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Statistical Circuit Design:

Large Change Sensitivities for
Statistical Design

By E. M. BUTLER 6
(Manuscript received November 25, 1970)

A Monte Carlo study 1is an analysis in the, sense that for specified
tolerances, correlations, etc., empiric distributions of measures of
performance are obtained. An approach is presented which addresses
itself to the inverse problem, that of determining the tolerances, cor-
relations, etc., necessary to realize acceptable performance distribu-
tions. The approach is based on the concept of large change sensitiv-
ities which are proposed as a measure of sensitivity for stafistical
design. The approach specifically addresses design problems such as
specifying tolerances, desensitizing a nominal design, recognizing the
possibilities for and specifying tuning and/or matching procedures,
and verifying that a design is consistent with expected statistical cor-
relation between parameters. We present an example illustrating sev-
eral of these applications.

I. INTRODUCTION

Realistic system and circuit design must account for the fact that
exact realizations of paper designs are seldom achieved. The Bell
System is particularly sensitive to this problem not only because of
physical and economic constraints in manufacture, but also because
of the varied field environments in which the system must operate. The
effects of variations in design parameters, which are usually modeled
as random variables, can be investigated via a Monte Carlo study.
However, a Monte Carlo study is an analysis in the sense that for
specified probability density functions of design parameters (specified
by “nominal” value, tolerance, correlation, etc.) an empirical distribu-
tion for various outputs or performance measures is found. The inverse
problem, that of finding nominal values, tolerances, and correlation
in order to obtain an acceptable performance distribution, has received
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relatively little attention. This paper describes an approach addressed
to this problem of “closing the loop around tolerance analysis.” *

There are three significant points about this approach. First, the
approach does not rely on first- or second-order approximations.! Like
Monte Carlo, no attempt is made to approximate measures of per-
formance. Second, the approach can accommodate multiple-specifica-
tions. Third, the implementation of the approach is feasible with a
computer and so the techniques may be thought of as computer aids
to statistical design.

The approach is based on four assumptions.

(?) There exists a designer-specified scalar performance criterion,
J, which adequately reflects the goodness of a design and which
is a continuous function of the design parameters. A method
for forming a single criterion from many criteria is illustrated in
the examples.

(7) There is a designer-specified value of this criterion beyond
which designs are not acceptable.

(#4) There is a known nominal design which is acceptable in terms
of the performance criterion.

Definition: The region of acceptability, B, , is defined to be a con-
nected region in parameter space such that the nominal design is in
R , and such that for all realizations in B, the corresponding performance
is acceptable.

Finally, we make a fourth assumption.

(iv) All realizations inside R, are equally good; i.e., a pass/fail
decision can be made for each realization.

These ideas are illustrated in the one parameter, two criterion example
in Fig. 1 where J; is the scalar value of the 7th performance criterion,
p° is the nominal design parameter value, J{ is the ith performance
at nominal and e, is the allowable degradation in J, from J¢.' Since
there is more than one specification which must be met, the region of
acceptability, R, , is the intersection of the individual regions of ac-
ceptability for each J. . In this example, R, is[p|a = p = b].

* Some of the information in this paper has appeared elsewhere! It is included
here in the interest of completeness.
1 There have been suggestions in control theory to eschew first-order sensitivi-
ties, but the proposed concepts have been difficult to realize.2-*

1 The superseript © denotes nominal value. A method for forming a single cri-
terion from many criteria is illustrated in the examples.
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Fig. 1—A one-dimensional example.

Under the above assumptions, the region of acceptability is clearly
important in the context of statistical design, that is, in specifying
nominal values, tolerances, etc. In fact, it is the shape of this region
and the placement of the nominal in it rather than the value of the
performance at nominal that is important. For example, if the random
deviations in the realization of p in the above example were uniformly
distributed and symmetric about the nominal, then a nominal design
located half way between points a and b would be better than p° in
terms of yield and/or allowable tolerance. Furthermore, in this context
of statistical design the concept of sensitivity takes on a new meaning
which is introduced in Section II. Applications of this sensitivity in-
formation to closing the loop in tolerance analysis are discussed in
Section III and an example is given in Section IV.

II. LARGE CHANGE SENSITIVITY

2.1 Intercepts

Suppose that we hold all parameters fixed at nominal except the kth.
We define the upper (lower) intercept of parameter k to be the value
in percent deviation from nominal of parameter k for which the per-
formance is unacceptable for the first time as parameter & is increased
(decreased) from nominal. Parameter values are expressed in percent
deviation from nominal for reasonable scaling. Points b and a are the
upper and lower intercepts for the one parameter example of Fig. 1.
We denote these intercepts by
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I'Y(J,p°, € = It = upper intercept of parameter k with respect
to performance criterion J, nominal design p°,
and allowable performance degradation e.*

Similar notation holds for I .

The intercepts are simply a measure of how far a single parameter
can deviate within the region of acceptability. If the kth intercepts are
small, then being in R, is very ‘‘sensitive’” to the kth parameter, and
vice versa. Using this observation as motivation, the following measure
of sensitivity is proposed.

Li(J,p°, € = L} = upper large change sensitivity of parameter k
with respect to J, p° and e.

a 1

F
k

Similarly,
- a1
L, = I
A single large change sensitivity for parameter k can be defined as the
maximum of [L7 , L7].

2.2 Performance Confours

The intercepts provide information about how far a single parameter
can vary while all others are fixed at nominal before the specifications
are not met. This idea can be extended to two parameters. For a pair
of design parameters, a line (or lines) of constant, just acceptable
performance provides an indication about how the two parameters can
vary simultaneously around nominal before specifications are not met.
In fact, a performance contour for a pair of parameters is defined to
be this line (or lines) which describes the edge of E 4 restricted to the two-
dimensional subspace defined by these parameters, while all other
parameters are held fixed at nominal. Again, each parameter value is
specified in terms of percent deviation from its nominal value.

The concept of a performance contour can be illustrated with a simple
example. Consider the two parameter voltage divider shown in Fig. 2
where B! = R; = 1. The transfer function, T, is given by

T =1/(R./R, + 1), T° = 0.5
the input resistance, R, is given by R = R, + E,, R’ = 2.

* Bold face letters denote vector quantities.
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Fig. 2—A voltage divider example.

Suppose the design specifications call for 0.49 = T' = 0.51 and
18 = R = 2.2. The region around nominal where the first specifica-
tion is met is the shaded area in Fig. 3 and the region where the second
specification is met is the cross-hatched area. The region where both
specifications are met is the intersection of these regions. The edge of
this acceptable region is the performance contour. The points where
the contour crosses the axes are the intercepts.

Notice that the performance contour has sharp corners because of
the multiple design specifications. The particular specification which
determines an intercept or a section of a performance contour is said
to be dominant at that point or points. For example, the upper left
part of the contour in Fig. 3 is determined by the T = 0.51 specifica-
tion.

A performanece contour can be interpreted as providing “second-

N PERCENT DEVIATION FROM
D NOMINAL FOR R

,T=0.51
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. ,-_,:4'_-T =0.49

i N — — PERFORMANCE CONTOUR

. PERCENT DEVIATION
FROM NOMINAL
FOR R,

Fig. 3—Performance contour for the voltage divider example.
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order” large change sensitivity information since it indicates how L'
and L~ for one parameter will change for a change in the nominal value
of the second parameter.

2.3 Comparison with Classical Sensitivities

One can argue that large change sensitivities are similar to first-
order sensitivities in the sense that only one parameter is varied while
others are held fixed. There is, however, a fundamental difference in
approach. The latter sensitivities are proportional to the change in
performance due to similar changes in the individual parameters. The
large change sensitivities, on the other hand, are based on the change
necessary in each parameter to bring about a particular (but similar)
change in performance. Finally, it should be noted that if J is a linear
function of the parameters, the two sensitivities are similar. This
lends credence to the definition of large change sensitivity as propor-
tional to the inverse of the intercepts.

It is interesting to note that large change and classical sensitivities
each provide a characterization. The intercepts and performance
contours (first- and second-order large change sensitivities) provide
a characterization of B4 in one and two dimensions in parameter space,
while the first two terms in a Taylor series of performance about
nominal (first- and second-order classical sensitivities) provide a
characterization of the performance near nominal. In statistical design,
attention is (or should be) focused on R, rather than on the per-
formance at nominal. The large change sensitivities provide a charac-
terization of R4, and hence, a measure of parameter sensitivity for
statistical design.

III. APPLICATIONS

3.1 Preliminary Remarks

Information provided by large change sensitivities can enhance a
designer’s insight into a problem. This can be especially important
when complicated specifications exist and intuition becomes hard
pressed. One might question the amount of useful information derivable
from performance contours since they represent R, for only pairs of
parameters. It should be pointed out, however, that electrical properties
tend to depend on parameters in pairs such as RC products and resis-
tor ratios.

In this section, several specific applications of large change sensi-
tivity information to design problems are discussed. The problems
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which are addressed include desensitizing a nominal design, specifying
tolerances, recognizing the need for and specifying tuning and/or
matching, and verifying that a design is consistent with known statisti-
cal correlation or tracking.

3.2 Desensitizing a Design

3.2.1 The Problem

We have seen in the example of Fig. 1 that the design could tolerate
larger parameter variations from nominal if the nominal were centered
in R,. That is, we could desensitize (in a large change sense) the
design by placing the nominal half-way between the intercepts rather
than at p°. We extend this notion to N dimensions and base our
measure of being centered in R4 on the intercepts, or equivalently, on
the large change sensitivities.

We have investigated an algorithm to automatically desensitize an
initial design which satisfies the performance specifications but is not
necessarily centered. Two pertinent observations which influenced the
formulation of our algorithm are:

(?) If we change the nominal values of more than one parameter
simultaneously in an attempt to center based only on intercept
information, it is possible to move outside of B, inadvertently.
Consider the hypothetical two-parameter example described by
its performance contour in Fig. 4. If we center both p, and p,

/

P2

Aps,p3)

4

Py

Fig. 4—Performance contour for a hypothetical two-parameter example.
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simultaneously based on the intercepts at point (7 , p?), we move
to point X which is outside £, .

(#2) The intercepts for a particular parameter are simple functions
of that parameter’s nominal value, but they can be complicated,
even noncontinuous functions of the nominal values of other
parameters. For example, in Fig. 4 the upper intercept of pa-
rameter 1 (for p, = p}) is not a continuous function of p, .

3.2.2 An Algorithm for Desensitizing

In view of the above comments, it was decided to iterate towards
a desensitized design by changing only one nominal at a time using a
simple algorithm. We have taken as our measure of being centered,

E(p) = m_a"x It('f: p, E) + I_,(J, P, E)l = Il’l.&x €i,

= |Ih+ In | *

Suppose we start at p and that the error, E(p) = E, is attributable
to parameter k, i.e., M = k. Let us call p, the “worst offender.” First,
we center parameter k and compute the new error E (p’) = E’. Note
that centering py insures e, = 0, but the intercepts for the other param-
eters can, and probably will, change. If E’ is less than E, p” becomes
our new starting point with error E’, and we then center that parameter
which is the current worst offender. (It cannot be p; since py is cen-
tered.) If E’ is not less than E, it means that centering py has altered
the other intercepts enough to cause a larger error. We thus step p;
back half-way between its present value and its original value, and
again compute the error. This process continues until a lower error has
been found or until p; has been stepped back seven times at which
point the error is accepted and the algorithm starts over. Note that if
this happens the worst offender will not be parameter k.

This algorithm has been implemented in a computer program called
xcENTRIC (Experimental Centering Program) and some results will be
given in Section IV. No claims are made about convergence of the
algorithm; rather, its strength lies in its simplicity.

3.3 Specifying Tolerances

Typical approaches to specifying tolerances in the past have been
either to set tolerances roughly inversely proportional to first-order

* We have assumed symmetry in the probability density function for p:. This
is not necessary since one can weight the intercepts accordingly. For example, if
the density function for p: were rectangular with twice as much probability above
nominal as below, one could set e; proportional to (I;* 4 21:7).
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sensitivities or to set them to the tightest available. The former ap-
proach requires linear approximations while the latter can be unneces-
sarily expensive. The intercepts and performance contours provide a
designer with information about how far parameters can deviate and
stay within R,. This is what a designer really needs to better specify
tolerances. Furthermore, if 100 percent yield is desired, the intercepts
and contours provide upper bounds and pairwise constraints respec-
tively on feasible parameter tolerances. This fact has been utilized to
help solve a version of the minimum cost tolerance specification prob-
lem; the method and results are presented in another paper in this
issue.®

3.4 Parameler Correlation with Respect to the Performance Specifications

Consider again the performance contour shown in Fig. 3 for the
voltage divider example. The shape is an indication that the two
resistors are “correlated” with respect to the design specifications.
Two parameters are qualitatively defined to be correlated with respect
to the performance specification if the region of acceptability for one
parameter (specified by its intercepts) depends strongly on the value
of the second parameter. If the contour were rectangular and parallel
to the axes, the two parameters would be uncorrelated. This correlation
information can be useful in two ways.

First, a design may be evaluated by determining whether parameter
correlation with respect to the performance specifications is consistent
with statistical parameter correlations. A design should be insensitive
to, and in fact, it should take advantage of known statistical correla-
tion. For example, it would be desirable if R; and R, in the voltage
divider example tracked each other (or could be chosen to track)
because of manufacture and/or environment. In addition, it is sug-
gested that if one is investigating a design with statistical correlation
between many parameters, it might be advantageous to find intercepts
and contours for the independent and correlation determining random
variables since they are really the design parameters.

Second, problems of specifying tuning or matching are inherently
linked to the tolerance specification problem; parameter correlation
with respect to performance specifications is an indication that tuning
or matching might be desirable. In addition, the contour information
can indicate how to match parameters and/or the specification to which
to tune. In the case of tuning, the constraint which is dominant along
the “long” side of the contour is the criterion to which to tune. In the
voltage divider example this would be the transfer function specifica-
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tion. For the case of matching, correlation can indicate that the per-
formance specifications depend strongly on, or are most sensitive to, a
particular combination of the two parameters such as their ratio. Prop-
erties of performance contours which relate certain correlated contour
shapes to particular combinations of the two parameters are given
elsewhere.! However, two of the more important properties are stated
in the Appendix..Design parameters presumably would be matched
according to the particular combination. For example, the contour for
the voltage divider lies along and contains the 45° line and so one
should consider matching the ratio of the two resistors to their nominal
ratio (see Section A.2). Finally, it should be pointed out that the con-
tour information can be used to suggest sequential tuning or matching
procedures since contours for a tuned or matched design might suggest
further tuning or matching.

3.5 Computation of Performance Contours

A program, coNTOUR, has been written to compute intercepts and
performance contours for user supplied subroutines which compute
design performance. The program has been written for an interactive
CDC 3500 facility. On-line scope displays of the contours as well as
Calcomp plots are options which complement printer output. A
Monte Carlo program to estimate yield is also part of the entire pack-
age. Thus, a user can verify immediately whether any changes made
based on contours or intercepts did, in faet, increase the yield. The
choice of parameter pairs for which performance contours are to be
computed is up to the user.

The intercepts are found via a search and the contours are found via
a performance contour following algorithm. Since many performance
evaluations are necessary, the speed of computation depends strongly
on the time required for a circuit analysis. For the example to be
presented, a general purpose analysis routine for ladder networks was
used to analyze the circuit and the computation of a performance con-
tour typically took on the order of a few seconds. No advantage was
taken of the fact that during the search for intercepts or computation
of a contour, only one or two circuit parameter values are changed
between each analysis.

IV. AN EXAMPLE

4.1 Preliminary Remarks
In the last section we indicated that large change sensitivity infor-
mation could be used to desensitize an initial design, to help specify
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tolerances, and to indicate parameter correlation with respect to the
specifications. In this section we present an example which illustrates
the insight provided by intercepts and contours as well as their utility
in suggesting matching and in desensitizing an initial design. CONTOUR
was used to compute the intercepts and contours, and XCENTRIC was
used to desensitize the initial design. The yields were estimated using
TAP® with components assumed to be independent, uniformly distrib-
uted random variables. This example is not contrived; it was a recent
B.T.L. design.

4.2 The Problem

The circuit is a low frequency bandpass filter with insertion loss
specifications shown in Fig. 5. This is an example of the multicriteria
case. We obtain a single criterion by defining

R § A § A
Ry . RL
o—flg\—fw»—{\ {f W\,—fbétf\—o
®ge 6

Rs=Rioap = 1.2KQ

R Ry

®
o— 1 N 5

NOMINAL _
RESPONSE

|

INSERTION LOSS IN dB

|
240 360 490 700
FREQUENCY IN HERTZ

Fig. 5—The circuit and specifications for the example. (Parameters 5 and 6
correspond to the loss peak at 700 Hz, Parameters 9 and 10 correspond to the
loss peak at 240 Hz. Parameters 2, 3, 12, and 13 correspond to the bandpass loss
minimum at 420 Hz.)
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where IL; is the insertion loss at the ith frequency (for this example
there were 30 different frequencies of interest), and
J £ max {J;].

i=1,30

Thus, J° = Oand ¢ = 1.

4.3 Results

Two of the performance contours for this example are shown in
Fig. 6. The numbers which are written alongside the contours indicate
the frequency at which the insertion loss specifications failed first, i.e.,
which criterion determined or was dominant along that edge of the
region of acceptability.

The insight gained from the contours agrees with one’s intuitive feel
for the circuit. Consider the transmission zeroes which we know depend
on LC products and in particular consider parameters 5 and 6, which
determine the loss peak at 700 Hz. If both 5 and 6 increase (first
quadrant in 5, 6 contour), the loss peak moves down in frequency and
a specification is in trouble at 490 Hz, the upper edge of the passband.
If both 5 and 6 decrease, the loss peak moves up in frequency and the
35-dB insertion loss at 700-Hz criterion is the first to be violated.
Similar observations can be made by looking at the 9, 10 contour.

Let us now consider possible component mateching to increase yield
or to permit loosening tolerances. It turns out that the shape of the
contour for parameters 5 and 6 is an indication that the specifications
are sensitive to the product of these parameters. With tolerances of

140
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N
[=]
I

490

700 \ 5

40

PARAMETER 6
PARAMETER 10

o

20

950 -20 175
] l l ] 380 a0k | |
=40 -20 0 20 40 60 -20 o] 20 40 60 80 100

PARAMETER 5 PARAMETER 9

Fig. 6—Two performance contours for the example.
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30 percent on the Rs, 5 percent on parameters 2, 3, 12, and 13, 1
percent on 9, 2 percent on 10, and 10 percent on 5 and 6, the yield
went from 85 percent with no matching to 99 percent with matching
5 and 6 to their nominal product. The contour for parameters 9 and
10 also indicates that their produet is important. With tolerances of
30 percent on the Rs, 10 percent on parameters 5, 6, 9, and 10, and 5
percent on parameters 2, 3, 12, and 13, the yield went from 67 percent
(no matching) to 94 percent with matching 5, 6 and 9, 10 to their
respective nominal products. It is true that in this sample example, the
desirability of matching might be intuitively obvious to a designer.
The purpose, however, was to illustrate how matching based on con-
tour information can dramatically affect the yield.*

Finally, let us consider desensitizing this design since it is not
centered as is obvious from the contour for parameters 9 and 10. The
centering would hopefully effect an increase in yield for a particular
set, of tolerances or an increase in tolerances for a particular yield.
XCENTRIC was run for two cases: centering only the inductors, and
centering both inductors and capacitors. Yields for various tolerances
were estimated for the original and both of the centered designs. The
results are shown in Table I. (30 percent tolerances were used for the
Rs.)

The following comments are pertinent:

(i) The tolerances for the original design were 1 percent Ls and
2 percent C's which gave the desired 100 percent yield.

(i) The error function for xcENTRIC as defined in Section 3.2.2
went from 21 to 0.6 for centering only the inductors and from
25 to 2.5 for centering all Ls and Cs. The changes from original
nominal parameter values to centered values were typically
on the order of a few percent.

(435) For any of the tolerance combinations shown, the yield increased
significantly as a result of ‘‘centering.”

(iv) The original tolerances on the inductors could have been loosened
to virtually 5 percent if the centered nominals had been used.
This would have been physically feasible since the inductors
were wound to desired values for this particular cireuit.

(v) Ignoring the problem of preferred capacitor values, the tolerances
for both Ls and Cs could have been loosened to 5 percent as a
result of applying XCENTRIC.

* For other examples of this, see Ref. 1.
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TasLE I—Y1ELDS FOR VARIOUS TOLERANCES FOR ORIGINAL
AND CENTERED NOMINAL VALUES.

Original Centered L Centered
Nominal Original ¢ L and C
Tolerances Values: Nominal Values Nominal Values
19 L 100 —_— —
29, C
59 L 95 99.9 —
29% C
10% L 75 89.0 -
29, C
5% L 92 97.5 100
5% C

V. CONCLUSION

In this paper we have discussed an approach to “closing the loop”
in tolerance analysis. The approach specifically addresses design prob-
lems such as specifying tolerances, desensitizing a nominal design,
specifying adjustment procedures, and verifying that a design is con-
sistent with manufacturing and environmental component tracking.
The approach is particularly applicable to Bell System designs not only
because in such designs deviations from nominal must be anticipated,
but also because the designs many times have complicated, multiple
specifications. The approach does not rely on first- or second-order
approximations. In addition, since they are feasible via computer
implementation, the techniques may be thought of as computer aids
to (statistical) design.

Under the reasonable and realistic assumptions stated in Seetion I
and in the context of statistical design, it was seen that the shape of
the region of acceptability and the placement of the nominal design
in it are more important than the performance of the nominal design.
Furthermore, in view of this the concept of sensitivity has a meaning
different from the classical first-order one, and so large change sensitiv-
ity was introduced. Intercepts and performance contours were seen to
provide “first- and second-order” large change sensitivity information.
In fact, they provide a characterization of the region of acceptability
in somewhat the same way that classical first- and second-order sensi-
tivities provide a characterization of performance near nominal. Thus,
because of the attention focused on the region of acceptability in
statistical design, the large change sensitivities provide a measure of
sensitivity for statistical design.
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Two computer programs, coNTOUR and XCENTRIC, have been written
to compute and utilize large change sensitivity information. An
example was presented to illustrate the utility of the approach in
providing insight, in suggesting possible adjustment procedures, and
in desensitizing a nominal design. In the two latter applications the
yield increased significantly when adjustments and changes were made
based on large change sensitivity information.

In short, for the realistic design problem, attention is (or should be)
focused-on the region of acceptability. Large change sensitivities pro-
vide a measure of parameter sensitivity for this region and design
techniques based on them are addressed to the problem of “closing the
loop” in tolerance analysis.
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APPENDIX

Properties of Performance Contours

The notation used is p; for the value of parameter 7, p; for nominal
value, v; for percent deviation from p?, and T'(v:, v;) or I'; for the
contour of the 7, j parameters.

A.1 Product Property

If J depends only on the product of two parameters p., p;, then
(i) T(v;, v;) contains the curve shown in Fig. 7 and is not bounded
at either end;

Vj

Il VU

-+ - 100

Fig. 7—The constant parameter product curve in percent deviation space.
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(i2) T'(v;, v) = T(v;, vy), for all v, .
One could qualitatively relax this exact property into the following
corollary.

A.2 Product Property Corollary

If J as a function of p; and p; is most sensitive (in a large change
sense) to the product of p; and p; , then T';; will roughly follow the curve
in Fig. 7 and Tz = T, for all k.

A.3 Ratio Property

If J depends only on the ratio of two parameters p; , p;, then
(7) T(v;,v;) contains the 45° line in the v; , v; plane and is unbounded;
(#2) for »; and v; < 100, I'(v;, v,) looks like T'(—v;, ), for all v, .

A.4 Ratio Property Corollary

If J is most sensitive to the ratio of two parameters p;, p;, then
T;; will roughly follow the 45° line, and I'(v; , v.) & I'(—v;, v,) for all k,
for v, , v, < 100.

The motivation behind parts (i) of these two properties is simply
that the hyperbola in Fig, 7 and the 45° line are loci in percent deviation
space of constant parameter product and ratio, respectively.
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