid to
second order in the {¢). We note the following relations

y. = z(nT + &) = z(nT) + 2(nT) + §¢E(nT);  (102)
V) X1+ o3, i m=0;

(D), + §4.00)61/2, if m=0; (103)
’;'bm'} = —¢(0);

making use of this in equation (23), we have, to second order in {«}

=

3 @ — 2008
il (104)

Ji[ =

=

— % .I: [ZaEptats — 2yt yents Va-e(0)].

<=0
nek

Averaging over the signal statistics by using equation (26) and the
further relations

E[#(t + 7z(f)] = R(r) = —E[(z(t + )], (105)

E[z(t + 7)2(t)] = —R(x),
and also averaging over the jitter variables using equation (27) gives:

EAx = % & [~ROJ0) — $,0)JORO)]

A=0

1 [

- % & [Re = B = k)usl0) — 2Toun = k)Rn — &)].
ey (106)

Observing that the second sum is a symmetrie function of (n — k)
and using Lemma 1 of Appendix A, the required limiting operation
yields

A= —ROJO) — Y REJEEO) +2 Y TJORE. (107)

== i=—i

We list for further possible use
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(=B
v.(0) = 2 —, &#0
e (108)
1#?
voll) = 37
and also
3 4.0 = o. (109)

The latter relation may be derived by direct evaluation of the sum, of
course, or by using the Poisson sum formula and the bandlimited
nature of ¢ (t).

We now proceed to derive an expression for the filter dependent
terms B, starting from equation (24). Gathering the second-order
terms proceeds much as it did for the A, terms, with the following
additional complication. Recall from equation (20) that # is given by

sy atssndbiessas oust e A18N Fatent misj
=842+ 8z
From equation (6],
Zin = (& — &)ii-a + (T :gh&r) , i k>mn:
=0, if k<n.

Thus the matrix # is at least linear in the {¢)}. Proceeding now to
collect terms and averaging, we have to second order

n=]

E[By] = ;—f Y iR — m)

mm] =, =0

SO+ Sim =) = Jn—m) = Jin = 1)]

K n=1
il % _Z_::' Ei'--ﬂ{" — m)[J(0) — J{n — m)] (110)
+ 45 S Re - M- B — T m)

LT

In the second term of the above, we change summation variables by
replacing the sum over m with a sum over s, where

amn—m e=19---,n
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We make the same change in the first term, and also introduce
f=n—1I f =12 -« ., 0
In the last term let
g =k — m, =12+ ,k,
j=n—k, j=—=k-=1), - , K =k,
j#=0.

¥ RO — J) (1)

Making use of Lemmas 2 and 3 of Appendix A yields

B = lim E[B,] = —4 -Ei.R{s][J{[l] - J{s)

+4 3 2iR(s — OHIJ0) + Sz — &) — Ji) — J(0)] (112)

A E=]

L] L]

+4 3 3 TaRG+ Q[ — JG + 8]

o=l j=—om
i

The simpler equations (28) and (32) which hold for independent
jitter may be gotten from the above by using the result of Section
VI. Namely for J(s) = const., all g, the 4 and B terms vanish. When
we have independent jitter J(s) = const., 5 # (. So we add and sub-
tract a term with J(0) replaced by J{z = 0) and use equation (29) to
obtain the independent jitter results.

APPENDIX C

Exact Error Spectrum for Independent A-Jitter
Consider a long time L, and denote by [L] the best integer so that

L =[LT. (113)
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The jittered box car (truneated to the long interval L) can then be
represented as

| de]

IJ'I:"'} - E EI:Il'u-t:]-'EI:t\!|+l: EI-.L l:]- 14}

A=

where B is a unit box extending from ¢, to {4.; . The Fourier transform
of this truncated version is then

i [L]

sulw) = = Et (t) exp (—fwt,)[exp (—iw &) — 1]. (115)

m=0
The power speetra for a process y(t) is generally ealeulated according
to

Gle) = lim 1 E [y*@)I,
L—m

where y%{w) i# the Fourier transform of y(¢) truncated to an interval
L, and E denotes an ensemble average with respect to all random
parameters. If we apply the above to speetrum of the error signal
(80), we obtain immediately, using notation of the text,

E(w) = | hw) |* Ss(a) + S{w) + D(w) {116)
where
D) = — lim [LI]T 2E Re h*w)z""@)z"(w). (117)

Expressing x%(«) as a time integral and performing the signal averag-
Ing we get

+ (L]

Diw) = —lim == Re h*(w)\— 2, exp (iwt,)[exp (i 4,) = 1]
'[L]T { A= {113}

x [ : exp (— it )R — 1) d.!}-

Expressing the signal correlation function in terms of the spectrum,
doing the integrals and remaining averages, gives

Diw) = %*? Re h*{m}G)S{m}[l — Cllw)]. (119)

There remains the ealeulation of 5;{w). Using equation (115), we have
{performing averages over signals)
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L]

E | @)’ =$;E y 3 R[E QiR m}

A= k=0

X [exp (—iw A.) — 1)(exp (iw A.) — ll[Erp - W(f Ay — E m)]

k=0 k=0
(120)
where we note the fact
PRIDEE, P (121)
k=il
Performing the A-averaging vields
E |s"w)|* _ R(0 il -
(LT~ [L]Tw 2[1 — Re Clw)] E 1

ikl Ik

A=m+]l m=0

2 L]
+{-'ﬁ."13£={[1 — C*(w)]

f_ g SV — w) [Clo' — w) — U{Wr}]}‘ (122)

To perform the limits of the sums we first replace O™ (" — ) by
[exp(—e) ™" (&’ — w)] to insure convergence and then let ¢ — 0.
We then have

Sw) = hm [L]TE |&"(w)|*

- "Er'f Re {[1 — C*w)) f : ;‘—i P} 3 ,lc?mfﬂfﬂ ii:ue"}' b

Making use of the general relation

1
T &+ te

1 :
= P - ¥ ir 8(x),
where P denotes prineipal value, finally yields

_ 1 = C)|* 8)
E.r'{“] Sl “a Ta

723 Re {[1 - P [ 3 S ;2 g w}}- (124)

The interested reader may indeed check that for

Clw) = exp (wT),

+
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the above expression reproduces the known result for a wave-form
impulse modulated at precisely T-zecond intervals.
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