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Timing Recovery in PAM Systems

By R. D. GITLIN and J. SALZ

(Manuseript received January 7, 1871)

It is shown how various timing recovery schemes are reasonable
approximations of the maximum likelihood strategy for estimating an
unknown timing parameter in additive white gaussian noise. These
schemes derive an appropriate error signal from the received data
which is then used in a closed-loop system to change the timing phase
of a voltage-controlled oscillator. The technique of stochastic approxi-
mation is utilized to cast the synchronization problem as a regression
problem and to develop an estimation algorithm which rapidly con-
verges to the desired sampling time. This estimate does not depend
upon. knowledge of the system impulse response, is independent of
the noise distribution, is computed in real time, and can be synthesized
as a feedback structure. As is characteristic of stochastic approxima-
tion algorithms, the current estimate is the sum of the previous esti-
mate and a time-varying weighted approximation of the estimation
error. The error is approximated by sampling the derivative of the
received signal, and the mean-square error of the resulting estimate
is minimized by optimizing the choice of the gain sequence.

If the receiver is provided with an ideal reference (or if the data
error rate is small) it is shown that both the bias and the jitter (mean-
square error) of the estimator approach zero as the number of itera-
tions becomes large. The rate of convergence of the algorithm 1s
derived and examples are provided which indicate that reliable
synchronization information can be quickly acquired.

1. INTRODUCTION

The problem of symbol synchronization in digital data transmission
in the presence of intersymbol interference is extremely complicated.
The best sampling instants are channel dependent and are in general
difficult to determine. Consequently, the problem of timing recovery in
high-speed data transmission is intimately tied in with adaptive
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equalization. Since general methods for simultaneous optimum deter-
mination of the receiver parameters are not known, these parameters
are independently determined.

Timing information is usually obtained directly from the data wave
in a variety of ways.*™® Our objectives in this paper are:

() To indicate the optimum method (maximum likelihood) for
estimating an unknown timing parameter from random data
for a certain class of PAM data transmission systems;

(i) To show that a variety of timing recovery methods currently
in use are reasonable approximations of the optimum method,
and to note that the generation of an error signal from the
received signal is a feature common to these methods;

(227) To demonstrate that timing recovery dynamics can often be
studied and controlled through the application of stochastic
approximation theory.*™

Identifying the desired timing parameter as the solution of a re-
gression equation will allow us to apply stochastic approximation
theory to the symbol synchronization problem. For purposes of illus-
tration we analyze a stochastic approximation timing recovery pro-
cedure for square-wave modulation. For this example we derive
asymptotic formulas for the probability of error as a function of
signal-to-noise ratio and the number of iterations used in the timing
recovery loop. Since the number of iterations is directly proportional
to the number of signaling intervals, insight is provided into the setup
time required to achieve reliable symbol synchronization.

We finally focus on the more difficult problem of timing recovery
in bandlimited PAM systems. Here timing information must be ob-
tained in the presence of intersymbol interference as well as additive
noise. A stochastic approximation algorithm is presented which derives
symbol synchronization (i.e., estimates the desired sampling time)
from the received data in a quick and aceurate manner. The estima-
tion algorithm developed does not require explicit knowledge of the
system impulse response or the noise distribution. If the impulse
response of the channel satisfies certain conditions, then the algorithm
will converge in mean-square provided the gain sequence is properly
chosen. Symbol synchronization is obtained by adjusting the sampling
time in the following manner: at the end of each symbol interval the
current, estimate is taken to be the sum of the previous estimate and a
weighted approximation to the actual estimation error. The desired
sampling time is assumed to be that instant when the system impulse
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response is a maximum. For this sampling time it is shown that a
reasonable approximation to the estimation error is the sampled
derivative of the received signal.’ When the error is small, its evolu-
tion can be deseribed by a first-order random difference equation. At
every iteration the mean-square error (mse) can be minimized by
optimizing the choice of the (time-varying) weighting sequence. The
optimum weighting sequence is of the form 1/(a + fBn), where « and
B are quantities which depend on the system impulse response and
noise power, and n is the discrete time index. Since « and 3 are gen-
erally unknown at the receiver they may either be estimated (giving
rise to an adaptive synchronization algorithm) or picked arbitrarily.
In an effort to overcome the lack of knowledge of « and g (in addition
to simplifying the algorithm) it is tempting to use the asymptotic form
of the gain e/n, where ¢ is a constant. However, if 8 € « then the
optimum gain is essentially a constant (1/e) for many iterations, and
for a wide range of ¢ the estimate obtained using ¢/n is shown to be
unreliable. Hence it appears that in order to obtain satisfactory per-
formance some adaptivity to determine « and 8 should be used in any
realization of the algorithm.

Under the assumptions that the receiver error rate is small (so that
an ideal reference can be assumed) and that the “eve” of the dif-
ferentiated impulse response is open, the optimum mse is asymptotically
of the form 1/pn, where p is a “signal-to-noise” ratio. The “signal”
term is the value of the slope of the differentiated impulse response
near the origin, the “noise” term is the sum of the actual noise vari-
ance and two intersymbol interference type terms. Thus the mse can
be driven to zero and an example is given to illustrate how an accurate
estimate can be obtained in a few signaling intervals. We show that for
a sin x/x impulse response, ten iterations will drive the mean-square
error to less than 0.01 of a signaling interval.

In Section IT we determine the maximum likelihood estimate of
an unknown timing parameter for a baseband PAM data signal which
has been contaminated by white gaussian noise. Several approxima-
tions to the optimum estimator are described in Section III. The
theory of stochastic approximation is introduced in Section IV, and is
used both to cast the synchronization problem as a regression problem,

tB. R. Saltzberg? has suggested a technique for timing recovery which uses
this approximation. His investigation is restricted to algorithms which can be
realized using time-invariant devices. The algorithm we develop exploits the
advantages of using time-varyving elements.
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and to analyze and control the dynamics of timing recovery. In Sec-
tion V we discuss a timing recovery algorithm for bandlimited PAM.

II, THE MAXIMUM LIKELIHOOD ESTIMATOR OF AN UNKNOWN TIMING
PARAMETER

Consider the L level data wave in additive white gaussian noise »(t)
of double-sided spectral density N, ,

V() = E ah(t — nT — 7%) 4+ »(1), (1)

where {a,} are the data symbols taking on values *=d, *=3d, ---
=+ (L — 1)d with equal probability, h(t) is a bandlimited pulse whose
peak value occurs at =%, and —7/2 = +* = T/2 is an unknown timing
parameter.t

Detection of the data symbols {a,)} is usually accomplished by first
suitably filtering V(¢) and then sampling the output at time instants
r+ kT, k = =1, £2, - -- | The resulting error rate is a function of =
in addition to other parameters. An ideal timing recovery system
would supply the detector with = which minimizes the probability of
error. While this problem is conceptually straightforward, it is not
analytically tractable and the structure of such an optimum timing
recovery system is not generally yet known, We therefore must resort
to a less utopian criterion.

Much simpler evaluation functions often used in data transmission®
are

1 ,-
Di(r — ) =m;|h(r— ™ — kT) |
k=0

j=1 or 2. 2
Even for these relatively simple evaluation functions it is generally
difficult to find the optimum r. R. W. Chang® derives timing recovery
procedures based on minimizing a particular version of equation (2).
However, for a certain class of linear distortions, namely the type that
gives rise to symmetrical pulse shapes, the best r, which minimizes
(2), is equal to the unknown parameter +*. For this class of channels
the problem of optimal timing recovery procedures can be cast in the
language of statistical estimation theory. This is the situation treated
in this section.

t We assume throughout that +* is independent of time.
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The statistical problem we pose is this: determine an estimation
procedure for the parameter r based on observations made on the
received signal V({ [equation (1)]. The more detailed question we
wish to answer is the following. How should the observed signal, say
for T, seconds, be processed such that a “good” estimate of 18
obtained? The answer of course depends on what one means by good.
A reasonable measure of goodness is to require that the estimate
maximize the likelihood function of the unknown parameter. For
binary transmission this is a classical problem for which a solution
is known. (See for example Ref. 3, 10, and 11.)7 The extension to
multilevel signaling is straightforward and we now briefly sketch the
derivation. The likelihood function of the received signal is propor-
tional to (superfluous constants are omitted)

i~ e — i [ V0O —s@ar ey, ©

where s(t; 7) = 2 ah(t — nT — 7) and E{-], denotes expectation
with respect to the data symbols. The expectation indicated in (2)
can be carried out provided the reasonable assumption is made that
the power in the data signal s(f; r) when measured over an interval
[0, T,] (large compared with a symbol duration) is independent of the
data sequence and the unknown parameter 7. This assumption leads
to a simplified version of (3)

L[V] ~ E{exp {NL an V(t)s(t; ) dt}} (4)
L(V) ~ I“I {% ,,il cosh (kﬁdo z,.(r))} , (5)

where -
z.(7) = j‘% V(Or(t — nT — 7) dt (6)

is recognized as the sampled (at times n7 + 7) output of a filter
matched to h(¢), whose input is V(#).

The maximum likelihood estimate (MLE) is obtained by differ-
entiating L[V] with respect to = and setting the resulting expression
to zero. An equivalent strategy may be obtained hy differentiating any
monotonie function of I and a convenient such function in this appli-

t None of the references cited claims originality. Tt is difficult to determine
where the result was written down first.
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cation is the logarithmic function. From equation (5)

A[V] = InL[V] ~ Z{ [Z cosh( z(f)):l}, (7a)

k odd

and upon differentiation we obtain

oA J:z:f (2 — 1) sinh ((Zk—N— “(T))I d_ dz,(7)

== = (7b)
i} - Lsz — N, dr '
TN B (B520) [N
where the bracketed term can be shown to bet
(L — 1) sinh ((L t0d, )) — (L + 1) sinh (&%)dzn(f))
s ; (Tc)

osh ((_L_‘_;'VASM Z..('r)) — cosh ((—LTI)—Q ,.(r))

and for the typical data communication environment of a large signal-
to-noise ratio the above expression becomes proportional to

(L — 1) tanh (Mﬁ)ﬂd zn(r))-

Thus we finally have that

0Ny daln) ((L +1)d )
. g, 0 ©
The optimum estimation strategy is exh1b1ted in equation (8). The best
value of = (i.e., the MLE) makes the right-hand side of equation (8)
as small as possible. The mathematical operations exhibited in equa-
tion (8) can readily be instrumented. The implementation objective
would be to use the right-hand side of (8) as an error signal in a
closed-loop system that iteratively adjusts r to determine the MLE.
A block diagram of this implementation is shown in Fig. 1. The re-
ceived signal and its derivative are first passed through filters with
identical impulse responses h(—t) whose outputs are periodically
sampled at times nT + r. In the undifferentiated branch, the samples
are first multiplied by (L + 1)d/N, and are then passed through the
memoryless nonlinearity tanh {-) which resembles an infinite clipper
for large input values. The output from the two branches are mul-

t Note that for L = 2, equation (7¢) becomes (sinh 8y — 3sinh ¥)/(cosh 3y —
cosh y) = tanh y, which agrees with the bracketed term in (7b).
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TIMING
N o_+1)N%tanh(-)
FRONT—-END

it
FILTER
o ncvf—y [eof—A= F—®

"
| [ o,

at 1 TIMING

<
[a]

(o

Fig. 1—Implementation of maximum likelihood strategy.

tiplied and averaged as indicated by the sum in cquation (8). This
then is the error signal driving a voltage-controlled oscillator which
in turn determines the new timing phase.

III. IMPLEMENTATIONS APPROXIMATING THE OPTIMUM

We now examine approximations of equations (7) and (8) leading to
several simplified implementations of timing recovery systems. The
first approach is to approximate tanh(z) in equation (8) by the
limiter funetion sgn(x). This approximation yields

tanh (Q%M zn(f)) ~ sgn z,(7) = sgn q, , ©)

where @, is the nth decision, or the estimate of the nth data symbol.
The approximation (9) is a good one at large signal-to-noise ratio and
in this ease d, will equal a, most of the time. When this approximation
is made, the detection eircuit which computes d, from z,(7) is sep-
arated from the timing circuit. In the timing branch the received
signal is first passed through the filter with impulse response h(—t)
and the output is differentiated or equivalently passed through a high-
pass filter and then sampled. These samples are multiplied by the sign
of the respective decisions and summed to form an error signal. The
multiplication of the respective derivative samples by the sign of the
decisions is clearly necessary so as to convert all the error samples
to the same polarity." Figure 2 shows this simplified version of detec-

#This is a decision directed estimation procedure. As the timing phase is
acquired, the decisions become more reliable.
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Fig. 2—An implementation approximating the ideal.

tion and timing recovery circuit. Deriving an error signal from the
derivative of the received signal is very reasonable and a timing
circuit based on this idea has been built and analyzed by Saltzberg.’

Another technique suggested from (7) is dubbed “early-late” timing
recovery.>'* The approximations involved here are the following. First
the derivative of A[V] is approximated by the difference

2 {In cosh (kd/No)z,(r + 4)) — In cosh ((kd/Noz.(r — 4))}

k

AKT. (10)

Next the nonlinear function In [cosh (x)] is approximated by |z|. This
again is a good approximation at large signal-to-noise ratio since for
large ||, cosh z — e!*!. This implementation is shown in Fig. 3. Here
two clock pulses separated by 2A sample the received wave after
appropriate filtering. The respective samples are then full-wave reeti-
fied and substracted from one another. The error signal is formed by
adding a number of successive differences. It appears that any even
Nth-law device may be used in place of the In(cosh) nonlinearity in
equation (7). Successful results for instance were obtained with a
square-law device.1?

A feature common to the above timing recovery systems is the gen-
eration of an error signal from the received signal. The sampling
instant is then adjusted so as to decrease the magnitude of the error,
a new error is computed, and the estimation continues in this manner.
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The fewer the number of iterations needed to obtain a reliable esti-
mate, the better the system. Stochastic approximation is a technique
which will enable us to study and control the dynamic behavior of
such iterative estimation algorithms by viewing the synchronization
problem as a regression problem.

IV. THE APPLICATION OF STOCHASTIC APPROXIMATION TO SYMBOL
SYNCHRONIZATION

4.1 Stochastic A pproximation

We will briefly deseribe the salient features of stochastic approxima-
tion, in particular the Robbins-Monro algorithm. Stochastic approxi-
mation*® is a technique employed to iteratively solve regression
problems. The method is an extension of the Newton-Raphson tech-
nique to a random environment, and is especially useful when the
regression function is unknown. More precisely, suppose z, is a
sequence of independent observations of a stationary random process
and it is desired to find the value of the (non-random) parameter =
such that the regression equation,

Elf(z0 ; D] & m(z) = m, , (11)

is satisfied ; where E denotes expectation, f(-) is a given function, and
m(-) is called the regression function. As mentioned above, m(-) is
typically unknown, and we desire an algorithm which uses the data to
sequentially estimate the value of -, say ¥, which satisfies (11).
Robbins and Monro have shown that if (11) has a unique solution

SAMPLE FULL WAVE

EARLY RECTIFIER
FRONT -END
@ FILTER +
v(t) vVCo
[het AND z)
TIMING

SAMPLE FULL WAVE

LATE RECTIFIER

Fig. 3—Implementation of early-late timing recovery scheme.
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then the estimate r, , given by

Ta+1 = Tn + c,,[f(z,. ) Tn) - mn] n = 1; 2: ]

will converge in mean-square and with probability one to ", under
some general conditions* on both the observations z, and on the
positive scalar time-varying weighting sequence ¢, . A useful interpre-
tation of the Robbins-Monro algorithm is that the current estimate is
the sum of the previous estimate and a weighted correction term,
where the average (with respect to the observations) correction is
the error term m.(+,) — m,. Thus the correction term will, on the
average, give an increment in the correct direction, and the estimate
will converge. Alternatively, if we regard the correction term as an
approximation (in a stochastic sense) to an error term, we are re-
minded of the deterministic error or gradient search type of algorithms.
The weighting sequence ¢, is chosen to converge to zero fast enough
so as to suppress the correction term as the estimate converges,! but
slow enough so that large corrections are possible for many iterations
(frequently c, is of the form 1/n).

We now cast the synchronization problem as a regression problem,
and then use the theory of stochastic approximation to develop a
synchronization algorithm which has desirable dynamie properties.
From (8) the optimum (maximum likelihood) timing parameter is
the solution of

7 (A 5 7)) = 0.

If we mike the identification

A (A5 )] © feu 1), (12a)

and now ask for the value of r which satisfies

m(r) = E[;% AG ; T)] =0, (12b)

then the desired [i.e., the solution of (12b)] timing parameter will
be the solution of a regression equation. It is important to note that the
solutions of (8) and (12b) will not, in general, be the same. However
the solution of (8) is a random variable, which as the observation

t Note that even when 7, is close to 7%, the variance of the correction term
can be quite large due to the randomness of the data.
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time T, hecomes large converges to +*; while the solutiont of (12b)
is in fact r*. Thus if we use a Robbins-Monro algorithm to iteratively
solve (12b) we are indeed generating the maximum likelihood esti-
mate.

4.2 Binary Square-Wave Modulation

Consider applying this method to analyze a timing recovery pro-
cedure when h(#) in equation (1) is a rectangular pulse of T seconds
duration and height A, where binary transmission is assumed for
convenience. In this case, the observable function, equation (6),
becomes

(n+1)T+r

z,(1) = j;T‘ V(Dh(t — nT — 1) dt = j’: V(?) dt. (13)

T+1

As mentioned earlier, we can use a square-law device to approximate
the In cosh (-) nonlinearity for mathematical convenience. Thus the
MLE is obtained by finding a r such that the derivative of > 22(r)

is zero. From (7a) and (13) we obtain

LT am =2 TV @+ DT + 0 = Val + ). 19

At large signal-to-noise ratio, symbol transition information is ob-
tained from

01 am+1'an = 1

d,=V(n+ DT +7)— VT + ) ~ { (15)

+1, a,4,'a, = —1
The Robbins-Monro procedure for recursively estimating = can now
be applied by using the regression function

m(r) = Eld.z.(r)}. (16)

For convenience we center the pulse A(t) at ¢t = 0 such that

W) = {A, lt]=T1/2

0, elsewhere
and calculate

(n+1) T+r (n+1) T+

h(t — mT) dt + f v(t) dit

T+r

dz. (1) = d, A ; a, f

nT+r

t For a high signal-to-noise ratio.
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nT+T/2 (n+1)T+r
=dAfa [ dttan [ dt} +
nT+t n

T+T/2

d.A{a,(T/2 — 1) + 0, (T/2 + 7)) + v, , 1n
where

(n+1) T+7
v = f o(0) dt.

T+r

In the absence of data transitions, (17) is independent of = while when
transition occurs, i.e., a, 7= @y11,

dz(r) = 247 +v,, —T/2<7=T/2 (18)

Using (13) the recursive procedure for estimating the unknown
timing parameter, r, is now as follows: Pick an arbitrary sampling
phase o, |ro| = T/2, and compute the next sampling phase 7, from the
relation (assuming that a data transition occurs)

r = 10 — Hdeto(ro) (19)

=71, — 22A7, + vy).
The (n + 1)th sampling phase is then related to the nth by the
recursion relation

s = 7 = g (), (20)

where we have taken ¢, to be 1/n+1. For numerical evaluation pur-
poses it is convenient to normalize (18) and work with the regression
function®

m(r,) = Elf(z., 7.)] = Elr. + @], (21)
where {x,} is a sequence of gaussian random variables with
Elz,} =0 (22)
and
7 p2) — N"T = T_ﬁ
Blod =347 = &,

where p = A%/2N,1/T is the signal-to-noise ratio in a bit-rate band-
width.

t We are assuming that a linear theory applies, i.e., the sequence of {r.}
rarely exceeds |7/2|. In practice no values of 7. which exceeds |7/2| will be
accepted. Including these restrictions in the mathematical model will render
equations (19), (20), and (21) nonlinear and thus mathematically intractable.
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Upon substituting (21) into (20) a linear recursion relation 1is
obtained with the well-known solution
B h}f'zk | 7o | = T/2. (23)
" a4+1 n+l = =

By inspection the following pertinent parameters are computed

To

n+1

pn = Elr,] =

—0, as n— ®

and

2

o = E{r, — E[r,]} =varr, = g‘;(—?;_:—l)a—vo, as n— <. (24)
In evaluating (24) we assumed that the sequence of random variables
{z,} is independent. This is not strictly true. We see from (17) that
the sequence of random variables {z,} for fixed 7 is indeed independent
since each , represents nonoverlapping integrals of the white-noise
process »(t). However, as 7, is changed according to equation (20) the
noise integrals may overlap. To include this dependence in the analysis
would render this seemingly simple problem untractable mathe-
matically. Physieally we feel, however, that this dependence is weak
and therefore can be neglected.

From (23) we see that 7, possesses a truncated gaussian prob-
ability density

P(r,) =p 8(ra — T/2) + p2 8(r. + T/2) + G(r) | 7| =T/2 25)
=0 | 7| > T/2

where

Gr) = e, o {3k (= )

and
-T/2
P = f G(r,) dr,

po= [ Gr)dn.
T/2

Using this probability density we can compute the system error rate.
Dispensing with tedious computational details, and focusing atten-
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tion on essentials, we find that the conditional error rate (conditioned
on the unknown parameter r,) for this simple system is asymptot-
ically (large signal-to-noise ratio)

P,(r,) ~ exp — {AQ[T ~Zln ]2} 7l T/2,  (26)
where )
> = N,T.
When 7, = 0, we have ideal performance, as we should. When r, =

+=T/2, we have disaster. To obtain the actual error rate we must
average (26) over the permissable values of 7, . This caleulation yields

T/2

Pﬂ = E{P,(T“)} Npl + p2 + s Pa(Tﬂ)G(Tn) dTn . (27)

The evaluation of (27) is straightforward. In terms of the normalized
random variable « = 7,/T, we express (26) in the form

P.(a) ~e 77" a| < 1/2. (28)

In terms of the same normalized variables and the explicit values of
pn And a, [equation (24)] we write

(@) ~ exp [—471(04 - %)2] (29)

F

which is valid when »n is large. In writing down (29) we set =, = 77/2
(a worst initial guess).

Asymptotically, p, and p. behave as e and, as we shall see shortly,
can be neglected compared with the last term in (27). To conclude
the error rate caleulation we evaluate

T/2

3
f P,(Tn)G(T") dT,, — EH(P) Nf e—p(l—2|nL)‘—p{n(a—l/En)’ dC!
-T/2 -1

0 3
= [ da ot [ da, (30)
where
1 2
Eia) = (1 + 22)° + 4??,(& - )T?,)
and

Eya) = (1 — 20)° + 4n(a - 9—)2-
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Using a saddle-point technique to obtain an asymptotie approximation
for the integrals, we find that

Pc(P) ~ e—p.‘rh(n) + e—_nM_.,(n)J

where
1
M(n) ~ 1+ n
and (31)
3
M,n) ~1 — o

Combining the above asymptotic results with p; and p. we obtain

finally
P, ~ exp {— p(l - g)} (32)

for n and p large. All the other terms have exponents larger than (32)
and therefore can be neglected. For example when n = 30, the degrada-
tion from ideal (n—) is only 0.5 dB approximately.

What this example shows is that for square-wave modulations in
the presence of additive white gaussian noise, bit timing can reliably
be derived in approximately 30-bit intervals.

4.3 Synchronization of Bandlimited PAM

We now consider a timing recovery algorithm for a bandlimited
PAM signal. As in the previous section the synchronization problem
will be cast as a regression problem. Our received signal is given by
equation (1)

V() = 2 ah(t — mT — 7) + »(D), (33)

and as before the objective of the synchronizer is to aceurately and
rapidly estimate #*. In order to extract information about «* we low-
pass filter, differentiate, and sample the received signal. Hence the
error signal is similar to that shown in Fig. 2, with the matched
filter replaced by a low-pass filter. Thus the receiver does not need
knowledge of the pulse h(t). If we denote the derivative of A(+) by
g(+), then the differentiated and sampled received signal is given by

> anglk — m)T + 7 — o] + v(kT +7)

V(T + 1)

E AnGi-m(T — 7F) + v, (34)
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where r is an arbitrary sampling time such that || < 7/2, gi_, de-
notes g((k — m)T), and v, are samples’ of the differentiated noise
process v(t). As before we let d; denote the decision made at time
kT + 7. Assuming that the error rate is low enough so that with high
probability d, = aj, we then have that

G V'(kT + 1) = auag.(r — %) + d; Z AnGi-n(T — 7%) + 0,
mEk

= a:g(r — ™) 4+ 4, Z CnGr-nlt — ) + 0, (35)

where we have noted that ¢,(r — %) = g(r — +%). If we further
assume that @, is uncorrelated with «;,* for j == k, then averaging
(35) gives

m(r) & E[aV'&T + 7)] = a’g(r — %), (36)
where
@ = ‘—g (L* - 1).

Now for the typical impulse response h({) and its derivative g(¢),
shown in Figs. 4 and 5, respectively, it is true that the (regression)
equation

o= =0, |r— 1 = T/2 (37)
has the unique solution
T =7 (38)

Since the synchronization problem has been modeled as a regression
problem, we again use a Robbins-Monro algorithm to sequentially
estimate r*. Denoting the kth estimate by 7., we have the modified
Robbins-Monro algorithm

I {‘rk + @ V' kT + 7)1, |7+ eldVET + 0] | < T/2

Te otherwise.
(39)

A feedback implementation of the above algorithm is shown in Fig. 6,
with D denoting a delay. It is again noted that the algorithm con-

t The dependence of the noise sample on the sampling offset 7 is not shown,

since it is assumed that the noise is stationary. . . . .
t As it will be if the ax's are independent and the receiver is supplied with

an ideal reference.
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<f-2m-\
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-

Fig. 4—A typical impulse response h(t).

strains the estimate to a region of width 7. This is consistent with
the observation that any actual sampling instant will always be
within 7/2 seconds of the desired instant *, ie., we may “slip” T
seconds but this is immaterial as far as estimating =* is concerned. It
is by no means clear, a prior?, that the above algorithm will converge
rapidly or will converge at all. In fact the rest of this paper will con-
sider the conditions which must be satisfied for the above algorithm
to converge and the resulting rate of convergence.

V. ANALYSIS OF THE SYNCHRONIZATION ALGORITHM

5.1 The Error Equation

In order to evaluate the proposed synchronization algorithm we
will derive a difference equation for the mean-square estimation error

2, where
€L = T — T$, (40)

Fig. 5—The derivative of R(¢).
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N
VEt) | d SAMPLE AT _/1\
LPF dt t=KT+7g \x/

TIME-VARYING
GAIN Ck

Fig. 6—A realization of the synchronization algorithm.

and the overbar denotes expectation.’ In order to do this we see that
from (39), and neglecting for the moment the constraining portion of
the algorithm, we have

Cry1 = Ti+1 — ™* = Tr — * + Ck[de’(hT —,— Tk)]
=n, — ™ +algln — ™) + 6 Z Cnimm(Te — 7%) + W]
m#Ek

e + cilgles) + d, Z; Amf-m(e) + vi]. (41)

We note that g(-) is such that, on the average, the error is decreased
at each iteration, and once the estimation error is small* we need only
keep first-order terms in a Taylor Series expansion of g, (ez) about

(k —m)T, ie,
Pi-m(s) R Giom + Glomes , (42)

where ¢f_,, denotes the derivative of ¢(-) evaluated at (k — m)T.
Combining (41) and (42) yields the (approximate) first-order stochastic
difference equation for the evolution of the error,

Cry1 = [1 + g;Ck + c.dy Z amgiﬂn]ek + Ckék[z At —m + Vk]- (43)
m#k m#=k

Before studying the behavior of (43) we introduce the following

t We use the mean-square estimation error as a measure of performance. This
is because the estimate is a nonlinear one, and thus the probability of error can-
not be computed.

T Under this assumption we can certainly neglect the possibility that 74,1 = 4.
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notation:
g, = —a (44a)
B. = clgs + EL @i —m) (44b)
m#=k
Ye = 1+ 8 (440)
Q. = d Z A Gr—m + e, (44d)
m=k

and using the ahove we rewrite (43) as

i1 = Taer + 6Qx . (43)

Thus the error obeys a stochastic difference equation where the gain
(vi) and the driving term (@) are correlated. It is important to note
that for the system described by (45) the probability density of the
present error e, does not depend solely on a finite number of past data
symbols, a; , but depends on all past and future values. This renders
impossible an exact analysis of the mean-square error. However, if we
assume that both y; and @y are independent sequences, then e, depends
solely on past y; and @, , and we can obtain a bound on the mean-
square error.t Squaring and averaging both sides of (45) gives

Ele},,] = Elyied] + 2cElvies@i] + ciE[QA]. (46)

We now proceed to bound each of the terms on the right-hand side of
(46). If we assume that the “eve” of the twice-differentiated impulse
response is open, i.e.,

o> ,Zj L gm |, (47)

then
ve = 1 = cla — de ,,; Angi-m) =1 — cla — ; lgnl)  (48a)
=1 —cf, (48b)

where 8 denotes @ — 2_n«0 |g..|. Using the above assumption, and the
boundedness of the error, we have that

|E[‘YL—QI=31=]| = |E[3k]E[‘Y¢-Qk]| =T/2 |E['an]|r (49)

 Despite much effort we have been unable to proceed without this assumption,
but since the results which follow are intuitively satisfying and provide insight
into this difficult problem they have been included in the paper.
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and due to the independence of the data bits
ElyiQ:] = E[((1 — e)e + cde Zk amgi-m)dk(i;, aigi-i + )]
m# iZk

=¢ E gh0. = ¢.2/TG, (50)
m#0
where' @@ denotes T/2 s 9,0 - Finally we have
E@l=0c"+ 2 gn=0"+P, (51)
m#=0
where P denotes Z,,.,m g2 . Letting
A: = Elel, (52)
and combining (46)—-(52) we have the iterative bound
Aoy = (1 - .BCJ:)ZAk + Cier (53)

on the mean-squarc error, where A is the sum of ¢ and ¢* + P.
Although several assumptions have been made in obtaining (53) it is
believed that the effect of the salient quantities upon the synchroniza-
tion algorithm have been preserved. We now proceed to find the gain
sequence which minimizes the bound of (53).

5.2 The Optimum Gain Sequence

We now find the sequence of gains, ¢%, which minimize the right-
hand side (RHS) of (53) for fixed A, . Since we minimize a bound on
the mean-square error at every iteration, this is a min-max procedure.
We first find the optimum gain sequence in terms of A, , and then by
simultaneously iterating this equation and the bound of (53) we show
that ¢* is proportional to 1/k for large k. We begin by setting to zero
the derivative of the RHS of (53) with respect to ¢, , i.e.,

—B(1 — Be)A, + Mc, = 0
or
BA:
* = .
Ck ﬂ.[ + ﬁZAk (54)
Using (54) in (53) we have

__BA Y ( BA )
Apiy S (1 M+32Ak) A+ M\

M
=< B ck, (55)

t It should be noted that if A(f) is an even funection of time (with respect to
the origin), then g(¢) and ¢’'(¢) will be respectively odd and even time functions
and G will be zero.
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or
__Ezi‘ < c*. (56)
(I — BeE)
Now if
(1 - ﬁ("fu) =0 (57)
then we have the relation
Cf-n = _—Cf__ (58)
=1+ B’
which ean be iterated to give®
cf = - (59a)
=1+ Betk
_ AW -
N ET L (59b)
where
BA, (60)

®* — . FPoe
¢ =0 ¥ g°A,’

and A, is the initial error variance. Henceforth we will interpret the
sequence ¢, specified by (59) and (60) with the inequality replaced
by an equality, as the optimum gain sequence. Combining (55), (59)
and (60) we see that the mean-square error is bounded by

MA,

\k < e
I W (612)
whieh for large k becomes
At S (61h)

Thus we see that asymptotically the minimized mean-square error
is bounded by a term which decays as 1/k, and is inversely proportional
to signal-to-noise type ratio (8%/1/).

The optimum gain, as given by (59b), depends upon the parameters
A, , M, and 8. Since these quantities are generally unknown it is tempting
to replace c¢* by its asymptotic (large k) value 1/8(k + 1). Caution
must be exercised in making this approximation; since M > B°A,

t Note that gex* = Be.*/(1 4 fe*k) = 1, thus satisfving (57).
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implies that the optimum gain sequence is essentially constant for
many iterations, substitution of a decaying sequence could lead to an
unreliable estimate (we will consider this point in Section 5.4). How-
everif' 8°A, 3> M, then ¢* =~ 1/8(k + 1) and we have only one unknown
parameter. A possibility is to replace 8 by an estimate—techniques
of this sort are called adaptive estimation procedures. We now sketch
a particular adaptive scheme.

5.3 An Adaptive Synchronization Algorithm
We now give a method for recursively estimating 8, which can then
be incorporated in an adaptive synchronization scheme. Since

|8=04_Z|g-’ﬂ|1

m=0

we desire a function of the received data which has 8 as its average
value. We note that from (34) we have

BlaV'EkT + 1) = ¢(r — ™)~ —a (62a)

(where the approximation is for small + — #*), and

ElaV"(EkT + )] = giow(e — ) =g, . (62b)

We can then estimate B by using a recursive stochastic approxi-
mation algorithm of the type discussed in Section 4.1. Such a scheme
would twice differentiate the incoming data and then multiply the
data sample by as many of the previous decisions as there are signif-
icant nonzero samples in the impulse response, Since even an approxi-
mate analysis of the above algorithm is hopelessly complex, we will
consider the effect of using a gain of the form e/k, where ¢ is a con-
stant to be chosen.

5.4 A Suboptimum Gain

We consider the mean-square error, as given by (53), with ¢, = ¢/k.
This gain is chosen since the optimum gain is asymptotically of this
form. Care must be taken in choosing ¢, since the mean-square error
will be shown to be a sensitive function of this parameter. Iterating
(53) gives

3 k

Ao 2 110 = Beya, + 3 I1 (= ey, (63)

i=0 i=0 j=i+1

t A condition one would expect to be satisfied in practice,
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The inequality

11—z =¢e" (64)
gives
k k
II 0 —Be)* = exp (_‘-’ 2 Bc,-) ; (65)
i=i+l j=i+1
and noting that
k CN fi- 1 B ( k )
ig;lﬁj,wﬁc mzd.r = Beln 1

results in

I« — gey (" + l)m. (66)

=i+l
We can see that the transient hehavior of the mean-square error,
which is specified by the first term on the RHS of (63), will be of the
form (1/k)*fc. The other component of the mean-square error will
be (approximately) bounded by

I"ZD (z + )2”" % < :{;: 2(Be-1)
< f‘?;m e 00
- @A 07
which results in
Bt = (Al)ﬁ &t Dae —ﬂ{)czl + k) (675)

as a bound on the mean-square error. If 28¢ > 1, then for large k the
above bound becomes

M

(28c — (1 + k)
and the mean-square error will converge at the optimum rate (1/k). It
is seen that care must be taken in sclecting e, since for ¢ = 1/28
(i.e., for 28c > 1) the quantity Mr*/28c¢ — 1 has a minimum® at ¢ =

Ak+1 é

(67¢)

t With ¢ = 1/8, Ax = M/82 1/k which is the optimum asymptotic rate of
convergence,
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1/B, and is infinite at both ¢ = 1/28 and ¢ = . Thus a very small
step size (¢ < 1/28) will result in an mse which converges at a less
than optimum rate, while large step sizes (¢ > 1/28) will result in a
mean-square error which, while converging at the optimum rate, may
be quite large for many iterations. The sensitivity of the above bound
with respect to “c” may make the use of an adaptive procedure
(which estimates 8) advisable.

5.5 An Example
Consider the (minimum bandwidth) pulse

sin 7 Wt
h(t) = A e (68)

where W = 1/T. Tt is easy to show that

B =3AEW)

2
M=o+ 75 AW

thus from (61b) the percentage minimized mean-square error is

bounded by
iny
A M 1+(A) W)

T < %% 1%
For a 30 dB signal-to-noise (4/¢) ratio, and with W = 3000 Hz, we
see that A,/T? is less than 0.01 for k = 10. In other words, after 10

symbols have been reccived, the above synchronization algorithm re-
duces the mean-square error to less than 1/100 of a symbol interval.

(69)
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