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It is known that frequency feedback demodulators can show in-
stability in their response to step changes (mistuning) in input fre-
quency. This work reports on some mathematical analyses of this
phenomenon as described by differential equations arising from simple
IF and feedback filters in the demodulator. These equations are studied
for local and global stability by geometric or phase-plane analysis, by
means of Lyapunov functions, and by the topological Poincaré-Ben-
dixson methods. A typical result is for the case of no feedback filter
and one-pole baseband analog of the IF filter, and states in physical
terms that if the mistuning is not too big, specifically if

| mistuning | < (half-power IF bandwidth)(1 + feedback gain)

then solutions which are bounded away from zero amplitude approach
the natural equilibrium point. Examples are given in which a suf-
ficiently large mistuning makes the equilibrium point unstable.

I. INTRODUCTION

The frequeney feedback (or frequency compression) demodulator
for FM signals was proposed by J. G. Chaffee! in 1937. After some
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twenty-five years, Chaffee’s idea was found to have a particularly
fitting application in the satellite communications experiments Echo?
and Telstar,® in which there was a high premium on detecting a low-
power wide-band FM signal in noise. Nevertheless, since its invention,
little progress has been made in the mathematical analysis of this cir-
cuit. Approximate methods of analysis and synthesis have been pro-
posed, and some of them experimentally verified as useful.*#® However,
except for unpublished works by S. O. Rice and T. R. Williams, the
nonlinear character of the circuit away from equilibrium positions has
not been considered.

It is the aim of this paper to formulate briefly one of the problems
arising in the analysis of the FM with feedback (FMFB) receiver,
namely that of stability of its response to step changes in input fre-
quency. We shall write equations deseribing this response and present
results about local and global stability of solutions for simple cases.

II. CIRCUIT DESCRIPTION

The FMFB receiver has been extensively discussed in recent publi-
cations,*® so only a brief deseription of it is included here. Roughly
speaking, the receiver is a conventional FM demodulator, with a local
oscillator whose frequency is controlled linearly by the output of the
detector. The object of this control is to reduce the index of modulation
at the output of the mixer, so as to be able to use a narrower IF filter
than in a conventional FM receiver, and thus to eliminate some of the
noise accompanying the input signal. The action of the circuit is to
follow the slowly varying frequency of an FM wave while looking at
it through a moving narrow frequency “window.”

The circuit is closely related to the phase-locked oscillator, but it is
distinguished from that device by having amplitude effects absent in
the latter. Mathematically this distinetion takes the form that in
FMFB there is an amplitude variable for every phase variable, while
in phase-lock these variables do not appear. Their presence critically
affects and complicates circuit analysis: thus the simplest FMFB
equation is in two dimensions, while the simplest phase-lock equation
is the pendulum equation, in one. The FMFB receiver resembles the
phase-locked oscillator in that both devices work by phase-locking
onto an FM wave that varies slowly over a limited range; if this range
is exceeded locking fails and oseillation can set in. This phenomenon
is well-known in phase-locked oscillators; in FMFB receivers a similar
behavior has been described by L. H. Enloe.* It is to this stability prob-
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lem that we address ourselves, endeavoring an analytical study of the
stability of simple differential equations deseribing the mistuning of
the incoming signal away from the normal earrier frequency.

A typieal result we prove states that if the mistuning wy is not too
big, specifically, in physical terms, if (for a one-pole baseband analog
of the IT filter)

|ws| < (half-power IF bandwidth)(1 + feedback gain),

then, for the simplest receiver, solutions which are bounded away from
zero amplitude approach the equilibrium or eritieal point. This and
similar results are proved by using the Poincaré-Bendixson theory, or
with the help of Lyapunov functions.

IITI. EQUATIONS FOR RECEIVER WITH IDEAL DETECTOR

We shall write equations for the FMFEB receiver (see Fig. 1) under
the assumption that it contains an ideal frequency detector. That is,
we assume that if the signal leaving the II filter is a(f) cos (wf + 6(1)),
then the detector produces the output 4(f). Let the mixer input be

I, cos wl — r,sin wl,
and let the mixer multiply this input by
2 cos (wal + Be(l))

where g (in practice and here > 0) is the feedback gain, and ¢ is the
feedback signal. It is assumed that the IF filter is tuned to the difference

frequency @ = w, — wa, and can be represented by an impulse response
ESSENTIALLY U €OS wt-ugsin ot _ PERFECT DETECTOR
UJ:(U|-(‘)2 \\ o _J___*_ﬁ
\
v
MIXER IF FILTER LIMITER DISCRIMINATCOR

X, COS wy t-xgSINw, T

2cos(wat +40) ]
VOLTAGE CONTROLLED | # | dc AND BASEBAND |
OSCILLATOR AMPLIFIER-FILTER
u
— -1 =S
f=TaN"' O

Fig. 1—FMFRB receiver, block diagram.
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of the form 2f(¢) cos wt, with f(-) a baseband response such that f(f) = 0
for ¢ < 0. The sum (w, + ws) components of the mixer are essentially
removed by the IF filter, and will be ignored. The difference () — w2)
components at the output of the mixer are

cos wl{x, cos Be + z, sin Be} — sin wt{r, cos B — . sin Be}.

The response of the IF filter to these components has the form

cos w! fl f(t — w){x.(u) cos Be(w) + z.() sin Be(w)} du

t

— sin wi f f(t — w){x.(w) cos Be() — x.(u) sin Be()} du
0

+ terms around 2w

+ terms representing initial conditions.

We shall assume that the passband of f(+) is small compared to 2o,
so that the components around 20 may be ignored as well.

To complete the loop equations we must indicate how the feedback
¢(+) is determined from the output of the IF filter. We set, fort >0

w(f) = r.(f) + j: ft — w){z,(u) cos Be(w) + x,(u) sin Be()} du,

w(f) = r.(t) + j; ‘ f(t — )iz, @) cos Bp(u) — x.(u) sin Be(u)} du,

where 7.(+), r,(+) represent the effects of initial conditions in the filter
at t = 0. Exclusive of the carrier, the angle modulation of the IF

output,
u, €os wt — u, sin wl,

i just

corresponding to an instantaneous frequency,

. U, — U,
6 - a2 [}
where ¢ = (¥* + u?)'"*. This is the output of the ideal detector.
The feedback frequency ¢(-) controlling the voltage-controlled

oscillator is obtained by filtering 6(-). Thus
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e(t) = r(t) + j: k(G — w)6(u) du, t>0

where k() is the impulse response of the feedback filter, and »(+)
represents the effect of initial conditions at ¢ = 0.

IV. DIFFERENTIAL EQUATION FOR THE SIMPLEST CASE

When the baseband responses f(-) and k(+) correspond to filters
with rational transfer functions, the integral equations for u.(+) and
uy(+) can be turned into differential equations in a well-known way.
In the simplest ease, when there is no feedback filter and f(+) corre-
sponds to a (one-pole no-zero) filter with transfer u/ (A + s), we ob-
tain the equations

w0, = —Mu, + plr, cos B8 + x, sin 6]

w, = —Au, + plx, cos B — x. sin B4]
4= u(r, cos B0 — x.sin §6) — u,(x. cos B0 + x, sin B6)
- H ur + ui
The introduction of polar coordinates v, = a cos 6, u, = a sin ¢ simpli-

fies these equations to

6 = ﬁ(a:,, cos (B + 1)6 — x.sin (8 + 1)6) (1)

i = —ia + u(r, cos (8 + 1)6 + x,sin (8 + 1)6).

We first consider the stability of equations (1) when the input to the
demodulator consists of the carrier cos ;¢ alone, with no signal. In
this case .= 1, 2, = 0, and the equations are

6 = —ﬁsin B+ 16 @

= —ia -+ p cos (8 + 1)6.
We recall that the critical points of a differential equation & = v(z) are
the points r in the phase-space at which v(z) = 0. Those of the system (2)

are then the points in the a, 8 plane at which simultaneously § = i = 0,
namely,

_ 2nw
g+ 1’

Because of the periodie dependence of the right-hand side of (2) on 6,

a = % , n an integer.
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it is possible and convenient to define ¢ = (8 + 1)8, to write (2) as

f=—-B+1 g sm i ®)

i = —Aa 4+ p cos{,

and to consider only principal values of {, and thus only the eritical
point (u/A, 0) in the plane specified by the polar coordinates (a, {).

Theorem 1: The equations (3) are globally asymplotically stable for
all positive \ and p; all solutions tend to the eritical point u/N, 0 in an
exponential manner; ¢ is monolone, and a is either monotone or has one

mintmum.

Proof: We start with an heuristic direct analysis of the trajectories.
Consider in Fig. 2 the circle C in the a, { plane defined by ¢ = 0, that is,
a = p/heos {. Withx = acos{,y = a sin ¢ we shall examine the
directions of the trajectories of (3) at points on C. The equation of C is

. H
_ (e 2.
”’(A "’)

Since C is the locus @ = 0, it is apparent that on C each trajectory
(has a tangent that) is perpendicular to the radius from the origin.

4

R VECTOR FIELD DEFINED
BY EQUATIONS (3)
/

/
/
/

a RIG;:T CRITICAL POINT
ANGLE (u/A,0) IN
(a,{) PLANE
> )
P
v . .

. L -
C OR a=0 OR a:’Tcoss

Fig. 2—Phase plane for no mistuning.
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By symmetry about the z-axis, we can restriet attention to y = 0. The
slope of C at z, y is

35 ) -4
dx ~2\y 7 A 2$_2y)\ 2],

while the slope of the line through z, y perpendicular to the radius
from the origin is

Since for 0 < z < u/\,

(EX - 2.15)(1: — ﬁ) < 2(% — :cz) ,

we find

Thus every trajectory is entering C on @ = 0 except at the origin and
at the critical point. { is decreasing in ¢ > 0. If a trajectory ever crosses
C it can never again recross it and must approach the critical point;
in this case a has a single minimum. If a trajectory never crosses C,
1t must simply slip into the critical point, because then both a and ¢
decrease and are bounded below.

These preliminaries lead us to define the Lyapunov function

_ (e _ )2 1oy
Vﬁg()\ a cos ¢ —|—2(asm§')

= % (distance from a, ¢ to critical point)®

Evidently V' = 0, and V' = 0 only at u/), 0. The rate of change of V
along trajectories of (3) is
n

V=ad—dicos§'+a§§‘sing‘



1510 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1971

—?&(a—%cosi‘) —g28—17:15in2§’

‘B
= —NV — Ei-sinz £<0

except at the critical point, where V = V = 0. It follows from Theorem 11,
p. 37 of Ref. 6, that the system (3) is globally asymptotically stable:
all solutions tend exponentially to the critical point with reciprocal time
constant 2\. When A = g, 2\ has the physical interpretation

2x = 2 X (half-power IF bandwidth).
V. MISTUNING IN THE SIMPLEST CASE
Let us assume that in equation (1) we have

x, = sin w,t, r, = COS wil,

corresponding to the “mistuned” earrier input cos(w; + wg)t, or to the
constant modulating signal wq . The equation (1) assumes the form

b= gsin (@i — (B + 1)6)

i = —\a + p cos (wid — (B + 1)8),
or with¢ = wet — (8 + 118,

= w; — iﬁ—s_—l)sin I @)
i = —ha + pcos {.

The eritical point of this system is determined by the conditions

" 1

a=)—\cos§‘, ¢ = tan” )YB%-—I)

It is important to note that because of the possibility of going to low
amplitudes there always exist critical points, regardless of the value of
wq . This situation is in sharp contrast with the phase-locked oscillator.
For a filterless phase-locked oscillator the equation corresponding to

(4) would be

()

f = Wy T M sin ()
which has no eritical point if wg > . Thus in phase-lock there is
usually a critical frequency deviation above which locking is Impossi-
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ble for lack of eritical points, and below which it may or may not occur.
In the FMFB receiver, though, the critical points always exist but, as
we shall see later, they are not always stable.

We determine the stability of the eritical point (5) by the standard
method of linearization. The matrix

9, 0.) [ wB+D B+ 1) .
ar e %a [ _ a cos ¢ - sin ¢
d d .

a_(i 'éad —usin ¢ -\

of partial derivatives, evaluated at the eritical point, is the matrix 4
appropriate for the linearized system. The determinant of (sI-4) turns
out to he

2
Wq

g+ 1'

with roots in the left half-plane. Hence the eritical point is stable; in
a neighborhood of it the trajectories approach it.

Because of the symmetry of the equations, there is no loss of gen-
erality in assuming, as we do henceforth, that ws < 0. This convention
is used in Figs. 3 and 4.

Although we have not proved it, it is natural (and we conjecture)
that a separatrix lies between solutions which pass around the origin
in the upper half of the a, ¢ plane, and solutions which just miss the
origin as they go past it in the lower half of the plane. Roughly speak-
ing, the former pick up an extra 2= of phase before settling. This
separatrix may even be a fan? of =olutions each of which goes into the
origin, although in all likelihood it consists of a single trajectory. This
conclusion is supported by a heuristic low-amplitude analysis of equa-
tions (4) suggested by J. A. Morrison. He writes (4) as the single
equation

s+ N8+ 2) + NEB+ 1)+

d_§'=awd—u(ﬁ+l)sin§'
da wa cos { — a®

and for [cos {| =2 1 drops terms of order a’, obtaining

pacosf%=md—p(ﬁ+ 1)sin§‘=ya(%sin;’,

whence by integration from a, to a

sin { — —Laa __ _ (%)M(sin $o — w,;ac.__)_
B+ 2) a o ouB+2)
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CRITICAL
POINT
1

/

Fig. 3—Phase plane for mistuning,.

This formula suggests that if a point (a,, ¢, on the circle

a = B +2) 2)sin ¢
Wy
and near the origin, is on a trajectory then a nearby point on the circle
is on the same trajectory. In other words, a trajectory going through
the origin does so like the circle above, which is tangent to but outside
the circle f = 0 with equation
_wu@B+D .
Wq
To avoid difficulties we shall consider only trajectories which are
bounded away from the origin.
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We now address ourselves to the global stability of the mistuned
equations (4). Sinee the system is two dimensional it is possible to try
to use the topological Poincaré-Bendixson methods.” This is most con-
veniently done by passing to rectangular coordinates ¥ = « cos ¢,
¥ = a sin ¢ again, and ealculating the divergence. We rewrite (4) as

1
[:1_ —)\1-}- + w(B8 + )_‘ J 3 — Walf
y —\ - - uﬁ_?:?/ o+ o
= v(x, ¥)
We find
o xy’
98 _ v 9,8 — 4
ox A P
W _ o =y
E)y - )\ #B‘l (U2 + y2)2
dive = =2\ — ;{E_lﬁ_lfyg
oy _ MB
A o cos

Fig. 4—Details of the curve A.
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Lemma 1: In the portion of the fourth quadrant comprised by an
arbitrary neighborhood of the origin there is always a curve K, joining the
positive z-axis to the megative y-aris, such that on K trajectories of (4)
cross K in the outward direction, i.e., out of the part cut off by K near the
origin, and into the part separated by K from the ortgin. (See Fig. 3.)

Proof: Let K consist of the circle @ = ¢ from the z-axis down to the
point where this circle crosses é = 0, i.e., until cos { = e\/u. The
Cartesian coordinates of this point are

)\62 € ] 3. 2
To = — , Yo = —— ‘\/'u — €A
© "

From here let K continue to the y-axis at slope 1, i.e., let it consist of
that portion of the line

2

y=$—5 ,11.2—62?\2—?3-'

" m
which is between its intercept i, — , on the y-axis and the circle d = 0.
Now on a = ¢ inside d = 0 we have @ > 0, so on the circular part
of K all trajectories are entering a > ¢, even at o, ¥o. At o, Yo the
trajectory is actually tangent to @ = ¢, but for small enough e it is
pointed in the direction of increasing » and so there too it must enter

a> e
On the linear part of K we want to verify that

C g Y
dy Ay + w2 uB 22 + yz
2

A\ _ [ —

A+ u wdy+“5$2+y2
if € is small enough. This is true because on the linear part of K we have
z—0,y— 0, and

<1

— 0

y _r
R

all monotonely and uniformly, as ¢ — 0; near ¢ = 0 the denominator
of dy/dz is close to (8 + 1) for (z, y) € K, so on the linear part of K the
trajectories are moving in the direction of inereasing z at a slope
dy/dr < 1; hence they are crossing K in the direction of increasing
amplitude. This proves the lemma.

Theorem 2: If |wi| < NB + 1), then every trajectory of (4) that is
bounded away from the origin approaches the critical point a = p/\ cos ¢,
¢ = tan™' wy/AB + 1).
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Proof: Tt suffices to consider only w, < 0. All trajectories outside
a = u/A have d < 0, so it is enough to consider those starting inside,
because the others get there eventually. Consider a path starting in
0 <¢=3n/2 ¢ =0, a = g\ and bounded away from the origin.
Either it stays in this region forever, or it reaches the fourth quadrant,
or else it moves into § > 0. If it stays there forever then there is a
closed region, free of eritical points and excluding the origin, in which
it stavs. By a result of Poincaré (Ref. 7, p. 232), this closed region also
contains a closed path v, of period say r. Then because v is closed,
if £(0) is on v,

¢(r) — ¢(0) = f i@ dt = 0.

But this is impossible sinece { < 0 throughout the region in question.

In the third quadrant a trajectory can cross { = 0 only once. The
argument just given also shows that no path bounded away from the
origin can stay in the region # < ¢ < 37/2, { > 0, @ £ u/\. Thus all
paths starting in the region a < u/X and bounded away from the origin
reach the fourth quadrant.

The inequality in the hypothesis implies that the circle { = 0 inter-
sects the circle ¢ = p/A. Away from the origin we have { < 0 for 2 = 0,
y>0and§ > 0forr=0,5y<0.0n0 <z = p/\ y =0 the tra-
jectories enter the fourth quadrant intersected with a £ p/\. Since a is
nonincreasing on @ = u/\, it follows from Lemma 1 that there is a
region R with these properties:

(i) R is closed.
(ii) R € {a £ u/A} M fourth quadrant.
(iii) (e £ p/A} M fourth quadrant — R) is in an arbitrarily small
neighborhood of the origin.
(iv) R is entered by the path under consideration.
(v) R is invariant, i.e. maps into itself under the motion.

Indeed R ecan be chosen to be a 2-cell (homeomorph of a dise). We
note that the divergence is negative throughout R. It follows from the
criterium of Bendixson (Ref. 7, p. 238) that R contains no limit eyeles
nor even an oval going to and from a critical point. Since R contains
only one eritical point, it can contain no path-polygon. Thus two of the
three alternatives in Bendixson's theorem (Ref. 7, p. 230) are ruled
out, and all paths starting in R go to the critical point. Since we can
associate a region like B with any trajectory hounded away from the
origin, the theorem is proved.
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We remark that when A = p the condition of the theorem can be
rendered in physical terms as
| mistuning | < (half-power IF bandwidth)(1 + feedback gain).

We next show that a result similar to Theorem 2 can be obtained by
a Lyapunov funetion argument.

Theorem 3: If
28 + 1)!
B 1

then every trajectory of (4) that is bounded away from the origin
approaches the critical point a = p/A, { = tan™ wa/A(B + 1).

[ws | <

Proof: Consider the scalar function V' defined by
2V = (\a — p cos {)* + (8 + 1) *(aw, — u(8 + 1) sin §)°
@ + (8 + 1)7(ag)".

Il

We find

= —Aa — p cos {)°

+ (8 Ii‘fdl—)—‘ (Aa — p cos {)(aw, — w(B + 1) sin {)
_ A
g+1
—V is a quadratic form in ¢ and af with determinant
— B,
\ T} ﬁ 1y’
__—Pws__ A

28417 B+1

which is positive whenever | w, | < 2\(8 + 1)**/8.

Consider now a trajectory bounded away from the origin. It is
clearly bounded, so it has a positive limiting set T'" which is invariant
and to which it tends. There is a constant k such that the trajectory is
entirely contained in a bounded subregion € of {V < k}. Hence I'" & @
and ¥V = 0 on I'". Since a is bounded away from 0 on the trajectory,
it follows that @ = 0 and { = 0 on T'". Thus the trajectory tends to the
critical point. (This is a variant of the argument for Theorem VI, p. 58

(aw; — p(B + 1) sin §)*.
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of Ref. 6.) Again, the condition of the theorem is that | w,| not be
too big, viz.,

| wi| < 2(half-power IF bandwidth) X (8 + 1)*?/8,
where § is the feedback gain.

VI. ONE-POLE FILTER IN THE FEEDBACK

After the filterless case considered so far, the next simplest model
for the FMFB receiver would have one-pole, no-zero filters both as the
baseband equivalent f(+) of the IF response, and as the response
k(+) in the feedback. This is the simplest case that has appreciable
practical import: the IF filter corresponds closely to the one-mesh
design described by Giger and Chaffee (loc. cit., p. 1119 and Fig. 5,
p. 1120) ; the feedback filter and the gain 8 are a rudimentary version
of the de-and-baseband amplifier sketched by these authors (loc. eit.
pp. 1121-22.)

In this case the differential equations for the system are

U, = —Mi. + p(z. cos Be + x, sin By)
U, = —M, + u(z, cos Be — x, sin By)
b = a *(uat, — ua) = %tan—' :%:
&= —yx + 86

p ==

with @ = (w® + u®)! as before, and 6/(y + ) the transfer function of
the feedback filter. Upon setting ¢ = 6 4 B¢ these simplify to

£ =Gz +ﬁ(x, cos f — x,sin )

i = —Aa + p(z. cost 4+ x,sin§)
. ou .
= —yr+ o (x, cosf — x, sin £).
When the modulating signal 1s a constant wg, then z,(f) = sin wgt,

Te(t) = cos wqat, and with £(f) = w,t — £(¢) the equations become

f=wd~—ﬁx~§sin§'
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i = —Aa+ pcos (6)
&= —yxr+ %—:sin .

Let us note heuristically and physically that if § = y = oo then the
feedback bandwidth goes to o and we obtain the equations (4) of the
simplest case.

We start with a study of the stability of the critical point &y, ao, @0
defined by

fo = tan™' ————
a(1 + @)
v
@G = % €os {y )
To = _ Gwa
° T y + 85

The matrix A = (3f;/dx;) of partial derivatives evaluated at the criti-
cal point is

{ a T
. N tan &
J A p cos §o B
| —usin § -2 0l
. 8\” tan {o
T oA & cos G ¥

The determinant of (sI-A) is

(s + N((s + N(s + v) + B&N) + &N\Btan” o + N tan’ {os + )
=" 4+ (@A + 7)s* + (v + BoN + N tan® {)s
+ N*(85 + tan® (85 + 7))
=54 as + as+ a .

A necessary and sufficient condition for stability is that

a,0,8 >0 and a.,a, > a.
The first three are clearly true, and the last amounts to

2 YWa "Ywd .
(2N + V(2N + N + AB8) + (7———+ Ba) > \°88 +7+,66
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This is symmetric in *wq , and is true for |wg| small enough. It becomes
false for large |wg| 1f 20 < B8. If A = p and y = 8, then these numbers
are the half-power bandwidths of the IF and feedback filter respec-
tively, and we may say in physical terms that if

ITF bandwidth B 2_?\
feedback bandwidth &

B = feedback gain < 2 X

then a very large mistuning cannot affect the local stability of the sys-
tem, but if B exceeds twice the ratio of IF to baseband widths then
sufficiently large mistuning will make the system unstable. This result
was first observed in an unpublished work (although with some errors)
of T. R. Williams.

The global stability of the equations (6) for the case with a one-
pole in the feedback is a far more difficult topie than the local. Natur-
ally, as more complicated filters are assumed for the IF and the feed-
back, the dimension of the problem goes up, and the kind of geometric
analysis we are using here becomes virtually impossible. In particular,
the Poincaré-Bendixson theory used earlier is already unavailable in
three dimensions, and also there seems to be no ready way to prove
the boundedness of solutions. Nevertheless some information can be
obtained from the construction of a Lyapunov function for the case of
no mistuning; all attempts to extend the method to the case of mistun-
ing have failed.

Theorem 4: If wg = 0 (no mistuning) then every trajectory of (6)
that s bounded away from the line a = 0 approaches the critical point
given by (7).

Proof: Consider the sealar function V' defined by
a?;;2 ]J.Q s j.&! G032 g,
R N R N T

V' is certainly positive along any trajectory satisfying the hypothesis,
We find after a lot of elementary calculus that

-2
2V = %+

V — _(0)2 _ (h +7)a2(§-)2 .

Aty + 88
Since the trajectorv assumed in the theorem is bounded away from
the line @ = 0, it is easy to see from the equations (6) that it is bounded.
Thus the positive limiting set of this trajectorv is a nonempty, compact
invariant set I'*, to which it tends. There is a constant k such that the
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trajectory is eventually in a bounded subregion @ of {V < k}. Thus
I'* € and V = 0on I'". Consider now the largest invariant subset M of
{(V = 0} N Q. Clearly T" € M. Thus the trajectory tends to /. On M,
V = 0; hence since the trajectory is bounded away from a = 0, we see
also that @ = 0 and { = 0 on M. Now the equations ¢ = 0, = 0
define a spiral curve C on the cylinder ha = u cos { by the formula

A

3 tan ¢,
and M is an invariant subregion of this curve, bounded away from
a = 0 (which C is not). On C the vector field defined by the equations
must either vanish, or else must point in the +y direction, or else point
in the —y direction; this is because there can be no motion in the a,
¢ plane on @ = 0, { = 0. If either of the second two alternatives holds
at a point of C, that point cannot belong to M, because the trajectory
through it would move off C and M < C. Hence M consists of C-points
at which the field vanishes, i.e., M = {eritical point}. (Cf. Theorem VI,
p. 58 of Ref. 6).

Try as we might (and we tried many Vs) we have not succeeded in
proving a version of Theorem 4 in which there was mistuning. If the
same V is used with w, # 0 as was used in Theorem 4, then it is no longer
true that V < 0; thus the results we feel are there still elude proof.

‘.b-:_..

VII. COMPENSATED ATTENUATOR IN FEEDBACK

In private communication, L. H. Enloe and B. R. Davis have sug-
gested that probably the most important practical FMFB receiver is
one having a single-pole (as the baseband equivalent of the) IF filter,
and a single-pole—zero-feedback filter, i.e., one with transfer

s+a._
s+ b

In the time domain this acts like a delta-function plus an exponential.
From formula (6) we see that the right-hand side of the equation for {
can be thought of as the output of a filter whose response is a delta-
function plus an exponential. This suggests that the analysis in Section 6
can be made to cover the filter transfer (8) as well as the one-pole,
because the differential equations are such as naturally to supply the
constant in (8) if it is not present.

Writing the transfer function as

s+a c
s+o - 1T g

(8)
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with ¢ = a — b, the differential equations for the system become

1, = —Au, + p(r, cos Be + x, sin By)
i, = —u, + u(r, cos B — x. sin By)
0 = a(war, — ua,) = a-{talfl :::_,

e=0+y
y = —by + cé,

with @ = (u? + u?)"* again. We note that

6 =2 (v, cos (B¢ + 0) — x.sin (B + 0);
now we set £ = B¢ + 6 and simplify the equation to

(B + + 1u

Il

£E= By + (v, cos & — x,.sin§)

i = —\a + p(r, cost + x,sinf)

7= —by+ %’u(.;,. cost — x,.sin k).

With the modulating signal a constant g, we have as for equation
(6), 2. (t) = sin wel, 2. (t) = cos wgt, and we can set ¢(t) = wat — £(2)
to obtain the equations

(B4 Dpsin ¢

a

§=w — By —
—Aa + pcos ¢ 9

a

i —by-l—%sin t.

These equations have the same form as (6) except that ¢ replaces §,
b replaces v, and there is an extra (8 + 1) coefficient in the sin term of {.
The eritieal point is at

a, = % cos (g

1 Wy

A8 + 1)(1 + C’g)

¢ = tan

yn=%§(ﬁ+1)t£m o



1522 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1971

The matrix of partial derivatives evaluated at the critical point is

i' a Yy
., A tan &, _
R RS el
| —psin ¢, —A\ 0
il e+ n  —egpiERL

pocos ¢y
The appropriate polynomial is
s+ SOGB4+ 1) + b+ N + (b + 2)
+ N8 + 1)1 + tan® &) + eNB(8 + 1))

+ b8 + DA% tan® §, 4+ BB + 1) + (B + 1)BN tan” §,

=5 4+ a + as + a, .

A necessary and sufficient condition for local stability is then that
an, a, and ay all > 0, and that a.a; > ay. It is clear that the first
three conditions are met whenever ¢ > 0, i.e.,, @ > b. The case a = b
is degenerate and reduces in dimension to the filterless case of Section

4. Also, a, is always positive. However, since
Wa
B
AMB+ D1+ 3

tan g.[) =

we can write a; as

lwd |2 b2

(b + A6+ 1

=N+ N(@B+ 1)+ N+ DO+ B+
If

b(,B—l 6+1)>)\+,@a

then the sum of the first three terms is negative, and a; < 0 for |wq

sufficiently small. Similarly
| wa | (b + cB)
(1 +2) 6+ v

a = eNBB+ 1) +



FMFB RECEIVER RESPONSE 1523

which is negative for any wg if b + ¢8 < 0, and is also negative for
wg| sufficiently small if ¢ < 0. The ease ¢ < 0 is physically a bit
strange, beeause it is equivalent to having positive feedback in one
loop of the feedback path; thus it is not surprising that in this case
there can be instability even for w, = 0.

In the case ¢ > 0 only the condition asa, > a, is of concern and this
is

(A8 + 2N + DAD(B + 2) + N'(8 + 1)(1 + tan’ &) + BB + 1)
> (b + Be)(B + D tan® §o + BB + 1),

which simplifies somewhat to

Nb(s* + 78 + 9)
+ M@+ DB+ 2) + 8B+ Db+ N8+ N+ AEB + 2

|°’d |2

> S(N(B 4 DBe — N(B + DB + 2).

. ¢
8+ 1)*(1 + 5@)
Again, this is symmetric in =, , and is true for |ws| small enough. Tt
becomes false for |w,| large if

Be > NB + 2).

We can think of the feedback path in this example as consisting of
two parallel branches whose sum is added, one being an amplifier with
gain, 1, the other being a single-pole filter S with de gain 1 and (half-
power) bandwidth b, in series with an amplifier 4 of gain ¢/b. We
can then say in physical terms, assuming A = p, that if

. IF bandwidth .
f<B+2X S bandwidth < &40 of 4

then even a very large mistuning cannot affect local system stability,
but if not, then a sufficiently large mistuning can. The fact that
(B + 2) appears as a factor on the right shows how much the zero in
the ecompensating attenuator helps prevent instability, in agreement
with what has been observed in practice by L. H. Enloe and B. R.
Davis (private communication).

The global stability of the equations (9) may be studied by the same
methods as were used in Section 6 for that of equations (6), but this
topic is not pursued further here.
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