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Despite recent advances in the speed of digital computers and in
numerical algorithms for the solution of differential equations, the
evaluation of the dynamic response of nonlinear circuits is still too
slow to permit Monte Carlo tolerance analysis. However, the per-
formance of many monlinear circuits can be evaluated on a static
basis. One example is a D/A converter built with devices much faster
than the converter’s cycle time. Algorithms now exist that produce
the static or equilibrium solution of such networks in seconds. This
paper deals with these algorithms and the associated techniques that
have been embodied in a program for the Monte Carlo tolerance
analysis of nonlinear, “dec,” circuits.

1. INTRODUCTION

To date, most tolerance analysis of circuits has been in the fre-
quency domain, as this series of articles indicates. The need for non-
linear analysis arises not only for large signal circuits but also for
small signal ac circuits where device model parameters vary with
bias. Recent advances in the speed of digital computers and numerical
algorithms have made possible the analysis of circuits with nonlinear
behavior. Large signal, or time domain analysis of nonlinear circuits,
however, is still such a comparatively slow process that Monte Carlo
methods are out of the question. Enough algorithmic innovations have
been achieved in the static analysis of nonlinear circuits that Monte
Carlo methods can be applied to a wide class of nonlinear problems.
DC in the sense used in this paper implies that the dynamic behavior
of the nonlinear devices is fast in relation to the response of the rest
of the cireuit. There are, in general, three types of circuits that fall
into this class.

(i) Circuits that are essentially de, such as operational amplifiers,
power supplies, and those circuits used as examples in this paper.
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(#7) Circuits that can be subdivided into dc and ac blocks where
the nonlinear behavior of the circuit is present essentially only
in the de part. An example of this type of circuit is the Touch-
Tone® oscillator, the analysis of which is deseribed in this
series." This class of circuits is very similar to the first.

(#77) Circuits designed for small signal applications may be analyzed
in the frequency domain. Realistic modeling of devices, however,
introduces changes in the small siirnal model parameters for
different bias points. If the bias circuits vary randomly, then
nonlinear de analysis is required in the ac tolerance analysis
loop.

This paper deals with some of the methods required for the ef-
ficient analysis of nonlinear circuits in a de sense. The techniques
and algorithms to be described have been embodied in a computer
program which performs Monte Carlo tolerance analysis of nonlinear
de circuits as well as de and transient analysis. Some of the more
eritical implementation aspects are deseribed.

II. DESIGN OF A NONLINEAR TOLERANCE ANALYSIS PROGRAM

2.1 Problems I'nvolved

Until recently tolerance analysis, even nonlinear tolerance analysis,
has been simple in concept. Circuits were manufactured using discrete
components which generally had independent statistical behavior;
transistors and diodes were expensive items and were used sparingly.
Hence, a large amount of analysis could be done without a complex
software package.

Integrated circuits have opened a whole host of new problems in
this area. Circuits designed today typically employ large numbers
of transistors (since transistors are as cheap as resistors), posing many
problems in their modeling, simulation, and solution. Probably the
biggest. dilemma in the design of a nonlinear tolerance analysis pro-
gram is the minuscule past experience to draw upon as to what anal-
ysis is required, what to do with the analysis results once they are
obtained, and how to interpret them.

Some of the special problems that arise in nonlinear tolerance anal-
ysis are:

(7) Parameters tend to be statistically correlated. This implies
that many new output features have to be present in the soft-
ware,
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(#7) There is a very wide range of eircuit problems that will have
to be solved. This poses special difficulties and restrictions on
the methods of analysis, as will be seen in the following sections.

(777) Statistical data for circuits manufactured today are not yet
available or are available in limited quantities;* manufacturing
processes vary from day to day and parameter correlations,
aging data, etc., are all important to the analysis.

2.2 Criteria To Be Met

One of the most important criteria to be met in the design of a
nonlinear tolerance analysis program is that it be easy to use. Some
of the characteristies implied by this, both for the users of the pro-
gram and for the writers of it, are:

(f) The program must be humanly engineered to have a simple,
clear, and easily learned input language. This applies not only
to the network deseription but also to the description of sta-
tistical data and to the command structure. The trend has been
for engineers to personally use available computer tools rather
than work through intermediaries, and the program itself
should present as few obstacles as possible. In addition, the
output capabilities must include data reduction schemes so
that insight is gained at a glance.

(77) The program must be designed to be flexible enough so that it
can be changed easily. Past experience has shown that a general-
purpose analysis program will undergo many changes and,
in fact, will probably never reach a static condition. This means
the program must be written in modular form, a characteristic
that very often degrades efficiency. Modularity, however,
implies ease of maintenance, upgrading, and debugging.

(77f) The program must be portable because of wide demand. This
implies that it be written in some high level language, such as
FORTRAN, with possibly a very small number of critical routines
written in Assembly language for efficiency.

In addition to ease of use, an important criterion ig, of course,
economy and reliability. The program must be very efficient if it is
to be useful. Solution times for each statistical design must be mea-
sured in seconds to make the analysis practical at all, and possibly
in milliseconds if sophisticated features such as performance contours
and large scale sensitivities are to be included.* Until recently, one
would have been happy to get one solution to a nonlinear eircuit; today
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we are faced with obtaining hundreds and perhaps thousands of these
solutions in a reasonable time.

Various algorithms for solution of the nonlinear equations that
arise from circuit simulations have been described in the literature;
however, they are all basically variations on the Newton-Raphson
scheme and are in general not suitable as they stand. The majority
of the schemes converge in the order of tens of iterations, if they con-
verge at all. Since solution times for each iteration are generally
proportional to the cube of the number of variables, many iterations
for each statistical solution preclude their use in a program such as
this. Recent breakthroughs, however, in the Newton-Raphson solu-
tion of nonlinear circuits and careful implementation of these methods
permit solution times short enough (of the order of one second) so
that meaningful tolerance analysis is possible.

III. NUMERICAL ALGORITHMS AND THEIR IMPLEMENTATION

3.1 Problem Formulation

Given a network topology, there are various ways to write equa-
tions describing the behavior of the network. Some examples are
nodal equations, loop equations, Branin's* mixed mesh/cut-set equa-
tions and the state-space formulation, which in the de case has come
to be known as the “normal form.”> We have adopted the normal
equation formulation for the following reasons:

() The reduced set of equations produces, in general, a small
system that has to be solved iteratively, by effectively separating
the linear and nonlinear aspects of the problem.

(#7) Implementation of wvarious analysis techniques for equations

in their normal form is straightforward.

(#%7) The normal form of the equations can be generated extremely
fast (see below) in a manner competitive with the most efficient
sparse matrix techniques available today.

Some other formulation (such as nodal equations), coupled with
sparse matrix techniques may be more efficient for circuits containing
a large number of junctions compared with the number of linear
resistors. The formulation employed here, however, allows straight
forward implementation of various convergence schemes such as the
nonlinear transformation described in Section 3.3.3. In addition, it is
felt that the normal formulation is the most practical for small-to-
medium size circuits with a significant number of linear resistors
(including those in the device models). The operational amplifier
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example in this paper probably represents the limiting practical size
of circuit for this formulation. Most of the methods deseribed here are
also applicable to any other equation formulation.

3.2 Generation of Equations in the Normal Form

Consider any circuit consisting of current and voltage sources,
diodes, transistors and resistors. From the network topology and net-
work parameters, the large signal behavior of the network is charac-
terized by a system of equations in the “normal form,” viz.,

[A][V] + [B][U] + [N(V)] = O (1)
where

[V] is the vector of all device junction voltages and is the set of
independent variables to be found;
[U] is the vector of independent voltage and current sources in the
network;
[A] and [B] are coefficient matrices dependent on the network re-
sistances; and
[N(V)] is a veetor of functions dependent on the nonlinear properties
of the network.
For computer simulation, the network devices are characterized by
the Ebers—Moll model® where the functional form of N (V) is

N(V) =1, = Is[exp (6V) — 1]

where Iy is intercept current, and 6 is dependent on temperature.
Notice that the formulation (1) isolates the linear part of the network
from the nonlinear part and that the nonlinear behavior can be char-
acterized by a vector quantity.

The set of equations given by (1) must be generated for each sta-
tistical design, since the [A] and [B] matrices are dependent on
resistor values. The implication of this, of course, is that a very fast
algorithm is needed for equation generation.

To completely characterize network behavior, another set of equa-
tions is required which relates any requested network currents or
voltages to the junction voltages found from (1). If [Z] is the vector
of user-requested outputs (element currents and voltages), then

(Z] = [C][V] + [D][U] 2

where again [C] and [D] are coefficient matrices dependent on resistor
values and must be recalculated for each statistical design.
The basis for the formulation of the A, B, C and D matrices is
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mainly topological in nature. From the network incidence matrix, [T],
and the choice of a network tree as described below, the fundamental
loop and cut-set matrices ([F] and [—F]?, respectively) are derived.*

The incidence matrix, T, has elements 0 and 1 and dimensions
n X b for a network with (» + 1) nodes and b elements. Let I be a
vector of element currents which is partitioned into tree branch currents,
I,, and link currents, I, . Then,

)1 = [—9, F]H =0, 3
I,

I, =FI, and V, = —F'V,. 4

Equations (3) and (4) are expressions of Kirchoff’s Current and Voltage
Laws where ¢ is the identity matrix and the vector of element voltages,
V, is partitioned like I into V, and V, . [F] has dimensions n X (b — n),
and its elements are 0 and +1.

It is desired to place all voltage sources and device junctions in the
tree and all current sources in links. Assuming this is possible, the
columns of [7T] are arranged in the following preference order (given
also is the notation to be used for tree and link current and voltage):

I v

voltage sources Ip E
device junctions I, Vp
resistors—tree I, Ve
—Ilink Is Ve
current sources J Vs

The incidence matrix, [T], can be quickly reduced to the form
[—I, F] by gaussian elimination, from which the fundamental loop
matrix is defined. The reduction process favors the above top elements
for inclusion in the tree.

Now partition [F] as follows:

G J
E | Fy, Fi,
D | Fy F.,
R F:u Faz

and from equation (4) write

I, = Fole + F22], (5)
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IR = F3110+F32.Io (6)
Vo = —FLE — F,,V,, — F{\V,. ()

Let [R] and [(G] be defined as diagonal matrices whose elements are
tree resistor values and link conductance values, respectively. Then,
from equations (6) and (7)),

- oL
@ 0 ¢'ILI,

Lo L8, T 2T

—FF —FL 0 LT —FL 0

or
-1 r i
F G LI —F L—F, 0 L]
Define
- _F:n - Hu H12
[ R L PR
F:ﬁ G_IJ H, H.
Then

{ﬂ=ﬂM{°}Wﬂ+uﬂj° Fﬂr} (10)
IG _'FQ'Il‘ _FITI 0 J

Substituting I, into equation (5) results in equation (1), namely
I, = N(Vp) = [A][Vs] + [B][U]
or

AV + BU — N(V) = 0.

Also, from F and —F", any network current or voltage can be extracted
and the [Z] vector of equation (2) caleulated. In general,

[mﬂmm+mwwwﬁﬂ (11)
I,

where ', D’ and P are matrices whose elements are 0, =1 obtained
from selective rows and columns of ¥ and —F7. Substituting equation
(10) into equation (11) yields equation (2).
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The time-consuming task in the calculation of the A, B, C, D matrices
is in finding [‘;R] as expressed by equation (10). This calculation
a

requires one matrix inversion and two matrix multiplications.

The number of rows and columns of H-', as seen by equation (9),
is equal to the number of resistors in the network. For a completely
characterized network, including parasitics, this number can easily
approach 80 or 100. The number of multiplications required to invert
an nth order matrix is n® or 10° for our example! Clearly, the imple-
mentation of generating the equations of (1) and (2) is eritical.

Fortunately, the matrices that evolve from this formulation have
special properties which can be advantageous. These are:

(f) The fundamental loop matrix, F, contains only 0, 1 entries
and is sparse. I'rom experience with a wide range of problems,
this matrix is 20 to 50 percent dense (ratio of nonzero entries
to total number of entries). Because of these properties, any
matrix multiplication involving F or its partitions can be
performed by additions and subtractions rather than by mul-
tiplications. The operation of addition is at least 3 to 4 times
faster than multiplication on most digital computers. Also,
the number of additions and subtractions to be performed in
multiplying F by A, where A is an n; X n, matrix, is equal to
the product of n, and the number of nonzero entries of the F
matrix involved.

(427) In addition to F being sparse, other matrices as in equation (10),
are sparse with predictably placed submatrices being identi-
cally 0.

(74%) The special form of H™' of equation (9) allows profitable ap-
plication of block inversion methods. This warrants further
discussion. Consider equation (9):

[: - _Falil_l — I:Hu Hu}_

ZTI G_l 21 H22

Both R™" and (™' are diagonal matrices and the dimension of
Hisn X n = (np + ne)® where ny is the number of tree re-

gistors in the network and n. is the number of link resistances.
A method of block inversion is chosen based on the min (nz , ng).

Case 1: np =< ng Case 2: ng > np

H, = [R_l + FmGF:?l]_l. H"z:' = [Gﬁ1 + F;RFal]_l,
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JHLQ = HnFalG, Hzl = _H22F:T:R,
Hul = _"GF:;PIHIU Hl‘.’ = RFmH?z.
sz =G_GF:HH12- Hu :R+RF3|[121.

In case 1, the inversion of an np X np matrix (H,,) is required; for
case 2 the matrix to be inverted is of order ng (H,.). To invert H could
take n® multiplications. The worst case for this formulation is n, =
ng = n/2, requiring n’/8 multiplications. The calculation of the re-
maining submatrices of H involve additions, subtractions or, at worst,
multiplication by diagonal matrices.

3.3 Solution of the dec Equations

3.3.1 The Newton—Raphson Method and Its Limaitations

The standard Newton—Raphson solution of equation (1) is obtained
as follows: For an arbitrary estimate of V, say V¥, equation (1) is not
satisfied exactly, and there results:

[A]IV'] + [B][U] + [N(VH)] = [R'] (12)

where the vector [R*] is termed the residual vector and is, in this case,
a measure of the current imbalances in the circuit that result from

insisting that [V] = [V*]. The superscript k refers to the iteration
number. Successive estimates of [V] are formed as:
[VE] = V'] + [P (13)
where the step vector [P*] is obtained by solution of
—[J(V)I[P'] = [R]. (14)
In equation (14), [J(V*)] is the Jacobian of the system (1), viz.,
[J(VH] = [A] + [N"(V5)]. (15)

The iterations are terminated whenever either the step vector [P]
and/or the residual vector [R] is sufficiently close to zero.

Straightforward application of the above iterative method to the
system (1) results in several difficulties:

() If the starting guess [V°] is not close to the solution, then there
typically results exponential overflow in the nonlinear terms
Is(e"" — 1), since the full Newton—-Raphson step may be too
large in the positive direction. This may be overcome in several
ways, the simplest probably being to reduce the step,” viz.,
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V] = [VF] + S[PY] (16)
where S is a step size, 0 < S = 1 and is chosen so that
>R < X (RY (17)

(i) The method does not necessarily converge. Reliability can be
greatly increased by the use of parameter-stepping techniques,®
as described in the next section.

3.3.2 Increasing Reliability Through Source-Slepping

Newton-Raphson methods typically converge whenever the starting
guess is close to the solution point. This fact was first utilized by D. F.
Davidenko® and subsequently by various authors.'™** Implementation
of the method in nonlinear circuit analysis can be accomplished as
follows’: For any system (1), one accurate solution is always known,
namely, [V] = 0 if [U] = 0. Hence, if the sources [U] are brought to
their full value in small increments, convergence to each intermediate
point is more likely.

The strategy for stepping can take on various forms (see, for
example, Ref. 12) ; the approach taken here involves source-stepping
only when necessary. If no convergence is obtained after a fixed
number of iterations with the sources on full, the sources are reduced
to one-half their value and solution is again attempted. If necessary,
the sources are progressively reduced until convergence is obtained at
some intermediate source value, whereupon solution is again attempted
with the sources on full. If convergence is not obtained, the sources
are again reduced to a value midway between full and the last point
at which convergence was obtained. The process is repeated until
convergence at the full source value is obtained.

3.3.3 Nonlinear Scalar Transformation

Reliability and speed of the Newton-Raphson method can also be
greatly increased through the use of a nonlinear sealar transforma-
tion of variables. The transformation is an extension'® of the notion
of “charge-state-variables”*'" based on a suitable definition of the
“capacitance” of a junction, viz.,

¢ = f [ + 6KIs exp (0V)] dV (18)

where (18) is a scalar equation. The potentials are considered to be
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a function of g, i.e., V = V(q), and the Newton-Raphson iteration is
performed in the g-space rather than the V-space.
This is accomplished by noting that

R(g)] = R(V)] (19)
and
[J(@)] = [J(MISWT™ (20)
where S(V) is a diagonal matrix with elements of the form,
S:;; =1+ 6K.Isexp (6V,). (21)
The Newton—-Raphson step vector may be written in terms of ¢ as
P(@] = —[/@]'R] (22)
which results in
[P(g)] = [S(VHIPI)]. (23)

What is required, then, is to transform the usual Newton-Raphson
step vector, where now

[q"""] = [q"] + [P(d)]- (24)

Since equation (23) represents a scalar transformation on the individual
¢: , equation (24) may be written in terms of the individual elements
V., of the vector [V] as

Vit + Kis, exp (0VE") = Vi + K.Js, exp (8V5) + S(VHP(V?Y)
(25)

where
S.(V%) =14 6K.Is, exp (6V%)

and P.(V*) is the 7th element of the usual Newton-Raphson step
in V. The transform parameter K, remains to be determined.

Solution of equation (25) for each V:*' gives the new estimate of
the vector [V], given the standard Newton—-Raphson step vector [P(V)],
which may be obtained in the usual manner. Note that (25) is a scalar
equation which may be solved very simply by Newton’s method, as
discussed further below.

Empirical studies have shown that the speed of the iterative process
is dependent on the value of K, which has the effect of “straightening
out” the exponential characteristics at the expense of “warping” the
linear parts of the solution space. It was determined that a good
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choice for K is

I (U

= 0l exp (8VY)’
which, it is believed, results in a near-optimum solution sequence.*®
The value of K varies from iteration to iteration and is different for

every variable.
Onece the value of K; is determined, solution of (25) is accomplished

as follows:
Set

D, = V4 K., exp (6V%) + [1 4+ 6K.Is, exp (6V)IP(VY) (27)

where K, is picked according to equation (26). To obtain the new
estimate, V:*' , set

K; 10° < K < 10 (26)

Y, =v" (28)
and establish an iterative procedure for solution of ¥ as
YVi+ KJs, exp (0Y") — D,

1+ 6K.Is, exp (6Y7)

where the superscript n indicates the iteration number in the scalar
Newton-Raphson subloop. This is done for each element of [V].
A first estimate, Y°, is formed as follows.

Yt = Y — (29)

Set
1
7, = —3 0 [Kds); (30
then
if D, <Z.+008 Y!=D,
: (31)
andif D, > Z, +0.08, Y= Eln D, + Z..
The iterative procedure in ¥; is terminated whenever
yitt — Vi
|—|Y,_.l‘f| <€ (32)

where ¢ is some suitably small constant, such as 107,

The procedure outlined above, combined with the source stepping
deseribed in Section 3.3.2, provides an extremely powerful and rapid
algorithm for solution of circuits with exponential nonlinearities. Solu-
tion for most ecircuits is accomplished in very few iterations (fewer
than 10), so that in combination with the efficient generation of the
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equations, the overall method is competitive with analysis of linear
systems.

There is, however, one main limitation that must be dealt with as
a special case. It arises from the formulation of the circuit equations
and is discussed below.

3.3.4 Treatment of Junction Cut-sets

Whenever the cireuit under consideration contains cut-sets of junc-
tions, the matrix [A] of the system (1) becomes singular. This causes
severe instability problems in the solution whenever the junctions in
the cut-set are not (or barely) conducting. The problem, and its solu-
tion, are best illustrated by an example.

Consider the simple circuit in Fig. 1. The system of equations de-
seribing this circuit is:

1 1 1
—E _"E Vi _R' I [exp (HVDI) — 1]
+ (E] — =0, (33
1 1 1
B "R Ve -7 Igo[exp (8Vpy) — 1]
for which the Jacobian is
_Il—i — BIg, exp (8V 1) —]1—3
[J] = (34)
-1 L (8 0)
R R 82 exp D2

which, by inspection, is seen to he extremely ill-conditioned whenever
6lg, exp (8Vpa) < 1/R. The conditioning of the system can be im-
proved by subtracting the second equation from the first in (33) to
yield:

o1, ] [l
R R P+ | R |[E]

0 0 I Vp 0

+ [ Isi[exp (8V5) — 1] } _0 @)
Isz[exp (6VD2) - 1] — Im[exp (GV‘[H) — ].]
for which the Jacobian is
—L o1y, exp (6V) _L

J = R 51 €Xp D R . (36)

0[31 exp (6 IIDI) - HISQ exp (BVDQ)
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R
rdvvv—!! o
E=
'[ YD,

Fig. 1—Junction cut-set example.

The Jacobian shown in (36) can be scaled very simply to produce a
well-behaved system.

In the above example, the treatment of the cut-set problem was
determined by inspection. Junetion cut-sets can be found in any net-
work by forming the so-called “L-tree”® of the network and forming
the fundamental loop (or cut-set) matrix. The L-tree preference order
dictates that junctions be made links with all other types of elements
retaining their order. The treatment is simple, once junction/ current
source cut-sets are found. For each cut-set, one row of the [A] and
[B] matrices corresponding to one of the offending junctions is set
to zero. The appropriate additions and subtractions in the vector
[N (V)] are performed, and the system scaled. A similar procedure is
used by Shichman.*

3.4 Parameter Perturbation and Monte Carlo Analysis

In addition to methods of solution of the nonlinear circuit equations,
a method of statistically perturbing circuit parameters is required.
The two are then combined in an overall strategy.

3.4.1 Parameter Perturbation

Tt is desired to generate correlated random variables with a fixed
range, corresponding to the tolerance set by the user. Since large ar-
rays of correlated numbers have to be generated, a parametric rep-
resentation is used that correlates random variables by the use of
“pivots.”® In addition, a linear additive statistical model is used which
ensures that parameters stay within tolerance. Generation of fixed
interval correlated random numbers can be illustrated by a simple
example:

Assume z, , z, and z, independent, each from a distribution of mean m
and variance ¢,7 . Two correlated random variables, y, and y, can be
generated as

h = (l - |Xl |)I1 + h1:‘:13!' (37)
Yo = (1 — p\zDIz + A%y,
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where A;, A, are tracking coefficients and z, is serving as a “pivot.”
Note that if the z; are in the interval (—1, 1), then the y; will be in
this interval also. The correlation factor p;s is easily determined,

, = E(phy:) — EW)EY:) (39)
cl10Y2

resulting in

M)\2ﬂ'io - Alh2m§

Pia = T = WD + At — bl + aert &
with

E@) = 1 — [MDm 4+ Mmo,

E@y) = (1 — \))my + Aomy,

o, = (1 = [\, — Mo,

oy, = (1 = [h])ol, + Mo,
For the special case of A, = A, = A\, 0,> = 0.} = 0,7 = ¢" and mj = 0.
x (40

Pz = 19\ 4+ 2a%

The model actually used allows correlation to two pivots (or other
parameters) as

¥y = (1 — |7\f| - |’1-‘Dxi + NiZor + n:To2 (41)
and normalized random factors for the various parameters generated as
reo =1+ ty, (42)

where ¢ is the tolerance.

The independent variables, z; are generated as follows: A piece-
wise-linear probability density shape is supplied by the user in the
form of a table in arbitrary units for distributions other than uni-
form, normal or log normal which are “built in.” This table is scaled
and extended to include the cumulative density function which is a
piecewise-quadratic on the interval (—1, 1). A random variable from
a uniform distribution is generated by a Tausworthe random number
generator’” and transformed to the desired distribution by quadratic
interpolation from the cumulative density function. Parameter per-
turbations are then calculated according to equations (41) and (42).
Nominal (design) values of parameters are taken to be the median
value of their corresponding distributions.
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3.4.2 Monte Carlo Analysis

Parameter perturbations and analysis are combined in a standard
tolerance analysis loop. The nominal solution is taken as the starting
guess for each random design and the solutions along with the pa-
rameter values stored on disk for later post-processing. Work is in
progress to allow various other procedures (such as tuning or adjust-
ment) in the loop.

IV. IMPLEMENTATION

The techniques and methods deseribed in the preceding section al-
low fairly efficient nonlinear statistical design. The details of their
implementation can, however, spell the difference between success and
failure in a general-purpose program, as well as the input/output
features and structure of the program. Described below are some of
the more critical aspects of the design and structure of a general-
purpose nonlinear tolerance analysis program for IBM series 360
computers.

4.1 Memory Allocation

As in any large program, there exists a conflict between efficient
use of memory and speed of execution. In addition to the program
itself, memory is required for the various coefficient matrices, the
variables and outputs, as well as the various circuit parameters such
as element values, model parameters, statistical data and topological
information.

The program itself, written largely in ForRTRAN-1v, is overlayed with
major divisions separating (¢) input and initial handling of data,
(17) generation of the various topological matrices, (i) generation of
the equations, (iv) analysis, and (v) output. Communication among
the various overlays is via a labeled common structure. Data at input
time is handled largely via fixed-dimension arrays which are then
partly overwritten by run-time data during execution. Run-time data
is stored in a dynamic linear array with pointers used for addressing,.
This data includes such arrays as the 4, B, C and D matrices, the
variables, the Jacobian, various tabled quantities, and so on. In this
way, efficient use is made of fast-access memory in that only data that
is needed is stored. At the same time, this structure does not degrade
the speed of execution,

4.2 Algorithms
The IBM 360 series is not well suited for applications such as described
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here and special care is required in the implementation of the various
algorithms in addition to standard good programming practices, All
floating-point computation in the program is done in double precision
(8 bytes). It was found that some of the matrix-handling subroutines
had to be written in Assembly language in order to achieve any efficiency
at all. For example, one routine that multiplies two matrices one of
which has only 0, =1 entries could be speeded up by a factor of 5-10
by direct coding in Assembly language. Assembly language coding
is also required for the equation solution and matrix inversion routines.

Matrix sparsity is used to advantage in the solution of simultaneous
equations as in equation (14) by column reordering'® and stability
is preserved by row-pivoting. Ill-conditioning is detected by moni-
toring the magnitude of the smallest pivot used in the gaussian elim-
ination process.

Other small details in the programming are equally eritical. Tt is
of utmost importance in an application such as this to preserve as
much numerical precision as possible since many mathematical steps
are required before a solution is attained. For example, the analysis
requires evaluation of quantities such as Is[exp (6V) — 1]. For values
of V close to zero, a call to the exponential routine and subsequent
subtraction of the constant 1 can yield an inaccurate result. For this
situation, a series evaluation of the function is used.

4.3 Data Reduction and Display

Some care has to be taken in handling the voluminous data pro-
duced by the program. Experience has shown that it is almost im-
possible to determine beforehand how to analyze and display the
output data, at least until a preliminary investigation of the results
is available. In addition, any extensive Monte Carlo analysis of
most circuits is likely to be expensive (despite the efficient algorithms)
so that it becomes worthwhile developing a flexible post-processing
scheme. For these reasons, the philosophy adopted here is the follow-
ing:

(/) All output data, including parameter values of every “im-
portant” or expensive analysis, is stored in a permanent disk
file for later access. This raw data may be later reduced or
displayed in whatever way the user sees fit.

(i) Extensive post-processing capability is available immediately
following the analysis, accessed via the input language to the
program. This facility allows scatter plots and histograms of
any outputs or parameters to be produced on-line, including
the printing out of extremal cases and various statistics. The
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facility also allows separation of the data by temperature or
any other parameter.

(777) Hard-copy printout of all data is produced whether or not the
user requires it. In this way an expensive run is not lost even
if the disk file is destroyed. Experience has also shown that
sometimes it is desired to inspect the raw data weeks after
initial analysis. The hard-copy output provides this facility.

V. SAMPLE PROBLEMS

Two sample problems are presented, both of which Monte Carlo
analysis has verified to be good designs. The transistor model® used in
both examples is shown in Fig. 2. In both problems silicon resistors
(including the base and collector resistances of the transistor model)
were allowed to vary +159%, within a normal distribution truncated
at =43¢, with resistor values tracking to =59%,. This is illustrated in
the scatter diagram shown in Fig. 3. The intercept currents were picked
from a log-normal distribution ranging from 1/4I5, to 4[5, and cor-
related by a factor of 0.85. The 8s of the devices were picked from a
triangular distribution, typically ranging from 1/28, to 28, and cor-
related by a factor of 0.3.

The first example, a constant current source, used in a D/A converter,
is shown in Fig. 4. Resistors R1 through R4 are thin film tantalum
resistors with a tolerance of +29,, with the exception of R4 which was
assigned a tolerance of 4-0.59%,. R5 represents the load and was allowed
to vary =£=25%. Analysis of this circuit verified that the output current
is essentially insensitive to all parameters except the power supplies
and R4. A scatter plot of the output current versus the value of R4
is shown in TFig. 5 for the case where the power supplies are held fixed.
Figure 6 shows a histogram of the values of output current with all
parameters varying. For this case, the twelve-volt supply was assigned

RC
Co—AN—
]i [N
RB
Bo A"

Fig. 2—Transistor model.
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Fig. 3—Resistor correlation, range of each axis +15%.
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Fig. 4 —Constant current source.
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Fig. 5—Current source output (vertical axis) versus R4 (normalized).
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Fig. 6—Current source output with all parameters varying.
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to a tolerance of 429, with the six-volt supply tracking to =4=1%.
Analysis time for this example was approximately one second CPU
time per random design on an IBM 360/65 computer. The great majority
of this time represents overhead in the form of subroutine calls, various
bookkeeping operations and writing data on disk and the printer.
Solutions were carried to approximately seven digits of accuracy with
each random design requiring typically 3-5 iterations.

The second example shown in Fig. 7 is a silicon integrated opera-
tional amplifier designed at Bell Laboratories. Of interest in this
example is the output offset voltage with the inputs grounded. In
addition, minimum and maximum (worst case) currents in the col-
lectors of T13, T14 and T16, as well as dec gain were sought. This
circuit represents a rather large simulation with 48 junctions, 76 resis-
tors, 79 nodes and 127 branches. Figure 8 shows a histogram of the
output voltage at room temperature with the power supplies held fixed.
The range of offsets for this circuit was found to be slightly higher
than predicted by approximate hand analysis. Analysis time for this

Vs

\_I';[Tm
+
1K IK% 1K>%\ 47K 1K 50 40 ]§

Fig. 7—Operational amplifier.
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Fig. 8—Operational amplifier output offset voltage.

example was 8 seconds CPU time per statistical design, some of this
time being bookkeeping overhead. It is expected that this time will
be cut down considerably with some reprogramming. As in the pre-
vious example, typically 3-5 iterations were required per statistical
design for a seven-digit accuracy in junction voltages.

VI. CONCLUSIONS

Analysis techniques and programming considerations have been
presented that allow reasonably economical tolerance analysis of
nonlinear “de” circuits of reasonable size. Many of the ideas presented
have evolved from past experience with ac tolerance analysis and will
most probably be modified as experience with nonlinear statistical
design becomes more plentiful. It is already apparent, however, that
the trend in the near future will be to larger scale integration of
circuits for which some of the present analysis techniques will likely
be inadequate. Research is in progress in analysis methods capable
of coping with large and complex circuits, as well as methods to make
the present techniques even more efficient.
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