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Some Extensions of the
Innovations Theorem*

By THOMAS KAILATH!
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Consider an observed process that is the sum of a Wiener noise
process and the integral of a not necessarily gaussian signal process.
The innovations process is defined as the difference between the
observed process and the integral of the causal minimum-mean-square-
error estimate of the signal process. Then if the integral of the ex-
pected value of the absolute magnitude of the signal process 1s finite,
we show that the innovations process s also a Wiener process. The
present conditions are a substantial weakening of those previously
used in which the integral of the signal variance had to be finite. The
new result is obtained by using some recent results in martingale
theory. These results also enable us to obtain similar results when the
Wiener process is replaced by a square-integrable martingale.

I. INTRODUCTION AND DISCUSSION OF RESULTS

We shall be concerned with stochastic processes of the form

dy = zdt + dw, i.e., y() = f 2(s) ds + w(?), 0t=T (1)
0
where w(+) is a Wiener process with

Elw(t)] = 0, Elw()w(s)] = min (¢, s) 2}
and z(+) i1s a not necessarily gaussian process such that, for every
0=s<t=T

wt) —w(s) U F, = oly(r), 0 =7 = s} (3)

* This work was supported by the Applied Mathematies Division of the Air
Force Office of Scientific Research under contract AF 44-620-69-C-0101 and in
part by Bell Telephone Laboratories (Summer 1969) and a Guggenheim Fellow-
ship.

t Stanford University, Stanford, California 94305.

t Later we shall replace w(+) by a square-integrable martingale (cf., Theorem
3).
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where of-} denotes the smallest sigma-field generated by {-} and,
following K. Ité, the symbol 13 will be used to denote statistical in-
dependence. In our earlier work," we also assumed that

Ef:lz(t) Pdt < . @

This assumption not only enabled us to define the conditional ex-
pectation,

Elz(t) | 3] = (), say (5)

but also to conclude that [2(-)| and [4(-)|* (as well as |z(+)| and |2(-)[*)
have finite integrals a.s. Then in Appendix I of Ref. 1 and independently
in Refs. 2 through 4, the following result was proved:

Theorem 1: Under the assumptions (1) through (4), the ‘innovations’
process {v(t), F.} where

W=y - [ #@ds, 0stsT ®)

is a Wiener process, relative to the sigma-fields ¥, gemerated by y(-).
Moreover, v(-) has the same statistics as the original Wiener process w(+).

The reasons for the name “innovations” and some applications of
the concept are discussed in Refs. 1 through 5, and the references
therein, so that we shall not pursue them here. Our interest will be
in relaxing the conditions under which the theorem is true. In par-
ticular we shall show that the condition (4) can be replaced by the
weaker condition

Elez(t)ldt<w. )

This is a substantial relaxation of (4), since now we can even consider
cases in which z(-) need not have finite variance and need not be
square-integrable in ¢ a.s., (examples of this type are easy to find for
gaussian z(-), cf., Ref. 6).

Nevertheless, even this weakening is not the best possible. Such a
claim seems surprising, since to begin with, the standard definitions
(see e.g., J. L. Doob") of conditional expectation require that

Elz(t)] < .

In our problem, however, L. Shepp has pointed out by example that
even this condition on z(-) is not always necessary.® In Shepp’s
example,



INNOVATIONS THEOREM 1489

2(t) = », a Cauchy distributed random variable,
independent of w(-).
Then it is easy to verify that z(:) as defined below by equation (8)
can be used to define the innovations process v(-), even though
E | z(t) | does not exist. Nevertheless, Bayes’ theorem shows that

j; 7 exp [nw(t) = E24‘”]:0(11) dn
j; exp [nw(i - %t:lp(n) dn

It is true that there is a generalized definition of conditional expec-
tation (see, e.g., p. 342 of Ref. 9) that can be used when E |z | does
not exist, but the exact sense in which equation (8) fits this generalized
definition and the more general problem of trying to define Z(-)
under just the assumptions (1) through (3) requires further investi-
gation. So much for the assumption (4). To see that equation (3)
is also not always necessary, we can let z(t) = w(T), 0=t = T.
By using the results of Ref. 6, it can be shown that even in this case
we can define a variable Z(+) such that the process »(+) of equation
(6) is still a Wiener process. Having discussed such examples however,
let us quote preeisely the results that we can prove. The first is:

&) =

(8)

Theorem 2: Under the assumptions (1)-(3) and (7), the innovations
process {v(t), F.} defined by equation (6), is a Wiener process with the
same statistics as w(-).

Besides extending the range of applicability of the innovations pro-
cess, Theorem 2 is of interest, at least to us, because of the relatively
new techniques used to prove it. Thus Theorem 1 was proved in Ref. 1
by using a martingale theorem of Lévy and Doob (ef., p. 384 of Ref.
7} to the effect that a continuous-path, finite-variance martingale with
conditional variance equal to ¢ must be a Wiener process. The assump-
tion (4) that was made in Theorem 1 enabled us, with some computa-
tion,! to establish the finite-variance and conditional variance proper-
ties. In Theorem 2, the process z(-) may itself have infinite variance
and we cannot easily apply the theorem of Lévy and Dobb. Fortu-
nately, however, some recent developments in martingale theory, due
to H. Kunita and 8. Watanabe'® and to P. Meyer,'*** have provided a
generalized form of the Lévy-Doob theorem that we can use to prove
Theorem 2, and in fact with less computation than was needed in
Ref. 1 for Theorem 1. Moreover, the results in Refs, 10 through 12
have suggested our second result, which in fact includes the first one.
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Theorem 3: Let dx = z dt + dM, where

B[ la0 |t < =, MO — MO LS, ©

and M(-) is a square-integrable martingale. Then {u(t, w), F., P}, where
wo =20 - [ 29 ds, 20 = EL) |5,

is a locally square-integrable martingale with quadratic variation the same
as that of M.
P. Frost has obtained the result of Theorem 3 under the stronger
hypotheses that FE|z(-)|* is integrable and M(-) is continuous."®
A special form of Theorem 3 was obtained earlier® by use of a result
of Doob (See p. 449 of Ref. 7) that a continuous square-integrable
martingale {M(t), ®,} satisfying

E{M@% — M | &} = E{fo‘ | G(r, @) |* dr IfB.}

can be written as a stochastic integral with respect to a Wiener
process. In other words, this leads us to extend equation (1) by
allowing a stochastic coefficient for dw; we may note that Kunita and
Watanabe have shown that a (locally) square-integrable martingale
of a Wiener process can also be written as a stochastic integral.

Finally we may remark that the proof of Theorem 3 also yields the
following.

Corollary 4: Theorem 3 remains valid if hypothesis (7) is replaced by
T

() existsand [ £(0) dt < = as. (10)
o

Note that condition (7) guarantees (10), not just for conditional ex-
pectations with respect to the sigma-fields {F.} generated by dz =
z dt + dw, but with respect to any family of sigma-fields {4.,}; clearly
the condition (7) is too strong and does not, as we also noted earlier,
exploit the special nature of our problem. We have as yet found no
condition on z(-) simpler than (7) that will imply (10). It seems that
what will be needed is a condition on z(-) rather than on z(-) and M(-)
separately. In fact, we may observe that in all our examples [in the
lines below (7)], the process z(:) is absolutely continuous with respect
to a Wiener process; however, we have not yet worked out all the
implications of absolute continuity.
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II. PROOFS OF THE THEOREMS

We shall begin with some definitions; general references for the
following material are the paper of Kunita and Watanabe,"® and the
book' and lecture notes of Meyer.

All our random variables will be defined on a probability space
(Q, ®, P). We shall also assume that we have an increasing and right-
continuous family, &, , 0 = ¢t = T, of subsigma-fields of ®, each ®,
containing all the null sets; we shall write 8, = ®.

A process {M(t, w)} will be called an L,-mariingale or a square-
integrable martingale if M(-) has a.s. right-continuous sample paths*
and if

EM(t, w) < o and E[M( )| ®,]) = M(s, ) as.
Every Ls-martingale {M(f, »)} has associated with it an increasing
function, called its quadratic variation [M(t), M (t)], that can be
calculated as (cf., p. 92 of Ref. 12)

M@, M) = lim D [M(ti) — M) '
max |tiq,=ti|=0 O (11)
where (¢p, t;, +--, t,) is any partition of (0, ¢) and the convergence

of the sum is in L', i.e., in the norm ||A||* = E| A |. When M (-) has
continuous sample-paths, the quadratic variation is often written
(M, M), and can be identified as the unique increasing process such
that process M2*(t) — (M (t), M(t)) is a martingale.

A positive random variable 7(w) is called a stopping time if for every
t > 0, the event {r(w) = t} belongs to ®, , i.e., it depends only upon
the history up to .

A example of a stopping time is the first time (M ()) exceeds a given
level. An important property of a stopping time is that if M(t) is a
martingale process, then the ‘‘stopped” process M (tAr) is also a mar-
tingale.’

A process M(t, w), 0 £t = T, is said to be a (continuous) local L,-
martingale, or a locally square-integrable martingale, if there exists
a sequence of stopping times 7, £ 7, £ .-+ | increasing to T such that
the stopped processes are all (continuous) L,-martingales. The unique

* Meyer (p. 45 of Ref. 11) has shown that if E[M (¢, )] is right-continuous (and if,
as assumed above, {®,} is right-continuous) then there always exists a right-con-
tinuous modification of M(-). If the paths of M(-) are a.s. continuous, we shall
call the martingale continuous.

t This notation is a shorthand (cf. Meyer!2) for the usual procedure involving
a sequence of partitions.

t We use the notation @ A b = min(a, b).
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(continuous) increasing function lim,.., [M(tAr,)] will be called the
function associated with the local L,-martingale M, or often, the
quadratic variation of M.

2.1 Example
The Ité integral

10 = [ f6,0) dw 5,0 (120)

can be defined as a continuous function of t, 0 < ¢t < T, for every f(- , -)
such that f(- , -) is independent of future inerements of w(- , -) and

f Ps,w)ds < © as. (12b)
0
If in addition f(-) obeys

ED;T | 1, ) | ds] < @ (13)

then the Itd integral I(f) is an L,-martingale and its quadratic varia-
tion is

(1), 10) = (10, 10) = [ £16,0) ds.

By defining

min {t: fl s, w) ds = n} ,

T, if {-} is empty,

Ta =

we see that the Itd integral under equation (12) is always a continuous
local L,-martingale, with quadratic variation

010, M) = tim [ o, ds = [ £6,0) s

2.2 Proof of Theorem 3
We note first that, with 2(t) = 2(t) — (1),

wlt) = y() — f "56) ds = f 36 ds + M)

is a martingale relative to the fields {F,} because for r < ¢,
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Eb() |5 = v(r) + E[[ [2(6) ds + dM()] | 5],
=) + [ "Bl | 5. |5 ds + EIM() — M(r) |5.),

= v(r) + f 0ds 4+ 0 = (7). (14)

The interchange of E[-] and the integral is justified by Fubini's theorem
and the assumption (7).
Now define a sequence of F,-measurable stopping times by

T,={inft : t =0, u@) = n}AT. (15)

Since p(f) < e a.s., the {T,} increase to T. Also it is clear that, for
each n, u(tAT,) is a square-integrable martingale. Therefore, p(-) is
a locally square-integrable martingale. To find its quadratic variation,
we first show that

[s(tAT.), w(tAT.)] = [MGAT,), M(AT,)) (16)

To obtain equation (16), we use the definition (12), the faet that
[-,] is zero for a continuous process of bounded variation, and the
inequality

5t — w08 < X[ [ 0]+ T orey - oy

Finally by letting n tend to infinity, we see that
[u(®), p(O)] = [M@®), M®)], 0=t=T.
This completes the proof of Theorem 3.

2.3 Proof of Theorem 2

When M(t) is a Wiener process, its quadratic variation is £, To
obtain Theorem 2 from Theorem 3, we now use a theorem of Lévy and
Doob (See p. 384 of Ref. 7), as extended by Kunita and Watanabe
(See p. 217 of Ref. 10), that a continuous locally square-integrable
martingale with quadratic variation ¢ must be a Wiener process.

It is interesting to point out that the Kunita-Watanabe proof of the
extended result is also considerably simpler than the original proof be-
cause the new proof utilizes the powerful new tools of the stochastic
integral for Lo-martingales and the Itd differential rule for such
processes.
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2.4 Proof of Corollary 4

We note that hypothesis (10) suffices to ensure that u(-) is a.s. finite,
so that the {7T,} of equation (15) are well defined and tend to T, and
also to ensure that u(tAT,) is a square-integrable martingale. These
are the essential ingredients of the proof of Theorem 3.

The present wider conditions under which we have been able to
establish the innovations result will, of course, extend the range of
problems in which the innovations can be used. In particular, we have
applied Theorem 2 to show' that a general likelihood-ratio formula,
derived in Ref. 5, for processes obeying equations (1) through (4)
remains valid if equation (4) is replaced by the weaker conditions
that f22(t) dt < o as.dand JE | z(t) | dt < co.
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