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This paper provides an overview of work on statistical formulations
and analyses associated with the problem of identifying persons on the
basis of spectral energy representations of acoustical utterances. The
tnvestigation has been largely empirical and the paper focuses on the
statistical technigques and strategies that have been developed in the
context of analyzing two sizeable bodies of data. The problems and
procedures to be discussed include: (1) data condensation and repre-
sentation; (1) efficient and practical criteria for classification and dis-
crimination; and (i) strategies for automatic identification of talkers
in relatively large populations.

I. INTRODUCTION

Many of us can perhaps recall the experience of identifying a caller
on the telephone from a relatively short utterance such as the word
“Hello.” This might indicate that even short utterances contain suffi-
cient information for identification, and it is an intriguing and interest-
ing problem to inquire whether automatic, objective, accurate and eco-
nomic methods can be developed for talker recognition. The authors
of at least ten papers in the last eight years have reported experiments
with (simulated) automatic talker recognizers. Using a variety of ap-
proaches to different aspects of the problem, these experimenters have
met with strikingly similar success—90 percent (or more) correct rec-
ognition.

Previous studies may be classified into two groups according to
whether the problem addressed was verification (is the speaker who he
claims to be?) or identification (assignment of an unknown utterance
to one person in a given group of speakers). While two studies of the
first kind involved 34 voices or less,*? the third® and most extensive
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(118 voices) was most successful, achieving an average of 99 percent
correct verifications. Four studies of the second type used quite dif-
ferent bases for identification in small (10-30 voices) populations,
varying from spectral analyses of nasal sounds* or whole words®® to
measurements of phonological features.” Whereas all the above studies
required the speaker to utter a prescribed text, three others have
achieved from 90 to 100 percent correct identification with no econ-
straints on what the speaker says, provided that a sufficient quantity
of speech from each talker is available. Again, the procedures employed
in these last three studies have differed widely: spectral analyses of
whole speech® or of vowels only,’ and intervals between extremal points
in various frequeney bands'® were used with three different recognition
schemes.

These results with small populations suggest that the speech signal
contains so much information about the talker that one can be distin-
guished from among 30 or so by a variety of procedures, and that we
cannot learn from these studies the relative merits of various ways of
representing the signal and reaching a decision. The only one of these
studies that used a hundred or more voices® required only that each
unknown be assigned to one of two classes (genuine or impostor) ; there
have been no studies of identification in large populations. This paper
describes the evolution of work addressed to both the small- and large-
population identification problems by a group of people, including the
present authors, over the last few years. Aside from the present
authors, others who have participated in different facets of this work
are: Mrs. M. H. Becker, Mrs. L. P. Hughes, T. L. DeChaine, R. S.
Pinkham and M. B. Wilk.

The work to be described here evolved empirically and experi-
mentally in the context of analyzing two bodies of data. With no gen-
eral theory being available to aid in designing a process for talker
identifieation, this work relied heavily on the analysis of data not only
to generate ideas and techniques of possible relevance but also to assess
the performance of any scheme. Thus, the pragmatic criterion of ob-
served proportions of correct recognition in the two bodies of data was
utilized as the touchstone rather than any general theoretical opti-
mality properties. The data analytic orientation in this problem proves
to be practical and productive, and most of the successful ideas and
methods are fairly obvious—especially after the fact!

The presentation of the data analysis and decision processes may be
viewed in four parts: (i) The data—the two bodies of data studied will
be described, the basic digital format of an acoustical utterance will
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be described and displayed, and finally, some features of the data will
be discussed. (it) Data condensation—several primitive procedures
will be mentioned for deriving manageably low-dimensional representa-
tions from the original data. (i27) Definition of a space and metrics—
the unknown, and the various candidates for assigning it to, may be
represented in the space of the summary data, and several metrics may
be specified for measuring the distance between the unknown and the
candidates for identification. (iv) Classification schemes and strategies
for identification—i.e., procedures for assigning an unknown in a
relatively small population of contending speakers, as well as statisti-
cal strategies for allocation in relatively large populations of speakers.

II. THE DATA

The two bodies of data involved in our study both deal with repeated
utterances of single words. The first set of data (ef. S. Pruzansky® for
a detailed description) is from ten talkers each of whom yielded several
repetitions of ten words commonly used in telephone conversations.
The actual utterances were excerpted from sentences in which the
words were embedded and the talkers, in fact, read the sentences. For
most talker-word combinations there were seven replications with only
a few missing. (693 utterances were available instead of 700 = 10 X
10 X 7))

The second body of data, which was collected subsequent to promis-
ing results obtained with the first set of data, deals with a population
of 172 speakers each of whom repeated each of five digit names (one,
two, three, four and nine) five times. The words were uttered in isola-
tion rather than being embedded in sentences. The second body of
data involved many more speakers, fewer words and fewer replications
relative to the first set of data.

Whereas the first set of recordings was made under carefully con-
trolled conditions (see Ref. 5), the second set was made in an unat-
tended booth in a busy concourse. Although a high-quality microphone
was used, it was housed in a telephone handset, held a short (but vari-
able) distance from the lips. Automatic equipment controlled a display
in the booth which cued the talkers as to which digit name to say and
when. In both cases, all utterances by a given talker were recorded in
one session.

In the present report, the displays and examples are drawn from
analyses of both bodies of data and the presentation will switeh back
and forth between the two sets of analyses.
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The most raw form of the data is just the audio recordings. However,
for purposes of analysis, the audio recordings were fed into an analog
filter bank and the filter outputs were sampled at fixed, frequent inter-
vals of time (10-millisecond intervals in the first body of data and
-millisecond intervals in the second set). In the first set of data, the
outputs from 17 frequency channels covering a range of 100 to 7000 Hz
were retained; the first 16 channels were approximately equally spaced
along a Koenig scale from 200 to 4000 Hz, while the 17th covered the
range 4000 to 7000 Hz. In the second set of data, the outputs from 20
frequency channels spanning the range 20 to 2900 Hz were retained;
the upper and lower cutoff frequencies of each of the 20 filters are
shown on the abscissa of Fig. 5. Each audio utterance input thus
yielded a certain number (17 in the first set of data and 20 in the
second) of separate time series as outputs, with each series representing
the energy in a specific frequency band as it varies across time. To-
gether the series represent the short-time spectrum of the utterance.

Thus, the basic digital form of the data for an utterance consists of
a matrix of spectral energies classified according to frequency bands in
each of a sequence of time intervals. (see Pruzansky & Mathews® for
a description of energy-frequency-time quantization.) Table I is an
example of a data matrix from the second set of data. One can obtain
pictorial representations of such a matrix. The classic representation is
the sound spectrogram, which is unfortunately not in a form easily
read by computers. Figure 1 shows a contour plot of log energy as a
function of time and frequency; it was obtained as a computer printout
from a data matrix. Although derived in a straightforward way from
computer-readable data, this plot conveys some of the visual aspects
of the sound spectrogram.

Some comments on certain aspects of the data are in order: (i) The
total volume of data is large. (i) The basic digital representation of

TaBLE I—DATA MATRIX FOR AN UTTERANCE

Time in milliseconds

Frequency in Hz. 006 012 018 024 030 036
0-100 14 11 7 19 35 62
50-150 16 17 11 20 44 74

100-200 14 8 16 17 25 56
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the data for an utterance is intractably high in dimensionality for per-
forming statistical analyses. [For the first set of data the matrices were
17 x 50 (approx.), or 850-dimensional, per utterance; for the second
they were 20 X 275 (approx.), or 5500-dimensional, per utterance!]
(#1) The general level of the energies may shift from utterance to
utterance of even the same speaker due to artefactual reasons. (Loud-
ness may vary for example because of varying proximity to the micro-
phone.) (iv) There is no natural time origin for the data and its spec-
ification is arbitrary in that what is labelled as time slot 1 does not
depend on the actual commencement of the utterance; this implies a
lack of alignment of the data for different utterances of a given word
even by the same speaker.

The conjunction of the above four issues conveys certain implica-
tions for the subsequent analyses. First, it is essential, even for explora-
tory investigations, to pay attention to practicality and efficiency in
computer procedures. Second, it is crucial to find effective lower-di-
mensional representations of the data using methods of summarization
that will be of general utility both for different persons and for dif-
ferent words. Finally, adjustment must be provided for artefactual ef-
fects, such as energy-level variation and arbitrariness of the time
origin. Such adjustments may be accomplished either by treating the
data prior to analysis or by adopting analytical procedures which make
provisions for the artefactual effects. Thus, for example, energy-level
variation can be handled either by normalizing the energies so that
their sum is unity for each utterance or by using classification pro-
cedures which allow for level changes amongst the replicated utter-
ances of a speaker (cf. R. Gnanadesikan & M. B. Wilk'). Similarly,
the arbitrariness of time origin may be handled either by pre-aligning
the utterances by some criterion, such as the one used by Pruzansky®
with the first body of data, or by using origin-invariant time informa-
tion in later analyses.

III. DATA CONDENSATION

The high dimensionality of the basic quantitative representation of
an utterance (viz., the matrix of spectral energies) is not only
computationally untenable and conceptually difficult but also perhaps
unnecessary. One would expect that the high physical and statistical
correlations among the energies should imply redundancy. The limited
number of replications available would, moreover, impose a mathema-
tical constraint on usable dimensionality. For all these reasons, sum-
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marization is necessary. The choices for summary statistics are legion
and the consequences important. Various schemes for condensing the
information in terms of manageably low-dimensional statistics were
studied.

Table IT shows a list of some of the types of information summaries
that were investigated.

For instance, summarizing via the time margin means that one
considers the energies (normalized) collapsed on to the time scale alone
without any frequency breakdown. Similarly, frequency margin means
that the energies (normalized) are summed over all the time intervals,
thus eliminating the information about time variation of the spectrum.
Looking at frequeney slices implies the consideration of the energy
distributions in each of the frequency channels. Within each of these
ways of looking at the data, several alternate methods were investi-
gated for summarizing the information. For instance, in studying the
time margin both the energies themselves as well as characterizations
of their distribution across time in terms of certain low-order moments
(mean, standard deviation, ete.) were investigated. The distribution of
energy within a frequency slice, however, was typified either by the
deviations of its two tertiles (i.e., time values which divide the energy
distribution into three equal parts) from the marginal time median or
by the inter-tertile distance. These two time-dependent characteriza-
tions are origin invariant. (See Becker, et al.,'* for more details con-
cerning the reduction and analyses of first set of data.)

One of the important summaries, from the standpoint of perform-
ance in identification procedures, turns out to be the frequency margin
normalized energies. This led to a 17-dimensional representation with
the first body of data and a 20-dimensional representation in the

TABLE II—SUMMARIZATIONS OF DATA

(i) TIME MARGIN

(a) Moments
(b) Energies (normalized)

(#7) FREQUENCY SLICES
(a) Tertile deviations from marginal median
(b) Inter-tertile ranges

(#7f) FREQUENCY MARGIN
(a) Power spectral estimates derived from energies
(b) Energies (normalized)

(#v) TIME X FREQUENCY
(a) Moments
(b) Variously grouped normalized energies

(v) VARIOUS COMBINATIONS OF INPUTS



1434 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1971

second set. To illustrate how this summary representation may look,
Figs. 2a and b each show the normalized energies in the frequency
margin for all the utterances of a word by a specific talker. Figure 2a
is for one speaker and Fig. 2b is for another. Qualitative and quantita-
tive differences between the two speakers are evident as viewed against
the relative cohesiveness of the different utterances within a speaker.

IV. SPATIAL REPRESENTATION AND CHOICE OF METRICS

Each scheme for summarizing the basic data leads to a set of input
statistics whose values for each utterance yield a vector corresponding
to that utterance. The analysis involved designating certain of the
utterances from each speaker as unknown and treating the remaining
utterances as the reference set of known utterances to be used for
purposes of statistical estimation, ete., of the features of the reference
population.

Thus, as shown in Table III, corresponding to the uth reference
utterance (i.e., the talker is known) of a specific word by the ith talker,
one would have a p-dimensional row vector of input statistics,

Y:‘u=(yt'1nry"2u:"')yiw); i1=1,2 -,k u=12---,n;,

where the jth element of the vector, y.;. , is the value of the jth input
statistic for the uth utterance of the ith talker. There are & talkers in
all and »; known utterances from the 7th talker, The n, known utterances
of the 7th talker may then be used, as shown in Table III, to obtain the
p-dimensional centroid, ¥/ , and the p X p covariance matrix, S, ,
for the 7th talker.

Corresponding to an unknown utterance (i.e., the talker is unknown
and is to be identified), which is known only to be an utterance of some
one of the talkers in the study, one would similarly have a p-dimensional
representation, shown in Table III as

Z = (ZI:ZZf ,Z,).

Also shown in Table III are the overall centroid ¥’ and two matrices
B and W. B is a measure of the dispersion of the speaker centroids in
p-space and is called the between-talkers covariance matrix. W is a
pooled measure of dispersion of the replicate known utterances around
the talker centroids and is called the within-talkers covariance matrix.

If a metric or distance measure were defined in the p-dimensional
space of the input statistics, then one could calculate the distance of
the unknown, viz. Z’, from each of the centroids, viz. ¥/’s, of the
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different talkers, and then use these distances to assign the unknown
to one of the talkers.

All the measures of squared distance used in our work were positive
semidefinite quadratic forms, a class whose typical member may be
algebraically defined as shown in item (0) of Table IV. This class
includes not only the familiar unweighted Euclidean squared distance
(M = I) and the weighted Euclidean squared distance, which makes
allowances for unequal variances of the different variables, but also
measures of squared distance which allow for correlations among the
variables. Figure 3, dealing with the case of two variables, shows an
appropriate manner of measuring squared distance when the correla-
tion is positive. According to such an elliptical measure of squared
distance, points like 4, and B, which lie on the same ellipse are con-
sidered to be the same distance away from the center C of the ellipse,
whereas points like A;, 4> and A; which lie on the different ellipses
numbered 1, 2 and 3 are considered to be at increasing distances away
from C. The way to reflect this choice formally in the definition of
squared distance is to use for M the inverse of an estimate of the
covariance matrix of the variables.

Table IV also shows three specializations of the matrix M that lead
to three squared distance measures D, , Dy and Dy shown, respectively,
as equations (1), (2) and (3).

The choice of M that leads to D, uses each talker’s individual covar-
iance matrix in measuring the distance of the unknown to that talker’s

TasLE III—NoTraTioN AND ESTIMATES FOR REFERENCE SETS

(1) Yf‘u=(y|‘1uryi2ur“'yyn‘pu); i=11"'1kau=1;2y"'1ni-
f_ln‘. ro. =-__1 Y L — ) — MY

(2) Y:’ - n; HZ_;Y!'H ] Se’ (ni _ l) “;1 {(Yw Yl)(Y!'u Y-) }J
1= 1’ v ,k_

(3) Z’=(21,2'2,"',Z,,).

4) Y’=%inf,’-, where n = an.-,

i=1 i=1

1 S o ,
B =iy Rl — D - 9,

1 k
W=m—_—ij(n‘-—1)S...

i=1
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TaBLE IV—METRICS

0 DEH)=Z-¥9MZ-%,); i=12 ...,k
M is p.s.d. so that D(Z) = 0.
1) M=8,1;, D()=2Z-%)y8:@2Z-%); i=12, ...,k
(2) M = A/A/, whereA,is (p X r) with r eigenvectors of
W-B for columns (r = 1,2, ..., 1);
Dy(i) = (Z — T)VAANZ - %), i=1,2, ...,k
B) M=W'; Dii)=Z-%)ywvyzZ-%) i=12 ...,k

centroid. This choice of M implies that the covariance matrix for each
talker be nonsingular. This in general requires that the number of
known utterances for every talker is at least one more than the number
of input statistics. If p were large, therefore, in order to use D; one
would require a large number of known utterances (replications) for
each talker.

Also, this choice for M means that M changes from talker to talker
with a consequent increase in computational time and effort. The hope
is that there will be a pay-off in terms of efficiency to be gained from
using a distance measure that is sensitive not only to the location
(centroid) features of a talker but also to his individual covariance
pattern. The use of this distance measure is thus particularly appropri-
ate when different speakers do not have the same covariance matrix
for their replicate utterances.

A second choice for M, leading to Ds in equation (2) of Table IV,
is provided by the so-called discriminant analysis approach of multi-
variate statistical analysis. Here M is the product of a matrix by its
transpose and the columns of the matrix are eigenvectors obtained
from a diseriminant analysis. The diseriminant analysis attempts to
reduce the number of dimensions in the space in which distances are
measured by selecting a subspace which in a sense contains the most
important information for diserimination purposes.

Broadly speaking, statistical diseriminant analysis is concerned, in
part, with finding a representation of the data from several prespecifi-
able groups (talkers) in terms of coordinates which separate the group
centroids maximally relative to the variation within groups. Specific-
ally, as shown in Table V, if y,, -+, y, denote the variables in the
initial p-dimensional representation of an utterance, then at the first
stage one considers a linear combination, x, of the original coordinates.
A one-way analysis of variance for this derived variable would lead to
the F-ratio shown, where B and W were defined earlier. One can now
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specify maximization of this F as a criterion for choosing the coeffi-
cients (a;, *++, a,) in the linear combination. The required solution
is to choose, for a, the eigenvector corresponding to the largest eigen-
value of W-'B. Having chosen one linear combination, a second dif-
ferent from the first may be sought so that its F-ratio will be maxi-
mized and so on. This method of seeking a linear transformation
involves the eigenanalysis of W-'B. There will be ¢ positive eigenvalues,
€1, Ca, =+, €, in general, where t is the smaller of p and (k — 1).
This is a consequence of the fact that if k& (the number of talkers) is
less than p (the dimensionality of the input data), then the k talker
centroids are contained in a (k — 1)-dimensional hyperplane. At any
rate, one can use each eigenvector that corresponds with one of the
nonzero cigenvalues to obtain the new coordinates i, %2, *** . The
space of #’s may be called the discriminant space and the coordinates,
Ty, Ts, + - - called discriminant coordinates, or CRIMCOORDS.

A geometrical interpretation of the discriminant analysis for the
case of two variables is shown in Fig. 4. Centroids of the known talkers
are shown in Fig. 4a surrounded by an ellipse indicating the distance
measure appropriate to W, the pooled within-talkers covariance matrix.
The diseriminant measure of distance is equivalent to: (¢) transforming
the space of Fig. 4a to one in which the ellipses have become circles
by suitably compressing or expanding and reorienting the various
coordinates—this space, with axes y* and y% , is shown in Fig. 4b;
(#i) rotating the coordinates % and y% in Fig. 4b so that the speaker
centroids have maximum mean square separation in the direction of
the first coordinate (z,), next smaller separation in the direction of the

Y2

Yy

Fig. 3—Elliptical measure of squared distance.
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TABLE V—STATISTICAL DISCRIMINANT ANALYSIS

1) ¥y = (nyyzy - ) Yp):
(2) = =ayhn taw:+ ... + @i = a'y.
One-way Analysis of Variance
D.F

Between Talkers k — 1 a'Ba,

Within Talkers n—k aWa,

(3) Choose a so as to maximize F, , .
Solution: a = a, the eigenvector of W-'B corresponding
to its largest eigenvalue.

(4) clgcf;...gct‘;-o, { = min (p, & — 1).
)

a; as e a;

F, = a’Ba/a’Wa.

(6) = = a'y, x:=aly,

second coordinate (z.), ete; and (727) measuring simple Euclidean
distances in the space thus derived. (Note: With more than two vari-
ables, one may decide to use only the subspace formed from the first
coordinates of the diseriminant space.) Discriminant analysis malkes
more intuitive sense if the individual talkers all have similar covariance
matrices for their repeated utterances (so that each is similar to the
pooled covariance matrix) than if they have widely differing covariance
matrices.

The measure of squared distance, D, is just that Euclidean squared
distance measure in the space of the first »(= t) CRIMCOORDS.
While M, chosen thus, does not change across talkers, yet it does de-
pend on r, the number of eigenvectors to be used in the diseriminant
analysis approach. This use of an increasing number of the eigenvee-
tors implies diminishing returns and may not necessarily improve the
identification. By trial and error, a satisfactory value of » when the
frequency margin energies were used as the initial variables was found
to be 5 in the first body of data and 10 in the second set.

A third choice for M, leading to the squared distance measure Dj of
equation (3) in Table IV is obtained by taking M equal to the inverse
of the pooled within-talkers covariance matrix W, defined earlier.
This choice of M, which requires W to be nonsingular, is in general
possible whenever the number of input statistics, p, does not exceed
the total number of known utterances of all talkers minus the number
of talkers. This constraint on p (or, equivalently, on the number of
known utterances) is far less restricting than the constraint on p im-
posed by the choice of M that leads to D;.
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Fig. 4—Sketch to indicate geometrical interpretation of discriminant analysis.

There are certain relationships and equivalences amongst these
three measures of squared distance. D; and Dj are similar ellipsoidal
measures (in the sense of Fig. 3) of squared distance and are identical
if the talkers all have the same covariance matrix for their repeated
utterances. Using r = ¢, the “maximum” number of eigenvectors from
the eigenanalysis of W-'B would make D, entirely equivalent to Dj.
Furthermore, D; is entirely equivalent to a discriminant analysis ap-
proach with a pairwise comparison of the distances of the unknown
utterance from the centroids of the talkers considered in all possible
pairs.

Other metrics, which were approximations to Dy, D2 and Dy in vary-
ing degrees of appropriateness and simplicity, were also investigated,
but the results to be presented here are confined to these three measures.

V. IDENTIFICATION SCHEMES

5.1 Classification Procedures for Small Populations of Talkers
The distance measures are used for assigning an unknown utterance
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to one of the speakers. For relatively small populations of speakers,
one can compute the distance of an unknown from each of the speaker
centroids, using any measure of distance, and then assign the unknown
to the speaker whose centroid is closest. The empirical criterion used
for evaluating the operating characteristics of any combination of in-
put data and distance measure was the percent of unknowns that were
correctly identified.

Table VI, based on the findings of the analysis of the first body of
data, shows a summary table of percent correctly identified, for some
of the different data summaries, when used with the three squared

TABLE VI—SUMMARY OF AVERAGE PERCENT CORRECT
FOR VARIOUS TALKER IDENTIFICATION TECHNIQUES
UseEp wiTH FirsT Bopy or DaTta

Input Statistics Distances
D, D, Dy
Time Margin
Moments 34t 55 62*
Energies — 30 34
Frequency Slices .
Deviation of Tertiles from Median (TER) — 82 —
Inter-Tertile Range (ITR) —_ 67 —
Frequency Margin
ower Spectral Estimates — 73 —
Energies — 91 97*
Time X Frequency Groupings
wyy ofy oy, N 301 _ _
2 X 17 — 86 100t
2X 7 — 83 90t
2Xx 3 — 57 70t
3 X 2 — 47 50t
16 X 2 — 40 40t
Combinations of Inputs
Frequency Energies 4+ Time Moments — 91 97*
Frequency Energies + Time Energies — 83 90
Frequency Energies + ITR ] — 88 —
Frequency Energies + TER EIG — — 93
Frequency Energies + ITR EIG — — 94
Combinations of Eigenvector Transforms (EIG)
Frequency Energies EIG + TER EIG — 87 e
Frequency Energies EIG + ITR EIG — 94 93
Combinations of Words — 98 —

* All utterances of each word used as unknowns.
T Only used word 1.
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distance measures Dy, Dy and Ds. The dimensionality of several of the
inputs was too high, relative to the number of replicated utterances
available per talker, so that D; could not be used with these inputs.
Dashes in the table denote such cases and others, wherein the particu-
lar combinations of input and distance measure were not studied.

As far as the distance measures are concerned, D; appears to per-
form best. However, D, because of the reduced dimensionality asso-
ciated with it, and D, because of its sensitivity to variations in the dis-
persion characteristics of the talkers, may be more appropriate and
efficient for some uses and should not necessarily be discarded.

The general conclusion to be drawn from the various attempts to
summarize the original data in terms of input statistics appears to be
that, by and large, frequency information is more important than
time information. This is evident from the low percentages of correct
identification (30 percent and 34 percent) for the time margin energies,
at one extreme, and the high ones of 91 percent and 97 percent for the
frequency margin energies, at the other extreme. The results for the
various time-by-frequency groupings also suggest the same conclu-
sion. As the time struecture increases, the percent correctly identified
decreases (cf. also Pruzansky & Mathews®). Certain schemes for
using the time information as an adjunct to frequency information,
however, do seem promising. Thus, using D,, one achieves 91 percent
correct identification on the basis of frequency margin energies alone,
whereas an increase to 94 percent is possible by augmenting the fre-
quency margin information with certain kinds of time information from
the frequency slices.

A general indication of the results shown is that significant improve-
ment may be achieved by using appropriate statistical methods for
the choice of both the input statisties and the distance measures. Thus,
for example, using the normalized energies in the frequency margin as
a summary of the data, one could go from 91 percent correct identi-
fication to 97 percent by using Dj; instead of D, thus achieving a re-
duction in error rate by a factor of 3.

5.2 Strategies for Large Populations

Encouraged by the results of the first analysis, we undertook the
collection of the second body of data. In order to simulate more prac-
tical situations, the recording conditions were not as strictly controlled
this time and we also decided to increase the number of speakers and
to prune the number of replications per speaker. The increase in the
size of the speaker population introduces an immediate challenge for
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the analysis. Even with the aid of modern high-speed computers, the
effort required for comparing the distances of the unknown from
every talker centroid would become prohibitive with a very large
number of talkers. For this case of a large number of talkers, which
is of great practical interest, one has to develop a method for limiting
the number of contenders for assignment of an unknown.

The approach to be described next in broad outline is simple and
seems to be effective for accomplishing the task with the 172 speakers
involved in the second body of data. For the present discussion, only
the normalized frequency margins (viz., the 20-dimensional input)
will be used as the representation of any utterance.

The basic idea is to use the first few CRIMCOORDS for restricting
the set of speakers with whom an unknown is to be compared. Before
describing the essential nature of the approach, it is perhaps in order
to comment on some properties of CRIMCOORDS as related to the
present problem.

Firstly, there is the question of interpretability. Figure 5 shows a
pictorial representation of the five eigenvectors of W—'B that cor-
respond to the first five CRIMCOORDS. The lengths of the bars
correspond to the magnitudes of the elements of a specific eigenvector
and the orientations correspond to their signs. The first CRIM-
COORD, which seems to be largely a difference between the energies
in the two lowest frequency bands, appears to be reflecting a difference
between male and female glottal fundamental frequencies for the early
vowel part of the word one, which was the word that gave rise to the
set. of eigenvectors in Fig. 5. The first CRIMCOORD does indeed
efficiently separate male and female speakers in the study. Unfortu-
nately, the second and later CRIMCOORDS do not seem to have
as easy an interpretation, perhaps due to the mathematical constraints
imposed on the eigenvectors at the later stages.

The linear transformation to CRIMCOORDS is dependent on only
the reference set of known utterances. It is perhaps interesting to
inquire about the validity of the pooling of the separate within-talker
dispersion matrices to obtain the pooled estimate W of variation
among the replicate utterances. The pooling also underlies the justifi-
cation for using unweighted Euclidean squared distance (viz., D2) in
the CRIMCOORDS space. An internal comparisons statistical tech-
nique was developed (cf. R. Gnanadesikan and E. T. Lee') for
assessing the comparability of the individual talker covariance
matrices in terms of certain measures of their sizes. This method of
assessment, when used with the frequency margin energies, suggested
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that it is not unreasonable to pool the speaker dispersions to obtain W.

A third issue concerning CRIMCOORDS is their stability as they
depend on the words and on the speakers. Based on an empirical
investigation using the second body of data, they do seem to be word
dependent but fairly stable with respect to the speakers, in that they
do not seem to change substantially once they are based on the known
utterances from about 80 speakers.

Returning now to the question of using the first few CRIMCOORDS
for limiting the contenders for an unknown, one can look at a repre-
sentation of the knowns in the space of say the first two CRIM-
COORDS. As shown in Fig. 6, with only the ten speakers in the first
study, some talkers are clearly separated (e.g., talkers 2, 4, 7 and 10)
while others are clustered (e.g., talker 8 and 9) even in this two-
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Fig. 5—First five eigenvectors of W-1B.
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Fig. 6—Representation of utterances of ten speakers in space of first two
CRIMCOORDS.

dimensional representation. However, with the 172 centroids of the
talkers in the second set of data, one gets the configuration in Fig. 7a.
There appear to be no obvious clusters here in the space of the first
two CRIMCOORDS.

In this case, one approach is to divide the two-dimensional
CRIMCOORDS space arbitrarily up into boxes as a first step. Figure
7b shows a division of the space into forty boxes which was accom-
plished by arbitrarily specifying nine quantiles (or percentage points)
of the distribution of centroids along the first CRIMCOORD and
three quantiles of the distribution along the second CRIMCOORD.
Next, one determines in which of these boxes an unknown under
consideration for assignment falls (cf. Fig. 7¢) and then one can
compare the unknown with all the speakers who fall in the same or
a few nearby boxes (cf. Fig. 7d), discarding the speakers who are far
removed, In the particular example used for Figs. 7a-d, while the 0
denotes the unknown, the x (cf. Fig. 7d) corresponds to the centroid
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of the speaker from whom the unknown arose. While the x is not in the
same box as the 0, it is in a neighboring box which is included for
identification purposes.

The comparison of the unknown with the speakers in the neigh-
boring boxes is made by calculating distances not just in the space of
the first two CRIMCOORDS but by including additional CRIM-
COORDS (e.g., using five or ten CRIMCOORDS in all). Based on the
magnitude of the distance to the closest speaker and on the ratio of the
second smallest distance to the smallest, a decision is made whether
identifying the unknown with the closest speaker is safe or suspect.
Statistical benchmarks for comparing observed values of quantities,
such as the smallest distance or the ratio of the second smallest to
the smallest distance, are obtained from ‘“null” distributions (i.e.,
distributions of these quantities when a correct identification is made)
generated from the data on hand. Since we are dealing with a situation
in which there are sufficient data under “null’” conditions (i.e., success-
ful identification) one can obtain adequate estimates of the statistical
distributions to enable reasonable assessments of the magnitudes of
observed distances (or ratios) and decide whether they are small
or large.

At any rate, either if an identification is suspect or if an insufficient
number of comparisons have been made, the process enlarges the
population of contenders by considering the speakers in additional
hoxes nearby. As soon as a safe identification is made, no further
loops are made to add more contenders. After all the speakers have
been exhausted, if the identification in terms of the closest speaker is
still suspect, then the process terminates by identifying the speaker
as the closest one, despite the weakness of the evidence. For the
illustrative example in Fig. 7, this method led to a safe and correct
identification.

Figure 8 shows a simple flow-chart of the steps involved in the
above process for identifying an unknown by a preliminary limiting of
the number of contenders. On the left, in Fig. 8, are shown the steps
in the initial processing of the reference utterances leading to (1) a
determination of the CRIMCOORDS, (ii) a representation of the
speaker centroids in CRIMCOORDS space, and (117) a specification of
the boxes or cells in the space of the first few (e.g., two) CRIM-
COORDS. On the right, in Fig. 8, is shown the identification process
for an unknown utterance. From the representation of the unknown
in CRIMCOORDS space, one finds which box the unknown falls into
and retains for comparison all speakers whose centroids fall in a cer-
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tain number of nearby boxes, while discarding all speakers who are
farther away than a cut-off distance. If an adequate number of
speakers have been retained for comparing the unknown against, then
one computes the distance of the unknown from each of the retained
speakers in an enlarged (5- to 10-dimensional) CRIMCOORDS space.
If the ratio of the second smallest to the smallest is large enough
(> 42), then the identification of the unknown with the closest
speaker is assumed to be safe. Also, if this ratio is moderately large
(= 4.2 but > 1.75) and the smallest distance is small enough (< 8.0),
the identification is deemed safe. If not, it is deemed suspeet and more
speakers in additional boxes are included for comparison with the
unknown. Furthermore, if the number of speakers compared with an
unknown is not large enough, then also one adds more speakers by
considering additional adjacent boxes.

An efficient set of computer programs implementing this process is
in use (cf. K. W. Wachtert). The programs provide for flexible
specification of many of the parameters involved (e.g., number and
size of the boxes, cut-off values for comparing the smallest distance
or the ratio of the second smallest to the smallest, ete.).

Using a single word for identifving talkers in the second set of data,
the above strategy yielded 81 percent correct identifications, i.e., for
81 percent of the unknowns the first most likely matech was correct.
In fact, if one counted the percent of times that the correct speaker
was either the closest or second closest then one obtains 90 percent.
The comparable percentages to these figures of 81 percent and 90 per-
cent are 84 percent and 93 percent when one performs an exhaustive
check of the unknown against every speaker. The computational cost
for the exhaustive comparisons in this example involving 172 talkers,
is about 70 to 90 percent more than that involved in the strategy based
on preliminary limitation of the number of contenders for an unknown.
The difference in computational cost will, of course, vary as one
changes the number and size of the boxes chosen and the other specifi-
cations involved in the method. Also, with much larger populations of
speakers, the cost differential between the two approaches would be
expected to increase substantially. In the present example, the com-
puter cost per identification is approximately 1.4 cents for the scheme
which initially limits the number of contenders for an unknown.

The percentages of correet identification appear to be improvable by
utilizing the identification information in additional words. Thus, in-
stead of using the single word, one, when one combines the information
from the separate identification results for the two words, one and two,
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the percent correct identification moves up to 94 percent from the
earlier stated 81 percent. Hence, the preferable direction for large
populations appears to be to stay with the type of strategy described
here but to combine information from more than one word.

Not all methods for combining the information from two or more
words will be equally successful; however, a scheme has been devel-
oped which appears to be promising and, in fact, led to the improve-
ment from 81 percent to 94 percent in percent correct identifications.
Figure 9 shows a flowchart of the procedure. If the identification en the
basis of the first word is deemed safe, then no use is made of the sec-
ond word. If, on the other hand, the identification using the first word
is suspect, then one looks at the identification results for the second
word. If the same speaker is the closest one to the unknown utterances
in both words, then this is taken as a safe indication that he is in fact

Ly = LIST OF KNOWNS FROM WORD f,
ORDERED BY DISTANCE TO UNKNOWN

L2 = LIST OF KNOWNS FROM WORD 2,
ORDERED BY DISTANCE TO UNKNOWN

€.g., Lo (1) REPRESENTS THE KNOWN
CENTROID CLOSEST TO THE UNKNOWN
FOR WORD 2.

WAS Ly (1) "SAFE" ?

YES

L) = Lalt)?

YES

La=oL, (), LaFu(LnLy)

!

DISTANCE FOR EACH ELEMENT OF L3
TAKEN AS WEIGHTED SUM OF TAKE Ly (1) As
WORD 1 AND WORD 2 DISTANCES “"CORRECT" TALKER

‘.

SORT L3 BY DISTANCE

TAKE La(1) As
“CORRECT" TALKER

Fig. 9—Combination of word 1 and word 2 information into a single identifi-
cation.
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the speaker despite the weakness of the evidence for this in considering
the first word by itself. If two different speakers turn out to be closest
for the two words, then one considers these two speakers along with
all speakers who appear concurrently on the lists of a certain number
(e.g., 10) of closest speakers for both the words. For each of these
speakers, one can compute a new squared distance by calculating a
weighted sum of the squared distances of the speaker centroid from the
unknown as obtained in the separate analyses of the two words. The
weights for combining the squared distances could reflect the discrimi-
nation abilities of the two words. (Note: Implicit to this scheme is an
assumption that the first word is more useful for diseriminating talkers
than the second.) The new squared distances may then be sorted and
the identification would be made as the closest speaker in terms of
this pooled measure of distance.

VI. DISCUSSION

The emphasis in the present report has been on the statistical facets
of talker identification rather than on the acoustic significance of the
results. The gratifying identification successes have been achieved, in
fact, with relatively unsophisticated representations of the data (viz.,
energy-(time) -frequency analyses of whole words). We have already
mentioned that interpretation of CRIMCOORDS beyond the first is
elusive. At this juncture, we approach the relation between identifica-
tion techniques and acoustic factors from the other end, asking what
speech production theory and related experimental results have to say
about augmenting or modifying our representations for future work.

In the course of replicating our second body of data, we encountered
two factors which will be dealt with systematically in forthcoming
studies. The first of these is inter-session variation within talkers.
W. A. Hargreaves and J. A. Starkweather® as well as J. E. Luck?* have
reported that this effect is so strong as to render identification or veri-
fication significantly poorer when reference and test recordings are
made at widely separated times. We are now collecting new recordings
from talkers who return at scheduled times on different days, having
found evidence of a sessions effect for those few talkers who returned
to our unattended booth voluntarily. The other factor was “circuit
variability.” The collection of data from the unattended booth in-
volved a second set of 172 speakers in addition to the set of 172 used
in the earlier discussion in this paper. The samples from the two sets
of speakers were, however, processed separately at two different times,
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and the two sets of data could not be combined because of unrecover-
able variations in the “circuit” (the process involved in going from the
physical utterance to its digital representation, especially the behavior
of the analog filter bank). Our approach to this problem is two-
pronged: (¢) We are using elaborate control and calibration procedures
in making the new recordings, and obtaining our spectral energy rep-
resentations directly from Fast Fourier Transforms performed on a
digital computer. (77) We shall deliberately vary the circuit (by mak-
ing some telephone recordings simultaneously with the high-quality
recordings and by passing them through switched connections) to learn
how to make identification robust in the face of circuit variations.

Another major concern is with the use of information from different
words and the number of replications required from each speaker for
constituting the reference set of utterances. Both Pruzansky® and
J. W. Glenn and N. Kleiner* found improvement when they combined
utterances in the simplest way, at the level of spectral analysis. It is
worth noting that the work of S. K. Das and W. 8. Mohn,* the most
successful of the verification studies, used separate analyses of ten
different segments (of a fluently uttered phrase), while the other
two'? used only one or two. In connection with the question of number
of replications, no statement about the ultimate resolving power of
automatic voice identification schemes can be made until the relation-
ship between performance and number-of-samples-known-to-be-from-
one-talker is better understood.

Perhaps the gravest issue is whether measures thought to have acous-
tic or speech-theoretic significance should supplant or supplement raw
spectral energy representations of the utterances. Examples of such
measures, used with success by J. J. Wolf," are glottal fundamental fre-
quency, nasal resonance frequency, vowel formant frequencies, and
voice-onset time in voiced stop-consonants. The basic argument for this
approach is that a talker’s uniqueness lies perhaps in the shape of his
vocal apparatus, and we should use measures sensitive to that shape.
Glenn and Kleiner,* taking an extreme position, maintain that nasal
sounds are ideal because the apparatus is stationary during the time
the oral passage is occluded and radiation is chiefly from the nose. Das
and Mohn® worked with features chosen to be relevant to their acoustic
segmentation, but no report on the relative merits of their many (405
in all) features is available.

One might well have reservations about using features which are
significant in speech synthesis to perform talker recognition, because
what is signal in the former problem may be noise in the latter. How-
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ever, it is worth noting that some recent analysis-synthesis schemes
for speech transmission (e.g., R. W. Schafer and L. R. Rabiner'®) are
reported to be capable of producing speech that sounds strikingly like
the original, though based on only a few parameters per time sample.
Although such resynthesized speech may not be capable of reflecting
subtle variations of the shapes of intra-cranial cavities, it typically
quite accurately reflects two important characteristics of the individ-
ual: his average “pitch” (glottal fundamental frequency) and the
temporal pattern of changing glottal and formant frequencies.

“Pitch” is elearly a vital talker cue. The present work evolved a
CRIMCOORD devoted to this characteristic even though our input
data did not include an explicit measure of it. Wolf” found piteh to be
the most important of his features, and B. S. Atal'® based an entire
small-population recognition scheme on it. We are investigating eco-
nomical means of including such a measure in our future work.

As for the temporal aspect of utterances, it should be recalled that
certain representations of time information did augment frequency
information to advantage in the analysis of our first set of data. In
fact, Gnanadesikan and Wilk'" found that transforming the energies
logarithmically (the common “decibel” transformation) improved the
“additivity” of the frequency and time effects. Finally, it is worth
learning how to use both time and “piteh” information for one very
important reason: neither is unduly affected by common variations
among speech transmission circuits, whereas the raw spectrum is very
vulnerable.

The search for efficient representations of the speech signal is now
at a choice-point. In one direction lies the extraction of features based
on speech production theory, with its current high cost but the promise
of robustness in the face of circuit variation and perhaps other sources
of interference. In the other direction is the development of procedures
for correcting obtained speetra to compensate for distortions due to the
cireuit, with a non-negligible cost and unknown ultimate technical
feasibility. In the last analysis, technical and economic considerations
will determine which of these types of representation will play the
major role in practical talker identification techniques.
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