Copyright ® 1971 American Telephone and Telegraph Company
THe BeLr System TECHNICAL JOURNAL
Vol. 50, No. 6, July-August, 1971
Printed in U.S.A.

A Nonlinear Diffusion Analysis of
Charge-Coupled-Device Transfer

By R. J. STRAIN and N. L. SCHRYER
(Manuscript received January 25, 1971)

In those charge-coupled devices (CCD’s) which have regions under
each electrode which are substantially free of externally applied
tangential electric fields, charge motion takes place by space charge
assisted diffusion, and this relatively slow process represents a limita-
tion to the operating frequency of CCD’s with large plates. In this
paper, subject to certain approximations, the equations of motion for
CCD charge transfer have been derived, yielding a nonlinear diffusion
equation. The solution of this equation by a stable finite difference
scheme 1s described, and the solutions are applied to predicting the
operating characteristics of CCD’s. The results in synopsis are:

(7) The n-channel devices will have lower losses at a given frequency
than the p-channel devices, and a higher upper frequency limit,

(72) Higher amplitude signals (more charge) yield lower losses.

(797) Losses can be reduced an order of magnitude by using ZERO’s
which carry a substantial amount of charge. For example, with
2-MHz clocking of a 25-um plate (pad), p-channel 2-phase
device, a 2-volt ONE 7s diminished by 4 percent per transfer with
emptly ZERO’s, but with I-volt zERO’s, the diminution is 0.26
percent per transfer.

(7v) Reasonably efficient CCD operation should be possible up to the
50-M Hz range using contemporary design tolerances.

(v) Diffusion 7s important for reaching high iransfer efficiencies.

The frequency limitations described in this paper can be overcome

by using a structure in which the distance between the electrodes
and transferring charge is comparable to the electrode width and
spacing.

I. INTRODUCTION

The charge-coupled device, as conceived by Boyle and Smith* and
realized by Amelio, Tompsett, and Smith,>® consists of a series of
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metal oxide semiconductor (MOS) capacitors that are driven by clock
pulses into deep depletion. In this condition, the MOS structures are
capable of holding minority carriers in the potential wells beneath
the plates (pads). In order to establish a transfer of charge from one
plate to another, it is necessary to make the potential well beneath
the second plate deeper than that beneath the first. This is illustrated
in Fig. 1. In the absence of charge, the potential configuration beneath
any one plate would be essentially flat, and finite electric fields would
exist only in that span between two CCD electrodes. When charge is
present, its transfer is driven predominately by the electrostatic forces
associated with the presence of the charge in the CCD and by the
thermal forces responsible for diffusion. It is the purpose of this paper
to describe the transport of charge under the influence of these forces
and, using this deseription, to make predictions concerning the opera-
tion of CCD’s. In order to do this, it will be necessary first to derive
the equation governing the transport of charge and solve it. Then the
solutions will be applied to some particular CCD situations.

11. DERIVATION OF TRANSPORT EQUATION

The derivation of the transport equation will utilize a number of
approximations. The first of these is a linear approximation of
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the surface potential versus applied voltage relationship. The one-
dimensional relationship between surface potential ¢ and applied
voltage V, is deseribed by this equation:

‘P=V’+VU_ Vg+2VuV’

Vi=V,y— Vez= Ci
. ()
Vo, = 8N, —~
EGI
Co.r - _5_

In this equation Vyp is the MOS flathand voltage, and ¢ is the surface
density of mobile charge stored at the interface between the silicon
and silicon dioxide. The constant V,, depends upon the oxide thickness
8, the doping density N, , the dielectric constant e,. of the oxide, and
the dielectric constant e, of the silicon. In the subseqeunt caleulations,
however, an approximation to this relationship will be used which is
linear in V', and g. This approximation is

¢ = ¢+ 'Y(VA — Vs + Ci) (2)
In this case y is a number, typically between 0.7 and 1, which matches
equation (2) to equation (1) over the range of anticipated operation.
Such a match is shown in the example of Fig. 2, which shows the sur-
face potential versus applied voltage reduced by the flathand voltage
and q/C,, , both in the precise form and in the linear approximation.
It may be seen in this case that the linear approximation is rather
good over the range from approximately 4 to 15 volts. If the electric
field parallel to the Si-Si0. interface is caleulated from the approxi-
mate equation, it is found to depend upon the derivative of g. There
is, however, another term to the tangential electriec field; this term
arises from the electrostatic repulsion of the carriers. In a two-
dimensional approximation, the tangential electric field at = will have a
component due to the summation of the fields of line charges located
at other points 2’ along the surface. Because there is a metallic elec-
trode on the surface of the Si0., each elemental line charge has an
image, and the result is a shielding of the tangential field. Taking
account of the two different dielectries and the image charge, the
repulsion field E can be written as this integral:



1724 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1971

15

' q
pxy (- Vi- & o)

¢ VOLTS

APPROXIMATE SLOPE=Yy

——— EXACT

0 5 10 15
V' IN YOLTS

Fig. 2—The exact variation of deep depletion surface potential in an MOS with
1000A of SiO. over a substrate with 5 X 104 ionized impurities per cm8, and
the linear approximation ® « V',

Ex(z) = m(ex + ) f ‘1(33’){2 _} 7 (@ _xIsz_;_ 452} dxz’. (3)

Since the principal contribution to this integral comes from the small
region within a few & of z, it is appropriate to expand q(z’) as a
Taylor series about x. If this is done, and the limits of integration
are extended over all 2, all even terms in the expansion vanish by
symmetry, and to the extent that 8°g/dz* and higher derivatives are
negligible, the repulsion field becomes a local function of dg/éz.

25 98

Exl@) = T e + € 0T

@
If one takes the gradient of equation (2) and adds the repulsion field
in equation (4), the total electric field acting on the charge under the

CCD plate is given by

E.

_ (v __26_)
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Typical values of both y and the net elastance S are presented in Figs.
3 and 4 as functions of the oxide thickness 8. Ordinarily S is approxi-
mately equivalent to the reciprocal of the oxide capacitance; conse-
quently, Fig. 4 has been plotted in such a way that the value of S is
compared with the oxide capacitance.

The transport equation for CCD’s will be based on the divergence
equation for current

9 _ _g.

using the relationship

- _pd

for the value of the current density J. In this equation D is the
diffusion coefficient appropriate to the surface, and p is the surface
mobility. Combining equations (5), (6), and (7) gives the basic equa-
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Fig. 3—The proportionality constant v as a function of oxide thickness, using
doping density as a parameter.
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normalized by C.. and presented as a function of oxide thickness.

tion for charge transport in a CCD:
9g _ (a_q) dq  pdq
at uS oz + s az* +D az’ @)

This may be simplified somewhat by noting the Einstein relationship
between diffusion -and mobility.

T
D =%,u.. )

Here «T and e all assume their traditional values as Boltzmann’s
constant, absolute temperature, and electronic charge. Using this sub-
stitution, one reaches this equation:

g _ (M) dq kT &g
ot = MS\gy) T mBeGE T T kg (10)

The last term on the right of equation (10) is simply the diffusion
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term. The resemblance between this diffusion term and the other term
involving the second partial of charge is quite apparent, because the
product Sgq, like «T' /e, is a voltage.

Without boundary conditions, the problem is only half specified.
The physical situation on which the boundary conditions are based is
shown in Fig. 5. In Fig. 5a, a CCD plate is shown storing charge. The
potential beneath the plate and the charge density are both uniform.
In Fig. 5b, another potential well has been impressed immediately
adjacent to the first potential well. The second well is considerably
deeper than the first; as a consequence, charge will start to flow from
the first potential well into the second under the control of equation
(8). No charge, however, flows in the opposite direction. Between the
two potential wells there is an abrupt step in potential. This means
that there is an extremely high electric field, and charge in that
vieinity will move with a very high velocity. Using the preceding facts,
it is possible to approximate the physical boundary conditions in the
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Fig. 5—An illustration of the length definition and the surface potential con-
figuration in equilibrium, and at ¢ = 0, when the transfer is initiated.



1728 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1971

following way.

aq
ax——>0 as r—0 an

g=0 at z=L.

Both of these boundary conditions apply for all time. The first ex-
presses the fact that current is unable to flow to the left in the device,
and the second presumes either an ideal sink for charge at # = L, or
alternatively that charge moves away from that point at an infinite
velocity. The initial condition is a value of ¢ at time ¢ = 0 for all
points except & = Lj; it will be assumed that the charge is evenly
distributed with the magnitude go .

Before proceeding with the solution to this equation, it will be con-
venient to scale the variables. The scaling can be effected by applying
the following definitions:

t t
T = i = o (12&)
KTo
u; = 1 volt
y=7 (12b)
S
U= uy (12¢)

Time is now represented by the variable 7, which scales time against
7o, and ¥y is the dimensionless variable representing length. In the
definitions of = and 7o , the voltage unit uo is introduced. If this equa-
tion had a natural voltage unit, 14, would be defined as that unit.
However, there is no natural voltage scale to equation (10), even
though the thermal voltage «xT/e appears in one term; consequently,
it has proven convenient to define uy to be unity. The quantity w
representing charge comes about because the product of the elastances
and charge ¢ is equivalent to a voltage. In the solutions which follow
+ will typically range from 10-* to 10?, y will range from 0 to 1, and u
will range from 10-2 to 10.

III. SOLUTION OF THE EQUATION
The scaled equation has the form
u, = ui + (u + a)uuu (13)
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where a = «T/eu, is a constant. The problem may be simplified by
letting w = u + @ to obtain

w, = w, + w,w (14)
0=sy=1
0=s71=
subject to
w,(0, ) =0
w(l, 7) = a
. <
wl(y, 0) = {”‘*“’ b=v<t (15)
a, y=1
u, = S
Uy

where w; is determined by the initial uniform charge density go .

The nonlinear parabolic initial boundary value problem given by
equation (14) and equation (15) may be solved using a finite differ-
ence scheme. The scheme comes from a more general technique for
solving systems of coupled nonlinear parabolic equations which results
in linear difference equations. This more general scheme will be pub-
lished at a later date.

Let h be the space mesh size and Ar be the time step. Let w! =
w(jh, kAr). The indices j and k describe position and time respectively.
The difference equation is then:

R+l ok

w" w,
At
— l w::; - WT+1' wr+l - w;—l + wtt! wr+1 + w: 1 2'w:f
2 2h 2h ! h?
k k41 k+1 k+1 k+1 k+1
Wiy — Wi, Wity — wit| r Wiy T Wl 1 — 2w;
forj =1, ,J — 1, where h = 1/J. The boundary conditions reduce
to wi*' = w;‘“ and w"“ = a.

This is a direct generalization of the Crank-Nicholson scheme for
solving the heat equation, w; = w,, . For a description of that scheme
and its properties, see Ref. 4, pp. 185-193.

The most important properties of (16) come from the time and
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space averaging which is the hallmark of the Crank-Nicholson scheme.
The left-hand side of (16) is close to the value of w; (jh, (k + 1/2)At)
and the right-hand side of (16) has been averaged to be close to

(w,(Gh, (e + 1/2)A0)* + w(jh, (k + 1/2)At)yw,,(jh, (k + 1/2)At).

The averaging has been done in such a way as to make wji; , wif]
g g Y i+1 2 i—1

and w** appear linearly. This averaging gives (16) two nice properties.
First, if a solution of (14) is inserted in (16), and everything is expanded
in a Taylor series about (jk, (k + 1/2)At), then equality of the right-
and left-hand sides follows up to terms of order 0(k”) and 0(A¢*). That
is, the scheme is accurate to second-order in both time and space.
In practice, this means that the difference between the computed
wt and w(jh, kAt), the true solution at the mesh points, will be 0(h%)
+ 0(At%). Second, (16) is a linear system of equations for the wi™,
In fact, equation (16) is equivalent to

A A
wiii( =g e = i = g )

+ A y A
+ w} 1(1 — 2_}:-2 (w)., + wi_, — 2w;) + F‘t w?)
N w.fﬂ(A_r (why — wt) — Qlw'e) - (17)
i-1 4h2 i+l i—1 2h2 i i
This has the form
Aw; + Bw; + Ciw;y = D; i=12--,J -1, (18)

with w; = @ and wo = w, , reflecting the boundary conditions. This 18
a tridiagonal system of equations for the w; and may be solved quite
efficiently using Gaussian elimination (see Ref. 4, pp. 198-201). The
method is easily described. Let

w; = Baw; + F; (19)
for j =0,1, ---,J — 1. Replacing w;_; by E;_yw + F;_,in (18)
gives wj,q in terms of w;. Comparing this relation with (19) gives
—A.
E,' -_—_—
Bi + CiE:'—l (20)
F- = Di - CiFg‘—l.
! Bi + CJ'E:'-‘I

forj =0, -+ ,J — 1. Since wy; = wo = Eown + Fyweseethat By =1
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and Fy = 0. This completely determines w,, -*- , w, using (20) for
j=1,--+,J — 1, and then (19) forj=J — 1, -+, 0.

IV. RESULTS AND INTERPRETATION

In applying the results of this analysis to CCD operation, the most
important operating characteristic is the amount of charge remaining
behind after transfer from one plate to the next in a limited time.
The remaining charge is plotted as a function of time in Fig. 6, using
two different initial conditions, Sgy = 10 volts and Sg, = 2 volts. The
nonlinear equation which has been solved reduces essentially to the
diffusion equation after most of the initial ¢ has been dissipated, and
the solutions in this domain approach straight lines of log(charge)
versus time when the average value of Sg is much less than «T'/e.
However, at short time r < 1 the solution is effectively driven by the
charge so the time rate of change for Sq, = 10 volts is roughly five
times the time rate of change associated with Sqy = 2 volts. Between
these two domains is a transition region where the average value of Sq
lies between 0.2 «T'/e and 5 «T/e. Here the curves are very nearly

Sq, =2 VOLTS

CHARGE REMAINING IN PERCENT

0.4 Sq0 =10 VOLTS
02
0.4 ] _1
o] 1 4 9 25 36 49

NORMALIZED TIME 7 =t/7q

Fig. 6—The fraction of the charge remaining under the first plate as a function
of the normalized time r = t/7o. The abscissa is plotted as 1’2, which spreads
the region where + < 1, and leads to straight lines over the transition portion of
the characteristic.
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straight lines of log(charge) versus r!. The different regimes reflect
a feature mentioned when the equation was scaled; i.e., there is no
single natural potential to use in forming the time scale. For very
short times, the natural potential is the initial value of Sq. For times
much greater than one, the natural potential is «T/e. Figure 7 shows
the transfer of charge with and without the aid of diffusion. It is clear
that the last 0.1 volt of scaled charge receives a considerable boost
from «T'/e.

In Fig. 6 it can be seen that in the vicinity of + = 10 the charge
remaining diminishes to approximately 1 percent of its initial value,
and in the vicinity of + = 30 the charge diminishes to 0.1 percent.
These results are meaningless without some concept of the size of 7.
Figure 8 helps to alleviate this shortcoming by showing 7, as a func-
tion of the plate width L for n-channel and p-channel devices. The
n-channel mobility has been taken to be 750 and the p-channel mo-
bility 150 em?/volt-second.® From Fig. 8 it is possible to see that the
values of , range from approximately 1 ns to 1 ps for plates ranging
from 10 to 100 um in width. To take a specific example, a 50-pm plate
in a p-channel device would have a 7, of one-sixth of a microsecond.
If operation were desired at a value of + = 10, aiming for a transfer
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_Fig. 7—The fraction of the charge remaining for initial values of Sgo = 1 volt
with room temperature diffusion and no diffusion («7'/e = 0).
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Fig. 8—A plot of the time seale factor 7. as a function of the CCD plate
length L.

efficiency near 99 percent, then the operating frequency of a 2-phase
CCD would be roughly 300 kHz, and the same loss per transfer
would be achieved in a 3-phase CCD at 200 kHz. In an n-channel
device with the same loss, those frequencies would inerease to 1.5 and
1 MHz respectively.

In order to illustrate the effect of frequency, another example is
shown in Fig. 9, where the loss per transfer is plotted as a function
of clock frequency for a p-channel 2-phase CCD operating with square
waves. In this type of operation, higher signal levels result in higher
transfer efficiencies. The plate width in this case was chosen to be
25 pum, and at 1 MHz the loss per transfer ranges from about 0.3
percent for Sg, = 10 to 1.5 percent for Sg, = 2 volts.

The figures quoted so far must be regarded as worst-case loss
figures. They apply to an isolated cluster of charge being propagated
through a CCD. It will be possible to reduce this loss by approxi-
mately an order of magnitude by arranging the information propa-
gated through the device in such a way that no information ever
leads to a totally empty CCD cell. This will be effective, because for
long times, i.e., + > 10, the charge remaining behind is substantially
independent of the amount of charge initially put under a pad. This
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Fig. 9—The fractional loss per transfer of a P-channel 2-phase CCD, with a
field-free length L of 25 um, plotted against clock frequency with the initial oNE
signal as a parameter. The ZER0’s have no charge.

is illustrated by Fig. 10, which shows the absolute magnitude of
remaining charge as a function of the charge which was initially
placed in the device. In this figure, the amount of charge is described
as its voltage equivalent Sg. The impact on device loss is illustrated
in Fig. 11, where the loss per transfer for the same device shown in
Fig. 8 is plotted as a function of the charge existing in a zErRo when a
ONE contains 2 volts. It is presumed that the information carried is an
alternating series of one’s and zero’s. This represents a worst-case
condition when nonempty or “fat” zero’s are used. From this figure, it
is readily seen that a 2 to 1 oNE to zERO ratio leads to practically an
order of magnitude reduction in loss at a given frequency. Operation
in this way requires the use of a threshold detector to ascertain
whether a ONE or a zErRo was present; the success of such operation
depends in large part upon the realization of a practical threshold
detector.

The solution of the nonlinear diffusion equation also gives charge
distributions in the CCD as a function of time. The charge distribu-
tion at selected times is shown in Fig. 12. Initially the left-hand end
is almost totally undisturbed by the presence of an accepting well at
the right-hand end of the CCD, but then as charge transfers out of
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Fig. 10—The remaining charge at several times after the initiation of transfer

presented as a function of the initial charge
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Fig. 11—The fractional diminution of a oNE as a function of the amplitude of
a “fat” zero in an alternating series of oNE's and zero’s. This example also refers

to a 25-um 2-phase p-channel CCD.
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the device, the left end follows, but the profile which is established
relatively early in the device cycle remains at least superficially un-
changed through the course of the transfer.

If the potential of the source well is being changed at the same time
the transfer is taking place, it is valuable to know the time develop-
ment of the highest charge density in the source well, because it is
necessary to prevent this point from ever reaching an injection con-
dition. In this approximation injection occurs when 8g > y(Vi —
Vrg), and the well is no longer capable of holding the charge; the well
and the substrate then form a forward biased p-n junection. For the
example discussed before, the 25-um p-channel CCD, the highest volt-
age in the well has been plotted as a function of time, assuming initial
charges of 10 volts, 2 volts, and 1 volt; Fig. 13 shows the real time
for the specified device and the general, normalized time. This figure
shows that the potential on the plate must not drop to zero in a time
less than 100 ns, if the injection of stored CCD charge into the bulk
of the semiconductor is to be avoided.

It is unlikely that the initial charge configuration in a CCD will
be perfectly square as assumed. To test the effect of this assumption

T=0 (100%)

T=0.0057g
(90 %)

Sq,IN VOLTS
b

CHARGE DENSITY, U
)

T=1157g
(10%)
]

0 0.2 0.4 0.6 0.8 1.0
POSITION /L

Fig. 12—The charge density as a function of position under the CCD plate,
and the parameter is the time after initiation of transfer. The percentages refer
to the total fraction of charge remaining under the plate.
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Fig. 13—The amplitude of the largest surface potential difference Sq(0) as a
function of time. Two time-axes have been provided, the generalized 7, and
t for a 25-pm p-channel device.

on the results presented here, two initial conditions were used; one

had charge distributed uniformly to an Sg¢ value of 8 volts, and the

other had charge distributed nonuniformly but having the same average

charge density, that is Sg = 8 volts. Figure 14 shows the difference

in the charge remaining in the potential well as a funetion of time for

these two distributions, and it is easily seen that beyond the time of
= (.25 the two charge quantities are substantially identical.

The effect of finite carrier velocity at the transfer point was also
tested. If infinite velocity cannot be achieved, the charge density at
the point L. cannot be 0, but it must be that finite value which will
allow current to flow out of the potential well at the saturation
veloeity. Using this faet, it is possible to write the charge density
at L as a function of the time rate of change of the total charge in
the well dQ/dt.

|~

!

d

ur) = Sq(t) = ;92 = (21)

=

t

=
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Here v, is a saturation velocity and, assuming its value to be 107 centi-
meters per volt-second, the solution of equation (10) was reprogramed
to reflect a value w(L) in accordance with equation (21). The dif-
ference caused in the result was negligible, but because of the L*/u
time scaling, it was more significant for very small plates than for
the larger plates. The time error is shown in Fig. 15 as a function of
charge remaining beneath the plate.

V. DISCUSSION

We have developed an equation governing charge transfer in flat-
plate CCD’s and shown how it can be solved numerically by an un-
conditionally stable finite difference routine. These solutions have
been applied to the calculation of the properties of CCD’s subject to
certain constraints; the most serious of these limitations is the assump-
tion of the instantaneous creation of the transferring condition. This
assumption transforms into physical reality as the use of square-
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Fig. 14—Two initial conditions are compared to evaluate the impact of non-
uniform distribution of a given total charge on the transfer predictions. The
ordinate is the fractional difference in the total remaining charge and the
abscissa is normalized time.
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Fig. 15—An illustration of the effect of limiting the carrier velocity at z = L
to 107 cm/s, expressed as an error hetween the time predicted in the idealized
case and the time in the velocity-limited case.

wave driving. Under these conditions, we have shown that with
empty zEro’s losses of the order of 1 percent can be achieved in the
vicinity of 1 MHz in p-channel CCD’s, and the same order of loss at
5 MHz in n-channel CCD’s. Further it has been shown that the use
of “fat” zero’s can effectively reduce this loss by as much as an order
of magnitude. The problem which has not been solved here is that
which arises when the accepting well is not created instantaneously but
moves down with a finite time-rate of potential change. In this situa-
tion, a oNE will have a longer time in which to transfer than a zEro
will. This may tend to reduce the amount of charge left behind by the
ONE as contrasted with that left behind by a zero. This would diminish
the loss. At this stage, it is evident that losses of realizable CCD’s, i.e.,
those with plates in the range of 15 to 25 um, will be modest in the
5 to 10 MHz range, particularly if they are made using an n-channel
technology. Using properly loaded oNE's and zERo’s, short shift registers
should deliver useful signals, even clocked at 50 MHz.

This analysis has also shown that the existence of field-free regions
in CCD’s represents a considerable limitation on their performance.
It will be possible to further lower losses by arranging substantial
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penetration of transverse electric fields under the plates so that the
charge transfer is limited by drift rather than diffusion. In this case,
the scattering limited velocity assumes an important role.

CCD’s on 10 Q-cm substrates appear, on the basis of preliminary
measurements ** to behave according to the predictions of the space
charge assisted diffusion theory.
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(Added in proof.) A related analysis with more limited scope than that above
has been published by W. E. Engeler, J. J. Tiemann, and R. D. Baertsch in
Applied Physics Letters, 17, 1970, p. 469.



