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A small-signal (linearized) theory of discrete-charge-transfer-device
performance is presented for the case of incomplete charge transfer.
Specifically, the dispersion relation ts dertved which relates the charge-
transfer efficiencies presently characterizing these discrete (in space
and time) devices to the usual measures of device or transmission-line
performance based on the attenuation, dispersion, phase velocity, etc.,
of sine waves. In a more general sense this emphasizes the applicability
of conventional signal theory to these new devices. The impulse
solution or Green’s function is then shown to be the equivalent of a
bivariate distribution in probability theory. More generally the utility
of (deterministically interpreted) probability theory is emphasized
by showing the equivalence of a general small-sighal theory to a
random-walk process.

I. INTRODUCTION

In an important new class of discrete-charge-transfer devices includ-
ing charge-coupled devices® (CCD’s), bucket-brigade shift registers,*
and other shift-register or image-detection or display devices, ex-
ternally applied time-dependent voltages step captive charge along
a chain of equivalent discrete storage stations. In some of these
devices the charge transfer is imperfect with a fraction of the charge
failing to advance and a fraction lost altogether during each step.
Explicit expressions are constructed here for the dispersion relations
and Green's functions which deseribe this imperfect performance
under conditions when the fractions of charge that go astray can be
described by constant parameters characteristic of the particular
device.

The theory of analog signal processing is based on the properties
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of sine waves, and analog devices are conventionally characterized
by the dispersion, attenuation, etc., which they cause. A second
standard method of characterization is based on the distortion and
attenuation of pulses. In contrast, discrete-charge-transfer devices
are presently characterized by their charge-transfer efficiencies
(fractions). The solutions given here were chosen to facilitate the
application of conventional signal processing theory to these new
discrete devices. That is, they show the equivalence of these three
methods of characterization in the small-signal limit and provide the
appropriate interrelating formulas. Specifically, Section III treats the
sinusoidal representation, while Section IV considers pulses.

Although the physical interpretation of our equations is determinis-
tic, it is also an objective in Section IV to show the direct applicability
of many established results of probability theory. In the Appendix our
basic equation is re-derived as the simplest nontrivial example of a
discrete small-signal theory. In turn, the small-signal theory is seen
to be the deterministic limit of a random-walk process.

Whether the mode of device operation be digital or analog, one is
ordinarily interested in utilizing the full information capability;
i.e., maximum bandwidth or wavelengths approaching twice the sta-
tion separation in shortness. Thus, we at no time approximate the
discrete equation by a (continuous) differential equation.

In summary our objective is to emphasize by way of a case of
present, interest that standard methods of device characterization, as
well as established probability theory, can be applied to discrete
charge-transfer devices.

II. BASIC EQUATION

Discrete-charge-transfer devices are often, to a good approximation
if not exactly, discrete in both space and time. That is, the informa-
tion-bearing charge is moved in discrete bursts in time from one
spatially discrete storage station (e.g., capacitor or potential well) to
the next along a line of stations. Consider g, the charge in station
z at time t where z and ¢ assume only integer values; ie., the unit
of time is taken as the stepping interval, and the unit of distance is
taken as the station separation (center-to-center). Perfect charge
transfer implies

Gzt = Qz—1,t-1 (1)

and hence unit signal speed.
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Real devices are typically experimentally characterized by the
fraction « of the charge which is successfully advaneced per step.*5 If
a fraction ¢ fails to advance and remains in its original station, then
the process is described by

Qrit = OQz_1,-1 + €Qzi-1, (2)
which reduces to equation (1) in the ideal case of @ = 1 and « = 0. In
other words, equation (2) states that the charge in station x at time ¢,
Qqt , is the suceessfully transferred fraction of the charge in the previous
station at the previous time, aq,_;. ;1 , plus a fraction ¢ of the charge
Qa1 In station x at the previous time which failed to advance. From
equation (2) it follows that a fraction £ =1 — a — € of the charge is
lost per step. Theoretical expressions for « and/or ¢ are contained ex-
plicitly or implicitly in the work of several authors on different de-
vices.*® [In the appendix, equation (2) is generalized slightly to
include an inhomegeneous term and nonconstant values of @ and e.] In
this context equation (2) was introduced by Berglund to describe in-
complete transfer in CCD and IGFET bucket-brigade shift registers,
and he showed an approximate equivalence at low frequencies to an
(analog) matched transmission line.® Traditionally equation (2) is
associated with probability theory (Bernoulli trials) where & + ¢ = 1.2°
In the case « = ¢ = 1 (outside our primary interpretation) equation
(2) is usually known as Pascal’s triangle although he was preceded by
Cardan in 1540 who, in turn, cited earlier sources.’* We give here a
number of exact and exact limiting (e = 0) solutions te equation (2)
useful both in image-detection and shift-register contexts. It should be
noted that our results can also be applied to Berglund’s model*? of
bipolar bucket-brigade shift registers which differs from equation (2)
only through an interchange of the physieal interpretation of x and ¢.

III. SINUSOIDAL REPRESENTATION

The dispersion relations can be found from the space and time
Fourier transforms of equation (2) or by the separation-of-variables
method. Either approach amounts to seeking a running-wave solution
of the form

Im ' (t—kete) lz |’ I ¢ | =012, --- (3)

where k& and » may be complex to account for the attenuation, and ¢ is
any constant phase factor. Since x takes on only integer values, equa-
tion (3) is not affected by adding multiples of 2= to the real part of k,
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and thus without loss of generality we require |Re k| = . In the
theory of lattice vibrations (where time is continuous but the physical
system is discrete) this range limitation on Re k is usually expressed by
saying that the wavelength with one atomic species must be at least
two lattice spacings.’* Similarly, since time is discrete, all frequencies
outside the fundamental range |Re o | = = are redundant. In the
theory of sampled-data control systems (where the physical system
is usually continuous but time is discrete) this is usually expressed
by saying that the sampling frequency must be at least twice the
maximum frequency to be detected.* (Here the sampling frequency f,
is once per unit time, i.e., fy = 1 or v, = 27). Substituting equation (3)
into equation (2) yields for the dispersion relation between and k
e’ = ae* + e 4)
Two important special cases of equation (4) are discussed in the rest of
this section. Since equation (4) shows that the dispersion relations are
independent of ¢, we take ¢ = 0 hereafter.
In the case of image detection (or projection), k is real correspond-

ing to a term in the spatial Fourier representation of the initial image.
Equation (4) then reduces to

wk) = o + w'’ = —w*(—k) (5)
P - sin k
=k — tan cos k + a/e

—ilna+3In[l+ (¢/a)* + 2(e/a) cos k]); (6)
ie., the wave is attenuated in time but remains spatially sinusoidal.
The identity

_, sin @ 1 sinf
tan c+cos€+mn ¢4 cos b

was used to express the effect of nonzero ¢ as a separate correction
term in equation (6). The real and imaginary parts, o’ and ” are
plotted in Fig. 1. Although not considered here, it is sometimes useful
to regard « and € as k-dependent (i.e., wavelength-dependent) quanti-
ties. In the practical case of small ¢/a, equation (6) is usefully ap-
proximated by truncating its expansion in powers of e/a after the
linear term, i.e.,

w(k) = &k — (¢/a) sin k — i[In o + (¢/a) cos k], e/a — 0
—k — esink + i[£ + (1 — cos k)], e, {— 0. (7
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A phase velocity v/ can be defined which describes the apparent speed
of the crests and troughs of the attenuating sine wave; i.e.,

vk, ¢/a) = % =1—Fk'tan™’ ﬁ% (8)
—>1—a5512k, e/a— 0. 9)

In particular
vi(k, e/a) + vi(k, a/e) =1 (10)
vi(k, 1) = 3 (11)

vk, e/a) =1 as k—-r if e/a <1

—0 as k—nr if ea> 1.
At long wavelengths (ie., k = 0) o' ~ &k while o” — const ~ k* Thus
we ignore the attenuation and find an infinite-wavelength group
velocity

dw’(0)
dk
In the case of shift-register operation w is real, corresponding to a
term in the Fourier representation of a time-dependent signal intro-
duced into one station. Equation (4) then reduces to

=0, e/a) = (1 + ¢/a)”".

h@) = K — ik = —k*(—w), 0Sw<w (12)
= w + tan™! 0L
€ — COS w

4+ ilna — i In(1 4+ € — 2 cos w)] (13)
—w+ esinw 4+ i(ln @ + € cos w), e—0 (14)

—w+ esinw — 7[f + (1 — cosw)], e, {—0;

i.e., the wave is attenuated as a funetion of x but is purely sinusoidal
in time at a given x. The identity following equation (6) was again
used. The quantity ik corresponds to the propagation function of
(continuous-time) lossy transmission lines; similarly k" and &k’ corre-
spond to the phase function and attenuation function respectively.!?
When Fig. 1 is rotated through 180 degrees in its plane, it becomes a
plot of equation (13). Although not considered here it is sometimes
useful to regard e and e as w-dependent quantities.
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Figs. 1a and 1b—For a spatial sine wave of the form expli{wt — kz)1 with |z|,
[t| = 0, 1,2, -+ the complex angular frequency w = « + 1" ig plotted versus

the (real) angular wave number k. After conversion from degrees to radians, k is
measured in units of (2v times the stations spacing)-!. The curves are param-
eterized by the ratio e/a where « is the fraction of the charge successfully
advanced per stepping operation and e is the fraction of the charge which remains
in a station per step [From equation (8)].
Fig. 1a—The real part of w, (Note that o'(k, e/a) + w'(k, afe) = k.)
Fig. 1b—The imaginary part of w.

After rotating the figures by 180 degrees: For a sinusoidal signal of the form
expli(wt — kz)] with ||, |{{ =0, 1,2, --- (temporal sine wave) the complex
angular wave number k = k' — tk” is plotted versus the (real) angular signal
frequency « where « is measured in degrees per stepping interval. The curves
are parameterized by ¢ where 0 < e < 1 is the physically significant range
[From equation (13)].

Fig. 1a—The real part of k.

Fig. 1b—The imaginary part of k.

The phase velocity is given by

COS w

i -1
vo(w, € = % = [1 + w ' tan™! ;Ts’_l_ﬂ"m_:l
(15)

sin w
w b

—1 — e e — 0.
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1747

k”, and hence the attenuation, is frequency dependent for any « > 0
(just as «” is k dependent for any £/« > 0); however, as one would
expect'® from causality (Hilbert Transform; Kramers-Kronig Rela-
tion) in a continuous-time system, the apparent phase velocity w/k’
has no dispersionless case for 0 < ¢ < 1 analogous to equation (11). At
low frequencies k’ ~ » while k” — const ~ w2 Thus we ignore the

attenuation and find a zero-frequency group velocity

(%@)_l =0,00,¢ =1 —e
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For a numerical example in the small-e approximation, let a time-
dependent signal be introduced into a shift register at z = 0 and ex-
tracted at station z. If z is large, the product ez is not necessarily small
compared to unity; consider the case ex = 0.2. From equation (15)
the phase transit time through the shift register is a/v, = zk'/w =
z 4+ re sin w/w. Thus the highest frequency component of the signal
(w = ) is transmitted in the ideal (i.e., ¢ = 0) time z. Lower frequencies
take increasingly long with the @ = 0 component arriving ze = 0.2
stepping intervals after the w = = component. The amplitude is at-
tenuated by the factor e™*'* = a%¢* *°* * which is a decreasing function
of frequency. Thus the cut-off frequency (w = ) is attenuated by
an additional factor of e ** = ¢ ”* = 0.67 over the attenuation of
the w = 0 component.

Equation (4) is invariant under the transformation

w—k k—w

a—1/a e — —¢/a
which can therefore be used to derive from each other the two parallel
sets of relations developed in this section.
If » is eliminated from equations (3) and (4), equation (25) results;
if k& is eliminated, equation (33) results.

IV. IMPULSE REPRESENTATION

Having established the connection with the usual basis for charac-
terizing continuous linear systems in terms of their effect on sine
waves, we turn to the impulse representation and investigate the solu-
tion of a unit charge placed in station z = 0 at £ = 0 with all other
stations initially uncharged. By considering the spatial distribution
after the first few steppings as shown in Fig. 2, the solution to equation
(2) with this boundary condition can be recognized as the binomial ex-
pansion of (a + £)7; ie.,

q:" = GI.‘ = (;:)azél—z, 0 é xr

IIA

t
(16)

=0 otherwise

where () is the widely tabulated binomial coefficient. Later we will
regard G.,, as the Green’s function for more general initial or boundary
conditions. Although our interpretation is deterministic rather than
probabilistic, the terminology and results of probability theory will
be quite useful. For example, equation (16) is a discrete bivariate
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Fig. 2—Evolution of a unit charge initially in station x = 0 at ¢ = 0. A fraction
a of the charge is advanced per step and a fraction e remains behind.

(zr and ¢ independent discrete variables) distribution, defined by a
parabolic (partial) finite difference equation [Equation (2)].

In the description of practical devices one is usually interested in
limiting expressions as £ and/or e approach zero. Rather than writing
several limiting forms at each point in the development, we emphasize
once and for all an approximation which, in one variation or another,
is frequently useful,

(ﬂ + E)t — (1 . f)‘ — el 1 (1-0 %8_“, M2 <« 1. (17)

Although in a real device the loss per transfer £ may be orders of mag-
nitude less than unity, the number of stations and hence transfers
may be so large that ¢ is comparable to unity, and the further ap-
proximation e ' & 1 — {{ is not generally accurate.

Consider first the spatial distribution of charge with time regarded
merely as a parameter, i.e., a horizontal row in Fig. 2. In probability
theory it is usually assumed that @ + ¢ = 1 (probability of heads
plus probability of tails are unity). To make direct use of extensively
compiled properties define

o =af(l —4£), ¢ =¢(1 -1 (18)
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so that &' + ¢ = 1. Then equation (16) becomes

G.o=(1— C)‘(:)a’:e“_: — A=, x=0,1,-,t (19
which defines b, the binomial distribution"” with normalization

3
po= 2 b =@ +€)=1 (20)
=0
and (1 — £)' is just a position-independent scale factor. (The inter-
mediate steps involved in carrying out the numerous sums which
follow can be found in many texts on probability theory.")
If the speed of the pulse is defined as the speed of the center of
mass of that charge remaining at any time, then from

(x) = Y ab, = a't (21)

=0
it follows that the speed is & = (1 + ¢/a)7, ie., the same as the
infinite-wavelength group velocity following equation (11). In general,
the pulse can be characterized by its central moments p of which the
rth

,u,.=2($—(x>)rb_.,, T=0,1,"',°0 (22)

=0

can be obtained explicitly as the coefficient of §"/r! in the Taylor-
series expansion in s of the central-moment-generating function®’

13
e D eh, = e (e + ale)’. (23)
z=0
Thus in particular the variance of the pulse, a useful measure of its
spread, is ps = to’ & = (2 + a/e + ¢/a)™* where the last form again
explicitly exhibits the fact that normalization-independent properties
depend on « and e only through their ratio. Higher central moments
are conveniently obtained from Romanovsky’s recursion relation.*”®

Lo = a'€(trp,—y + du./da’). (24)

Some further useful relations are as follows: When the pulse spreads
excessively for digital applications, one alternative is to utilize
2p + 1 consecutive stations for one pulse. It then follows directly
from the parallel-axis theorem for the moment of inertia that the
variance is increased by (only) the additive term p(p + 1)/3 over
the previous result.



DISCRETE CHARGE-TRANSFER DEVICES 1751

At time ¢ the ratio of the charge in the next-to-leading station to
that in the leading station of the pulse is te/a. Thus the leading station
of the pulse is also the most heavily charged until time ¢ = a/e when
the peak starts to drop back from the lead. At all times the charge
distribution falls off monotonically from the peak. At any time the
fraction of the remaining charge confined to the leading station is
(1 + ¢/a)t.

The results in Section III can be derived as consequences of those
of Section IV, and conversely. For example the single-spatial-Fourier-
transform solution of equation (2) can be obtained via the binomial
distribution regarded as a Green'’s function (in the terminology of
mathematical physies). Thus the initial sinusoidal spatial charge dis-
tribution ¢, = Im e evolves into g, at time ¢ where

t
o = T 3 G
z=0 ‘ - A (25)
Im (C + aetk)te—:kz = Im (a + ee—ik)teik(l—x) .

Equation (25) is equivalent to equations (3) and (4) with o elimi-
nated. Equation (6) results if the real and imaginary parts of equation
(25) are extracted. Apart from the normalization, the evolution factor
which carries the initial spatial distribution e7* into the later distribu-
tion can be recognized as (¢ + o e'*)t the characteristic function
(Fourier transform) of the binomial distribution in probability
theory.r” In the last form of equation (25), (a + e *)? evolves the
unperturbed or ideal (e = 0, « = 1) solution () into the actual
solution. Finally (1 + (e/a)e®)! (— exp(e*te/a) ase/a = 0) evolves
the e = 0 solution a'e'*(*-2),

As before [ef. equation (7)] we seek an approximation of the Green’s
function in the limit that /@, but not necessarily te/e, is small compared
to unity. If £ is also small, repeated use of equation (17) yields

G,..—e"pt — 2), e, £{—0, {— =, e tf = const.

AN=te, z=1¢t—1, - (26)

where p(®) = e™*/u! (v = 0, 1, -++) is the Poisson distribution.*”
Sum rules similar to those illustrated for the binomial distribution
can be carried out yielding in particular a pulse speed (z)/t = 1 —
A/t = 1 — ¢ and a variance A = te. As long as the pulse peaks near
or at the leading station, the Poisson distribution is usefully accurate
for the more strongly charged stations even when ¢ is only modestly

)
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large. A comparison of the binomial distribution and its Poisson ap-
proximation are given in Table I.

It is impractical to summarize the very many relevant exact and
approximate properties of the binomial distribution here, particularly
since a thorough compilation is already available.’” We have, however,
given a few of the most important properties to illustrate the useful-
ness of this connection with the extensive literature of probability
theory.

Turning now to a shift-register interpretation of equation (16), we
regard z as a parameter (the number of the stations which are used as
the register) and study the time-dependence of the charge in station
z — 1, ie., a vertical column in Fig. 2. The development proceeds in
close analogy to that of the binomial distribution and most of the
motivating remarks need not be repeated.

TasLE I—A CoMPARISON OF THE BINOMIAL AND NEGATIVE BINOMIAL
DISTRIBUTIONS WITH THEIR POISSON APPROXIMATION

1 2 3 4 5 6
E
9 0 0 0 0 -1
8 0 0.430 0.411 0.430 0
7 0 0.383 0.365 0.344 1
6 0 0.149 0.162 0.155 2
5 0 0.033 0.048 0.052 3
4 0 0.0046 0.011 0.014 4
3 0 4.1 X 104 1.9 X 1073 3.4 X 1072 5
2 0 2.3 X 107 2.8 x 104 7.4 X 104 6
1 0 7.2 X 1077 3.6 X 1078 1.5 X 10~¢ 7
0 1 1 X 1078 4.0 X 10~® 2.8 X 1078 8
-1 0 0 3.9 X 1077 4.9 X 10°* 9
-2 0 0 3.5 X 1078 8.4 X 1077 10
-3 0 0 — — 11

For the case & = 0.9 (fraction of charge successfully advanced per step), e = 0.1
(fra.ction) which remains in its station per step), and £ = 0 (fraction of charge lost
per step).

Column 1: Station number z for columns 2, 3, and 4.

Column 2: Initial distribution of charge among the stations.

Column 3: Binomial distribution of charge among stations eight steps later [from
equation (16) and (19)].

Column 6: Detection time 7 for Columns 5 and 4 as measured from time of initial
detection, r = 0.

Column 5: « times the negative binomial distribution of charge nondestructively
observed in station 7 ( times equation (27)) as a result of initial spatial
distribution of Column 2 = distribution of charge observed by a charge-
removing detector in station 8 (cf. Appendix).

Column 4: Poisson approximation to Columns 3 and 5 [from equation (26) or (34)].
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It is notationally convenient to use a new time r which starts at
time ¢ = x — 1 when some of the charge placed initially in station
zero is first observed in station x —1, i.e.,+ = t — x + 1. Then equation
(16) becomes

Gy = (T T:I l)ar_ief, r=0,1, -+, . (27)

If o' is defined as 1 — ¢ (so that o' + ¢ = 1), equation (27) becomes

o= (2 ) (27 e () e

and defines n, the negative binomial distribution!” with normalization

o0

= don =a"1—¢" =1. (29)

=0
Since charge which fails to advance is observed again, the sum of all
charge (nondestructively) observed in station r — 1,1i.e.,, ™ '(1 — €)%
may exceed unity even if £ = 0 (cf. the discussion of boundary con-
ditions in the appendix). Whereas all normalization-independent
properties of the binomial distribution depend on « and e only through
their ratio e/@, here all normalization-independent properties depend

only on € (ef. Figs. 1 and 2).
The charge in station v — 1 is observed at a mean time (f) = 2 —

1 + () where

(1) = Z ™m, = ze(l — €)' (30)
=10

and thus in the shift-register context the pulse speed can be defined
as (x — 1)/(t) which approaches 1 — ¢ for large r; i.e., the same as
the zero-frequency group velocity following equation (15) but faster
than the definition following equations (11) and (21) execept in the

case of no charge loss ({ = 0) when all definitions agree.
The rth central moment of the charge sequence in station x — 1 is

b = Z (r = (), (31)

which can be obtained by direct calculation or as the coefficient of
s"/r! in the Taylor expansion in powers of s of the central-moment
generating function?’
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¢ e, = 61— ee”) (1 — € (32)
7=0
In particular, the variance is ps = 2e (1 — €)™
The first charge observed in station z — 1 is a fraction (1 — €)? of
all that will be observed in that station. It is also the largest charge
observed in © — 1 if e, the ratio of the second amount observed to
the first, is less than unity. Thus the input, ze, for the example at the
end of Section IIT can be obtained experimentally from the ratio of
the first two nonzero charges present in z — 1 due to a single initial
charge in z = 0. More accurate graphical methods actually developed
for statistical contexts can be directly applied here to infer the param-
eters from the final distribution resulting from an initial pulse.*”
According to equation (2) a sinusoidal signal go, = Im €™’ present
in station zero at time t adds an additional charge Agy ¢4 to station 1
at t + 1 where Aqy.t41 = ago, (cf. the Appendix). Thus from equation
(28) the charge present in station x at time ¢ is

q,_, — Im E Gz_llraeiu(l—z—-r)
o (33)

x Ed
a i o i -
— Im(‘-w )ewi — Im( _"N)elu(t z)
e’ — ¢ 1 — e

which is equivalent to equations (3) and (4) with k& eliminated. Equa-
tion (13) results if the real and imaginary parts of equation (33) are
extracted. Apart from the normalization the transfer factor which
multiplies the initial signal ¢"* in equation (33) is the characteristic
function of the negative binomial distribution.

In the limit of small € and £, but not necessarily small ex or ¢, Q...
becomes exp (—£z) times the Poisson distribution; i.e.,

G, —e % A/r!, L e—0;x— o;lx, ex = const A = e (34)

which is functionally equivalent to equation (26). Thus as illustrated
in Table I, the distinction between the spatial and temporal projec-
tions of the impulse solution disappears in the Poisson limit [cf. equa-
tions (7) and (14)].

V. SUMMARY

Without reviewing any one of the three specialized fields individ-
ually, we have emphasized by way of an explicit case of current in-
terest the connection between, on the one hand, the present practice
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of characterizing discrete charge-transfer devices in terms of their
charge-transfer efficiencies and, on the other hand, the two well-
developed fields of (analog) sinusoidal signal analysis and probability
theory (interpreted deterministically).

Parenthetically we note that the model of this paper [equation (2)]
is of some tutorial interest in that it permits the basic ideas of a
traveling-wave description of discrete-space-and-time linear systems
(including therefore as special cases the limits of continuous space
and time) to be exemplified immediately in a unified manner via
a simple device. The usual textbook vehicles such as sampled-data
control systems, lattices, or transmission lines suffer tutorially in
varying degrees from being too restricted (discrete in only space or
time; no attenuation) and requiring a lengthy and specialized physical
explanation of the origin of the basic equation in a less easily
visualized system.
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APPENDIX

In the main portion of this paper the boundary conditions were
deemphasized. For example, in shift-register operation the charge
distribution was assumed to be unaffected by its own detection. Let
¢..:. be the nondestructively observed charge as distinguished from
¢!, , the charge measured by a destruction process that removes all
of the charge from station x. Then by equation (2) these two limiting
cases are simply related as follows

Gre = QQe-1,e-1; (35)
ie., the expressions given for a nondestructively observed shift-
register need only be multiplied by « to obtain their destructively
measured counterparts in a register with one more station. In the
case of a detection process which removes a fixed fraction of the
charge, the signal can be obtained from the difference between suec-
cessive measurements.

Similarly the two limiting cases at the input station of the register
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are Dirichlet (voltage) and Neumann (charge) boundary conditions.
In the Neumann case a fixed amount of charge is added to whatever
charge may already be in the station. In the Dirichlet case a fixed
applied voltage adds charge as necessary to what is already in the
station thereby achieving a total charge predetermined by the voltage
level. By equation (2), and in analogy to equation (35), these two
cases are simply related because a fixed total charge g, in z at ¢
injects a fixed additional charge ag., into z + 1 at ¢ + 1 (cf. equa-
tion (33)).

To generalize equation (2) consider a constant inhomogeneous term
gs which might, for example, represent the amount of dark-current
charge added per station per stepping interval. Then (2) becomes

Qevt = QQz-1,0-1 T €Qz,c-1 + qa. (36)
An important particular solution of equation (36) is the spatially-
uniform rising-in-time solution which starts from a spatially uniform
distribution g, at t = 0:

¢ 1-—-
q:.l=6q0+1—__g_qd, ,B-—-tx-f-e, t=0’1,-.. (37)

= ¢+ q@t, =0
This could describe a recirculating memory where the output of the
last station is fed back into the initial station. The constant-in-time
rising-in-space solution is

z 1 1—+%
q"'=7q"+l—el-—:q‘“ ?Elie’ :E=0,1,--.
(38)
T
=Q‘D+1__"‘ Qa, =0,

€

where g, is now the charge in the (initial) station x = 0. This steady-
state distribution could be maintained in a shift register by removing
a charge gz — (1 — €) go from the initial station per step. Equation (2)
is now understood to describe a signal (homogeneous solution) imposed
on some particular solution to equation (36) deseribing the back-
ground charge.

Next assume, as is certainly true in some devices, that the transfer
fractions « and e depend upon at least some of the ¢’s; i.e., the process
is nonlinear. Then in the small-signal case (whether or not gq is fur-
ther generalized to be a function of z and t) « and & in equation (2)
would still be independent of the magnitude. of the signal charge but
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no longer independent of x and ¢ even though all stations were phys-
ically equivalent apart from their momentary charges. In the case of
equation (37) « and « would still be x independent; in the case of
equation (38) still ¢ independent®® (cf. nonuniform transmission lines).

Before proceeding we switch to the suitably developed terminology
of probability theory (without necessarily implying a probabilistic
interpretation). Actually, this has some plausible justification. To the
extent that equation (2) applies independently to each of the indi-
visible electrons or holes in the charge, « and e must be interpreted as
transition probabilities, and our deterministic interpretation results
only because the large number of electrons or holes permits fluctuations
to be ignored. In this probabilistic sense one can define the information
content of a discrete charge distribution.** Similarly in equation (36),
qa(x, t) could be a random variable describing the introduction of
extraneous noise.

To complete the small-signal or linear model for the signal we note
that in practice the stations are driven by n-phase time-dependent
voltages such that in a coordinate system y which moves at the ideal
signal speed (y = x — t) the voltage distribution among the stations
appears constant in discrete time and periodie in discrete space with
a period of n stations. In each cycle of n stations one station is the
designated potential well which, in the ideal case, carries all of the
charge in that spatial cycle. The distortion of the signal corresponds
to the transitions which the electrons or holes make to neighboring
stations and, eventually, to neighboring wells. In a causal system the
homogeneous equation for the signal charge takes the form

1—1 o
Qu.t = ‘Z E Tv-u' yoeer @yt (39)

where the transition elements of the T matrix are g-independent in a
small-signal theory. (In some cases, the upper limit of ¥ is ¢ rather
thant — 1.)

If the system is memoryless such that the spatial charge distribution
at one time is sufficient to determine the distribution at the next time
and hence for all time, then equation (39) reduces to the Markoffian
form

Qv = Z Tyvtim1Qyr -1 (40)

¥ =

This simplification corresponds, for example, to neglecting traps which
accept signal charge at a rate proportional to the local signal and then
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emit the charges into the signal over a time scale long compared to
the stepping interval.

When the background charge distribution, if any, is time independent,
T, ... depends on ¢ and ¢’ only through their difference. If the back-
ground distribution is spatially constant, 7' is a periodic function of
y — y'; i.e., T describes a random-walk®' problem on a one-dimensional
lattice with anisotropic and spatially periodic transition probabilities
(cf. Floquet’s theorem').

Finally, of course, large signals under nonlinear conditions are of
interest. However, it is not yet clear that there is any dependence of T
on the ¢’s which is more general than the specific deviee where it
arises.

In the moving coordinate system equation (2) becomes

Qy,e = 0y, -1 + €gyi1.e-1 (41)

which is functionally equivalent to equation (2) and distinet only in
that the roles of « and ¢, as well as the sense of spatial direction, are
reversed. If the transition probabilities (7" matrix elements) are small
out of the wells and large out of the other stations between wells, then
this 1-phase equation can be used to approximate an n-phase system.
The unit of time is taken as the effective stepping interval equal to n
actual stepping intervals, and successive integer values of  or y label
the n-cycle groups or the wells. The matrix elements e and « in equa-
tion (41) then describe a net transfer of charge between, or retention of
charge by, the n-cycle moving groups during one (effective) time unit.
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